Examining Relationships between Cognitive Flexibility, Exercise Perceptions, and Cardiovascular Disease Risk Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Human Participants and Power Analysis
2.3. Procedure
2.4. Measures and Analyses
2.4.1. Cognitive Flexibility
2.4.2. Peripheral Vascular Function
2.4.3. Handgrip Strength
2.4.4. Body Composition
2.5. Data and Statistical Analyses
3. Results
3.1. Study 1
3.2. Study 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biddle, S.J.H.; Gorely, T.; Faulkner, G.; Mutrie, N. Psychology of Physical Activity: A 30-Year Reflection on Correlates, Barriers, and Theory. Int. J. Sport Exerc. Psychol. 2022, 21, 1–14. [Google Scholar] [CrossRef]
- Chainay, H.; Joubert, C.; Massol, S. Behavioural and ERP Effects of Cognitive and Combined Cognitive and Physical Training on Working Memory and Executive Function in Healthy Older Adults. Adv. Cogn. Psychol. 2021, 17, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.I.; Hillman, C.H.; Kramer, A.F. Physical Activity, Brain, and Cognition. Curr. Opin. Behav. Sci. 2015, 4, 27–32. [Google Scholar] [CrossRef]
- Ji, Z.; Feng, T.; Wang, H. The Effects of 12-Week Physical Exercise Tapping High-Level Cognitive Functions. Adv. Cogn. Psychol. 2020, 16, 59–66. [Google Scholar] [CrossRef]
- Kelly, S.M.; Updegraff, J.A. Substituting Activities Mediates the Effect of Cognitive Flexibility on Physical Activity: A Daily Diary Study. J. Behav. Med. 2017, 40, 669–674. [Google Scholar] [CrossRef]
- Lewis, B.A.; Napolitano, M.A.; Buman, M.P.; Williams, D.M.; Nigg, C.R. Future Directions in Physical Activity Intervention Research: Expanding Our Focus to Sedentary Behaviors, Technology, and Dissemination. J. Behav. Med. 2017, 40, 112–126. [Google Scholar] [CrossRef]
- Masley, S.; Roetzheim, R.; Gualtieri, T. Aerobic Exercise Enhances Cognitive Flexibility. J. Clin. Psychol. Med. Settings 2009, 16, 186–193. [Google Scholar] [CrossRef]
- Mason, J.R.; Tenenbaum, G.; Jaime, S.; Roque, N.; Maharaj, A.; Figueroa, A. Arterial Stiffness and Cardiorespiratory Fitness Are Associated with Cognitive Function in Older Adults. Behav. Med. 2022, 48, 54–65. [Google Scholar] [CrossRef]
- Morris, J.K.; Zhang, G.; Dougherty, R.J.; Mahnken, J.D.; John, C.S.; Lose, S.R.; Cook, D.B.; Burns, J.M.; Vidoni, E.D.; Okonkwo, O. Collective Effects of Age, Sex, Genotype, and Cognitive Status on Fitness Outcomes. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2020, 12, e12058. [Google Scholar] [CrossRef]
- Trudel-Fitzgerald, C.; Qureshi, F.; Appleton, A.A.; Kubzansky, L.D. A Healthy Mix of Emotions: Underlying Biological Pathways Linking Emotions to Physical Health. Curr. Opin. Behav. Sci. 2017, 15, 16–21. [Google Scholar] [CrossRef]
- Tsuk, S.; Netz, Y.; Dunsky, A.; Zeev, A.; Carasso, R.; Dwolatzky, T.; Salem, R.; Behar, S.; Rotstein, A. The Acute Effect of Exercise on Executive Function and Attention: Resistance Versus Aerobic Exercise. Adv. Cogn. Psychol. 2019, 15, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Yemiscigil, A.; Vlaev, I. The Bidirectional Relationship between Sense of Purpose in Life and Physical Activity: A Longitudinal Study. J. Behav. Med. 2021, 44, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.F.; Erickson, K.I. Capitalizing on Cortical Plasticity: Influence of Physical Activity on Cognition and Brain Function. Trends Cogn Sci 2007, 11, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Ozemek, C.; Lavie, C.J.; Rognmo, Ø. Global Physical Activity Levels—Need for Intervention. Prog. Cardiovasc. Dis. 2019, 62, 102–107. [Google Scholar] [CrossRef]
- McEwan, D.; Rhodes, R.E.; Beauchamp, M.R. What Happens When the Party Is Over?: Sustaining Physical Activity Behaviors after Intervention Cessation. Behav. Med. 2022, 48, 1–9. [Google Scholar] [CrossRef]
- Tsai, A.G.; Wadden, T.A. Systematic Review: An Evaluation of Major Commercial Weight Loss Programs in the United States. Ann. Intern. Med. 2005, 142, 56–66. [Google Scholar] [CrossRef]
- Collins, K.A.; Huffman, K.M.; Wolever, R.Q.; Smith, P.J.; Siegler, I.C.; Ross, L.M.; Hauser, E.R.; Jiang, R.; Jakicic, J.M.; Costa, P.T.; et al. Determinants of Dropout from and Variation in Adherence to an Exercise Intervention: The STRRIDE Randomized Trials. Transl. J. Am. Coll. Sports Med. 2022, 7, e000190. [Google Scholar] [CrossRef]
- Barnes, D.E.; Yaffe, K.; Satariano, W.A.; Tager, I.B. A Longitudinal Study of Cardiorespiratory Fitness and Cognitive Function in Healthy Older Adults. J. Am. Geriatr. Soc. 2003, 51, 459–465. [Google Scholar] [CrossRef]
- Brush, C.J.; Bocchine, A.J.; Olson, R.L.; Ude, A.A.; Dhillon, S.K.; Alderman, B.L. Does Aerobic Fitness Moderate Age-Related Cognitive Slowing? Evidence from the P3 and Lateralized Readiness Potentials. Int. J. Psychophysiol. 2020, 155, 63–71. [Google Scholar] [CrossRef]
- Heath, M.; Shukla, D. A Single Bout of Aerobic Exercise Provides an Immediate “Boost” to Cognitive Flexibility. Front. Psychol. 2020, 11, 1106. [Google Scholar] [CrossRef]
- La Marra, M.; Ilardi, C.R.; Villano, I.; Carosella, M.; Staiano, M.; Iavarone, A.; Chieffi, S.; Messina, G.; Polito, R.; Scarinci, A.; et al. Functional Relationship between Inhibitory Control, Cognitive Flexibility, Psychomotor Speed and Obesity. Brain Sci. 2022, 12, 1080. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Li, Q.; Jiang, Y.; Liu, Y.; Xu, A.; Liu, X.; Chen, H. Do Overweight People Have Worse Cognitive Flexibility? Cues-Triggered Food Craving May Have a Greater Impact. Nutrients 2022, 14, 240. [Google Scholar] [CrossRef] [PubMed]
- Song, T.-F.; Chu, C.-H.; Nien, J.-T.; Li, R.-H.; Wang, H.-Y.; Chen, A.-G.; Chang, Y.-C.; Yang, K.-T.; Chang, Y.-K. The Association of Obesity and Cardiorespiratory Fitness in Relation to Cognitive Flexibility: An Event-Related Potential Study. Front. Hum. Neurosci. 2022, 16, 862801. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef]
- Ionescu, T. Exploring the Nature of Cognitive Flexibility. New Ideas Psychol. 2012, 30, 190–200. [Google Scholar] [CrossRef]
- Schultz, P.W.; Searleman, A. Rigidity of Thought and Behavior: 100 Years of Research. Genet. Soc. Gen. Psychol. Monogr. 2002, 128, 165–207. [Google Scholar]
- Maddox, T.; Markman, A.B. The Motivation–Cognition Interface in Learning and Decision Making. Curr. Dir. Psychol. Sci. 2010, 19, 106–110. [Google Scholar] [CrossRef]
- Buechner, B.M.; Clarkson, J.J.; Otto, A.S.; Ainsworth, G. Political Ideology and Cultural Consumption: The Role of Cognitive Flexibility in Shaping Liberal and Conservative Preferences for Global-Local Experiences. J. Assoc. Con. Res. 2022, 7, 266–275. [Google Scholar] [CrossRef]
- Wong, V.C.; Wyer, R.S. Mental Traveling along Psychological Distances: The Effects of Cultural Syndromes, Perspective Flexibility, and Construal Level. J. Pers. Soc. Psychol. 2016, 111, 17–33. [Google Scholar] [CrossRef]
- Stuss, D.T.; Murphy, K.J.; Binns, M.A.; Alexander, M.P. Staying on the Job: The Frontal Lobes Control Individual Performance Variability. Brain 2003, 126, 2363–2380. [Google Scholar] [CrossRef]
- Stuss, D.T.; Alexander, M.P. Executive Functions and the Frontal Lobes: A Conceptual View. Psychol. Res. 2000, 63, 289–298. [Google Scholar] [CrossRef]
- Brandstätter, V.; Bernecker, K. Persistence and Disengagement in Personal Goal Pursuit. Annu. Rev. Psychol. 2022, 73, 271–299. [Google Scholar] [CrossRef]
- Gaalema, D.E.; Dube, S.; Potter, A.; Elliott, R.J.; Mahoney, K.; Sigmon, S.C.; Higgins, S.T.; Ades, P.A. The Effect of Executive Function on Adherence with a Cardiac Secondary Prevention Program and Its Interaction with an Incentive-Based Intervention. Prev. Med. 2019, 128, 105865. [Google Scholar] [CrossRef]
- Buechner, B.M.; Clarkson, J.J.; Otto, A.S.; Hirt, E.R.; Ho, M.C. Political Ideology and Executive Functioning: The Effect of Conservatism and Liberalism on Cognitive Flexibility and Working Memory Performance. Soc. Psychol. Personal. Sci. 2021, 12, 237–247. [Google Scholar] [CrossRef]
- Kane, M.J.; Engle, R.W. Working-Memory Capacity, Proactive Interference, and Divided Attention: Limits on Long-Term Memory Retrieval. J. Exp. Psychol. Learn. Mem. Cogn. 2000, 26, 336–358. [Google Scholar] [CrossRef] [PubMed]
- Engle, R.W. Working Memory Capacity as Executive Attention. Curr. Dir. Psychol. Sci. 2002, 11, 19–23. [Google Scholar] [CrossRef]
- Anderson, T.; Charbonneau, F.; Title, L.; Buithieu, J.; Rose, M.S.; Conradson, H.; Hildebrand, K.; Fung, M.; Verma, S.; Lonn, E. Microvascular Function Predicts Cardiovascular Events in Primary Prevention. Circulation 2011, 123, 163–169. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, G.V.; Soares, R.N.; Volino-Souza, M.; Leitão, R.; Murias, J.M.; Alvares, T.S. The Effects of Aging and Cardiovascular Risk Factors on Microvascular Function Assessed by Near-Infrared Spectroscopy. Microvasc. Res. 2019, 126, 103911. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.G.; Walk, A.M.; Thompson, S.V.; Mullen, S.P.; Holscher, H.D.; Khan, N.A. Disordered Eating Attitudes and Behavioral and Neuroelectric Indices of Cognitive Flexibility in Individuals with Overweight and Obesity. Nutrients 2018, 10, 1902. [Google Scholar] [CrossRef]
- Sánchez-SanSegundo, M.; Zaragoza-Martí, A.; Martin-LLaguno, I.; Berbegal, M.; Ferrer-Cascales, R.; Hurtado-Sánchez, J.A. The Role of BMI, Body Fat Mass and Visceral Fat in Executive Function in Individuals with Overweight and Obesity. Nutrients 2021, 13, 2259. [Google Scholar] [CrossRef]
- Sim, M.; Kim, S.-Y.; Suh, Y. Sample Size Requirements for Simple and Complex Mediation Models. Educ. Psychol. Meas. 2022, 82, 76–106. [Google Scholar] [CrossRef] [PubMed]
- Mantooth, W.P.; Mehta, R.K.; Rhee, J.; Cavuoto, L.A. Task and Sex Differences in Muscle Oxygenation during Handgrip Fatigue Development. Ergonomics 2018, 61, 1646–1656. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, A.; Fehring, D.J.; Rossell, S.L. A Systematic Review and Meta-Analysis of Behavioural Sex Differences in Executive Control. Eur. J. Neurosci. 2021, 53, 519–542. [Google Scholar] [CrossRef] [PubMed]
- Dhar, R. Consumer Preference for a No-Choice Option. J. Consum. Res. 1997, 24, 215–231. [Google Scholar] [CrossRef]
- Haran, U.; Ritov, I.; Mellers, B. The Role of Actively Open-Minded Thinking in Information Acquisition, Accuracy, and Calibration. Judgm. Decis. Mak. 2013, 8, 188–201. [Google Scholar] [CrossRef]
- Baron, J. Actively Open-Minded Thinking in Politics. Cognition 2019, 188, 8–18. [Google Scholar] [CrossRef]
- Gualtieri, C.T.; Johnson, L.G. Neurocognitive Testing Supports a Broader Concept of Mild Cognitive Impairment. Am. J. Alzheimers Dis. Other Demen. 2005, 20, 359–366. [Google Scholar] [CrossRef]
- Gualtieri, C.T.; Johnson, L.G. Reliability and Validity of a Computerized Neurocognitive Test Battery, CNS Vital Signs. Arch. Clin. Neuropsychol. 2006, 21, 623–643. [Google Scholar] [CrossRef]
- Rosenberry, R.; Nelson, M.D. Reactive Hyperemia: A Review of Methods, Mechanisms, and Considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020, 318, R605–R618. [Google Scholar] [CrossRef]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis, Second Edition: A Regression-Based Approach; Guilford Publications: New York City, NY, USA, 2017; ISBN 978-1-4625-3466-1. [Google Scholar]
- Ansdell, P.; Thomas, K.; Hicks, K.M.; Hunter, S.K.; Howatson, G.; Goodall, S. Physiological Sex Differences Affect the Integrative Response to Exercise: Acute and Chronic Implications. Exp. Physiol. 2020, 105, 2007–2021. [Google Scholar] [CrossRef]
- Hill, B.D.; Pella, R.D.; Singh, A.N.; Jones, G.N.; Gouvier, W.D. The Wender Utah Rating Scale: Adult ADHD Diagnostic Tool or Personality Index? J. Atten. Disord. 2009, 13, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Kruger, J.; Wirtz, D.; Van Boven, L.; Altermatt, T.W. The Effort Heuristic. J. Exp. Soc. Psychol. 2004, 40, 91–98. [Google Scholar] [CrossRef]
- Shiota, M.N.; Papies, E.K.; Preston, S.D.; Sauter, D.A. Positive Affect and Behavior Change. Curr. Opin. Behav. Sci. 2021, 39, 222–228. [Google Scholar] [CrossRef]
- Dunn, A.L.; Marcus, B.H.; Kampert, J.B.; Garcia, M.E.; Kohl III, H.W.; Blair, S.N. Comparison of Lifestyle and Structured Interventions to Increase Physical Activity and Cardiorespiratory FitnessA Randomized Trial. JAMA 1999, 281, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Opdenacker, J.; Boen, F.; Coorevits, N.; Delecluse, C. Effectiveness of a Lifestyle Intervention and a Structured Exercise Intervention in Older Adults. Prev. Med. 2008, 46, 518–524. [Google Scholar] [CrossRef]
- Viken, H.; Reitlo, L.S.; Zisko, N.; Nauman, J.; Aspvik, N.P.; Ingebrigtsen, J.E.; Wisløff, U.; Stensvold, D. Predictors of Dropout in Exercise Trials in Older Adults: The Generation 100 Study. Med. Sci. Sports Exerc. 2019, 51, 49–55. [Google Scholar] [CrossRef]
- Englert, C.; Rummel, J. I Want to Keep on Exercising but I Don’t: The Negative Impact of Momentary Lacks of Self-Control on Exercise Adherence. Psychol. Sport Exerc. 2016, 26, 24–31. [Google Scholar] [CrossRef]
- Howlett, C.A.; Wewege, M.A.; Berryman, C.; Oldach, A.; Jennings, E.; Moore, E.; Karran, E.L.; Szeto, K.; Pronk, L.; Miles, S.; et al. Same Room—Different Windows? A Systematic Review and Meta-Analysis of the Relationship between Self-Report and Neuropsychological Tests of Cognitive Flexibility in Healthy Adults. Clin. Psychol. Rev. 2021, 88, 102061. [Google Scholar] [CrossRef]
- Scott, W.A. Cognitive Complexity and Cognitive Flexibility. Sociometry 1962, 25, 405–414. [Google Scholar] [CrossRef]
- Martin, M.M.; Rubin, R.B. A New Measure of Cognitive Flexibility. Psychol. Rep. 1995, 76, 623–626. [Google Scholar] [CrossRef]
- Ben-Itzhak, S.; Bluvstein, I.; Maor, M. The Psychological Flexibility Questionnaire (PFQ): Development, Reliability and Validity. WebmedCentral Psychol. 2014, 4, WMC004606. [Google Scholar] [CrossRef]
- Vidoni, E.D.; Johnson, D.K.; Morris, J.K.; Sciver, A.V.; Greer, C.S.; Billinger, S.A.; Donnelly, J.E.; Burns, J.M. Dose-Response of Aerobic Exercise on Cognition: A Community-Based, Pilot Randomized Controlled Trial. PLoS ONE 2015, 10, e0131647. [Google Scholar] [CrossRef] [PubMed]
Male | Female | Correlation Coefficient | p-Value | |
---|---|---|---|---|
Study 1—AOT | 4.9 ± 0.8 | 4.9 ± 0.6 | r = −0.019 | p > 0.70 |
Study 2—CNS Vital Signs | 101.3 ± 17.5 | 98.9 ± 21.0 | r = −0.064 | p > 0.70 |
Study 2 | |||
---|---|---|---|
Mean | SD | n | |
CNS Vital Signs Cognitive Flexibility | 100.1 | 19.0 | 30 |
Lean Body Mass (kg) | 126.1 | 27.3 | 30 |
Fat Mass (kg) | 39.8 | 5.2 | 30 |
Body Fat (%) | 24.2 | 5.2 | 30 |
Handgrip (kg) | 37.3 | 12.1 | 30 |
Upslope (%∙s−1) | 2.1 | 0.7 | 30 |
n = 30 | Weight (kg) | Body Mass Index | Lean Body Mass (kg) | Fat Mass (kg) | Body Fat (%) | Strength (kg) | Cognitive Flexibility (CNS VS) | Upslope (%∙s−1) |
---|---|---|---|---|---|---|---|---|
Weight (kg) | 1.00 | |||||||
Body Mass Index | 0.882 | 1.00 | ||||||
Lean Body Mass (kg) | 0.796 | 0.642 | 1.00 | |||||
Fat Mass (kg) | 0.241 | 0.435 | 0.262 | 1.00 | ||||
Body Fat (%) | −0.358 | −0.091 | −0.441 | 0.735 | 1.00 | |||
Strength (kg) | 0.754 | 0.610 | 0.907 | 0.181 | −0.465 | 1.00 | ||
Cognitive Flexibility (CNS VS) | −0.018 | −0.115 | 0.009 | 0.063 | 0.059 | −0.036 | 1.00 | |
Upslope (%∙s−1) | 0.167 | 0.054 | 0.087 | −0.262 | −0.352 | 0.113 | 0.020 | 1.00 |
Study 2: (2,1 Model; ICCs), Systematic Error (Repeated Measures ANOVA), Coefficient of Variation (CV; Normalized Absolute Reliability) | ||||||
---|---|---|---|---|---|---|
Visit 1 | Visit 2 | ICC | p-Value | CV | ||
Handgrip Strength (kg) | 37.0 ± 11.6 | 38.3 ± 12.3 | 0.95 | 0.06 | 6.73 | |
Upslope (%∙s−1) | 2.31 ± 0.9 | 2.06 ± 0.7 | 0.56 | 0.18 | 29.7 | |
Lean Body Mass (kg) | 59.2 ± 12.9 | 58.5 ± 12.1 | 0.98 | 0.19 | 2.87 | |
Fat Mass (kg) | 20.0 ± 10.3 | 20.6 ± 11.2 | 0.98 | 0.09 | 6.99 |
n = 30 | Male | Female | p-Value |
---|---|---|---|
Age (yr) | 23 ± 1 | 22 ± 1 | p > 0.05 |
Weight (kg) | 85.0 ± 11.6 | 64.9 ± 9.9 | p < 0.05 |
Height (cm) | 176.5 ± 6.3 | 166.9 ± 7.2 | p < 0.05 |
BMI | 27.3 ± 3.6 | 23.2 ± 2.6 | p < 0.05 |
MAP (mmHg) | 89.5 ± 13.2 | 85.2 ± 14.1 | p > 0.05 |
Lean Body Mass (kg) | 66.9 ± 9.5 | 47.5 ± 5.2 | p < 0.05 |
Fat Mass (kg) | 18.4 ± 5.3 | 17.8 ± 4.5 | p > 0.05 |
Body Fat (%) | 21.4 ± 4.8 | 27.0 ± 3.9 | p < 0.05 |
Grip Strength (kg) | 46.6 ± 9.3 | 28.2 ± 5.8 | p < 0.05 |
Upslope (%∙s−1) | 2.20 ± 0.7 | 2.01 ± 0.8 | p > 0.05 |
Systolic Blood Pressure | 127.6 ± 72.7 | 120.9 ± 11.2 | p < 0.05 |
Diastolic Blood Pressure | 72.7 ± 8.4 | 72.0 ± 9.8 | p > 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buechner, B.M.; Traylor, M.K.; Feldman, R.I.; Overstreet, K.F.; Hill, B.D.; Keller, J.L. Examining Relationships between Cognitive Flexibility, Exercise Perceptions, and Cardiovascular Disease Risk Factors. Eur. J. Investig. Health Psychol. Educ. 2023, 13, 2276-2289. https://doi.org/10.3390/ejihpe13100161
Buechner BM, Traylor MK, Feldman RI, Overstreet KF, Hill BD, Keller JL. Examining Relationships between Cognitive Flexibility, Exercise Perceptions, and Cardiovascular Disease Risk Factors. European Journal of Investigation in Health, Psychology and Education. 2023; 13(10):2276-2289. https://doi.org/10.3390/ejihpe13100161
Chicago/Turabian StyleBuechner, Bryan M., Miranda K. Traylor, Rachel I. Feldman, Kaitlyn F. Overstreet, Benjamin D. Hill, and Joshua L. Keller. 2023. "Examining Relationships between Cognitive Flexibility, Exercise Perceptions, and Cardiovascular Disease Risk Factors" European Journal of Investigation in Health, Psychology and Education 13, no. 10: 2276-2289. https://doi.org/10.3390/ejihpe13100161
APA StyleBuechner, B. M., Traylor, M. K., Feldman, R. I., Overstreet, K. F., Hill, B. D., & Keller, J. L. (2023). Examining Relationships between Cognitive Flexibility, Exercise Perceptions, and Cardiovascular Disease Risk Factors. European Journal of Investigation in Health, Psychology and Education, 13(10), 2276-2289. https://doi.org/10.3390/ejihpe13100161