Physical Exercise Methods and Their Effects on Glycemic Control and Body Composition in Adults with Type 2 Diabetes Mellitus (T2DM): A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategies
2.2. Selection of Studies
2.3. Eligibility Criteria
2.4. Data Extraction
2.5. Synthesis of Results
3. Results
3.1. Overall Analysis of Results
3.2. Synthesis of the Selected Articles
3.3. Effects of Aerobic Exercise
3.4. Effects of Interval Exercise
3.5. Effects of Resistance Exercise
3.6. Effects of Combined Exercise
3.7. Effects of Other Physical Exercise Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Organización Mundial de la Salud. Plan de Acción Mundial Para la Prevención y el Control de las Enfermedades no Transmisibles 2013–2020; OMS: Ginebra, Switzerland, 2013. [Google Scholar]
- International Diabetes Federation. IDF Diabetes Atlas, 9th ed.; Diabetes Care: Brussels, Belgium, 2019. [Google Scholar]
- Ministerio de Salud. Encuesta Nacional de Salud 2016–2017; Santiago, Chile, 2018. Available online: http://epi.minsal.cl/wp-content/uploads/2021/01/ENS_2016_2017_Informe_final_V4.3.pdf/ (accessed on 22 February 2023).
- Ministerio del Deporte. Encuesta Nacional de Hábitos de Actividad Física y Deporte 2018 en Población de 18 Años y Más; Santiago, Chile, 2018. Available online: http://www.mindep.cl/encuesta-actividad-fisica-y-deporte-2018/ (accessed on 10 March 2023).
- American Diabetes Association. Standards of medical care in diabetes—2019 abridged for primary care providers. Clin. Diabetes 2019, 27, 11–34. [Google Scholar] [CrossRef]
- Álvarez, C.; Ramírez-Campillo, R.; Martínez-Salazar, C.; Mancilla, R.; Flores-Opazo, M.; Cano-Montoya, J.; Ciolac, E.G. Low-volume high-intensity interval training as a therapy for type 2 diabetes. Int. J. Sports Med. 2016, 3, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Arias Serna, D.; Vallejo Osorio, A.N.; Vera Sagredo, A.; Poblete-Valderrama, F.; Monterrosa-Quintero, A. Effects of resistance training in people with Type II Diabetes Mellitus: Systematic review. Cienc. Act. Fís. UCM 2023, 24, 1–13. [Google Scholar] [CrossRef]
- Da Silva, G.P.; Hernández-Mosqueira, C.; Pavéz-Adasme, G.; da Silva, S.F. Analysis of the resistance training in the glycemic profile: A bibliographic review. Cien. Act. Fís. UCM 2017, 18, 1–9. [Google Scholar] [CrossRef]
- Miladinova, V. Complicaciones Crónicas de la Diabetes Mellitus Tipo 2; Universidad de Complutense: Madrid, Spain, 2017. [Google Scholar]
- Jakobsen, I.; Solomon, T.; Karstoft, K. The Acute Effects of Interval-Type Exercise on Glycemic Control in Type 2 Diabetes Subjects. PLoS ONE 2016, 11, e0163562. [Google Scholar] [CrossRef] [PubMed]
- Karstoft, K.; Clark, M.A.; Jakobsen, I.; Müller, I.A.; Pedersen, B.K.; Solomon, T.P.; Ried-Larsen, M. The effects of 2 weeks of interval vs continuous walking training on glycaemic control and whole-body oxidative stress in individuals with type 2 diabetes: A controlled, randomised, crossover trial. Diabetologia 2017, 60, 508–517. [Google Scholar] [CrossRef]
- Church, T.S.; Blair, S.N.; Cocreham, S.; Johannsen, N.; Johnson, W.; Kramer, K.; Mikus, C.R.; Myers, V.; Nauta, M.; Rodarte, R.Q.; et al. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: A randomized controlled trial. JAMA 2010, 304, 2253–2262. [Google Scholar] [CrossRef]
- Plotnikoff, R.C.; Eves, N.; Jung, M.; Sigal, R.J.; Padwal, R.; Karunamuni, N. Multicomponent, home-based resistance training for obese adults with type 2 diabetes: A randomized controlled trial. Int. J. Obes. 2010, 34, 1733–1741. [Google Scholar] [CrossRef]
- Belli, T.; Ribeiro, L.F.; Ackermann, M.A.; Baldissera, V.; Gobatto, C.A.; da Silva, R.G. Effects of 12-week overground walking training at ventilatory threshold velocity in type 2 diabetic women. Diabetes Res. Clin. Pract. 2011, 93, 337–343. [Google Scholar] [CrossRef]
- Bacchi, E.; Negri, C.; Zanolin, M.E.; Milanese, C.; Faccioli, N.; Trombetta, M.; Zoppini, G.; Cevese, A.; Bonadonna, R.C.; Schena, F.; et al. Metabolic effects of aerobic training and resistance training in type 2 diabetic subjects: A randomized controlled trial (the RAED2 study). Diabetes Care 2012, 35, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, B.B.; Dobrosielski, D.A.; Bonekamp, S.; Stewart, K.J.; Clark, J.M. A randomized trial of exercise for blood pressure reduction in type 2 diabetes: Effect on flow-mediated dilation and circulating biomarkers of endothelial function. Atherosclerosis 2012, 224, 446–453. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Guo, Q.; Liu, X.; Zhang, Q.; Dong, R.; Dou, H.; Shi, J.; Wang, J.; Yu, D. Duration of exercise as a key determinant of improvement in insulin sensitivity in type 2 diabetes patients. Tohoku J. Exp. Med. 2012, 227, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Mikus, C.R.; Oberlin, D.J.; Libla, J.; Boyle, L.J.; Thyfault, J.P. Glycaemic control is improved by 7 days of aerobic exercise training in patients with type 2 diabetes. Diabetologia 2012, 55, 1417–1423. [Google Scholar] [CrossRef]
- Egger, A.; Niederseer, D.; Diem, G.; Finkenzeller, T.; Ledl-Kurkowski, E.; Forstner, R.; Pirich, C.; Patsch, W.; Weitgasser, R.; Niebauer, J. Different types of resistance training in type 2 diabetes mellitus: Effects on glycaemic control, muscle mass and strength. Eur. J. Prev. Cardiol. 2013, 20, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Karstoft, K.; Winding, K.; Knudsen, S.H.; Nielsen, J.S.; Thomsen, C.; Pedersen, B.K.; Solomon, T.P. The effects of free-living interval-walking training on glycemic control, body composition, and physical fitness in type 2 diabetic patients: A randomized, controlled trial. Diabetes Care 2013, 36, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Terada, T.; Friesen, A.; Chahal, B.S.; Bell, G.J.; McCargar, L.J.; Boulé, N.G. Feasibility and preliminary efficacy of high intensity interval training in type 2 diabetes. Diabetes Res. Clin. Pract. 2013, 99, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, J.W.; Manders, R.J.; Canfora, E.E.; Van Mechelen, W.; Hartgens, F.; Stehouwer, C.D.; Van Loon, L.J. Exercise and 24-h glycemic control: Equal effects for all type 2 diabetes patients? Med. Sci. Sports Exerc. 2013, 45, 628–635. [Google Scholar] [CrossRef]
- Andersen, T.R.; Schmidt, J.F.; Thomassen, M.; Hornstrup, T.; Frandsen, U.; Randers, M.B.; Hansen, P.R.; Krustrup, P.; Bangsbo, J. A preliminary study: Effects of football training on glucose control, body composition, and performance in men with type 2 diabetes. Scand. J. Med. Sci. Sports 2014, 24, 43–56. [Google Scholar] [CrossRef]
- Karstoft, K.; Christensen, C.S.; Pedersen, B.K.; Solomon, T.P. The acute effects of interval-vs continuous-walking exercise on glycemic control in subjects with type 2 diabetes: A crossover, controlled study. J. Clin. Endocrinol. Metab. 2014, 99, 3334–3342. [Google Scholar] [CrossRef]
- Duvivier, B.M.; Schaper, N.C.; Hesselink, M.K.; van Kan, L.; Stienen, N.; Winkens, B.; Koster, A.; Savelberg, H.H. Breaking sitting with light activities vs structured exercise: A randomised crossover study demonstrating benefits for glycaemic control and insulin sensitivity in type 2 diabetes. Diabetologia 2017, 60, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Najafipour, F.; Mobasseri, M.; Yavari, A.; Nadrian, H.; Aliasgarzadeh, A.; Abbasi, N.M.; Niafar, M.; Gharamaleki, J.H.; Sadra, V. Effect of regular exercise training on changes in HbA1c, BMI and VO2max among patients with type 2 diabetes mellitus: An 8-year trial. BMJ Open Diabetes Res. Care 2017, 5, e000414. [Google Scholar] [CrossRef] [PubMed]
- Ruffino, J.S.; Songsorn, P.; Haggett, M.; Edmonds, D.; Robinson, A.M.; Thompson, D.; Vollaard, N.B. A comparison of the health benefits of reduced-exertion high-intensity interval training (REHIT) and moderate-intensity walking in type 2 diabetes patients. Appl. Physiol. Nutr. Metab. 2017, 42, 202–208. [Google Scholar] [CrossRef]
- Yang, P.; Swardfager, W.; Fernandes, D.; Laredo, S.; Tomlinson, G.; Oh, P.I.; Thomas, S. Finding the optimal volume and intensity of resistance training exercise for type 2 diabetes: The FORTE study, a randomized trial. Diabetes Res. Clin. Pract. 2017, 130, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Winding, K.M.; Munch, G.W.; Iepsen, U.W.; Van Hall, G.; Pedersen, B.K.; Mortensen, S.P. The effect on glycaemic control of low-volume high-intensity interval training versus endurance training in individuals with type 2 diabetes. Diabetes Obes. Metab. 2018, 20, 1131–1139. [Google Scholar] [CrossRef]
- Wormgoor, S.G.; Dalleck, L.C.; Zinn, C.; Borotkanics, R.; Harris, N.K. High-intensity interval training is equivalent to moderate-intensity continuous training for short-and medium-term outcomes of glucose control, cardiometabolic risk, and microvascular complication markers in men with type 2 diabetes. Front. Endocrinol. 2018, 28, 475. [Google Scholar] [CrossRef]
- Mendes, R.; Sousa, N.; Themudo-Barata, J.L.; Reis, V.M. High-intensity interval training versus moderate-intensity continuous training in middle-aged and older patients with type 2 diabetes: A randomized controlled crossover trial of the acute effects of treadmill walking on glycemic control. Int. J. Environ. Res. 2019, 16, 4163. [Google Scholar] [CrossRef]
- Rees, J.L.; Chang, C.R.; François, M.E.; Marcotte-Chénard, A.; Fontvieille, A.; Klaprat, N.D.; Dyck, R.A.; Funk, D.R.; Snydmiller, G.; Bastell, K.; et al. Minimal effect of walking before dinner on glycemic responses in type 2 diabetes: Outcomes from the multi-site E-PAraDiGM study. Acta Diabetológica 2019, 56, 755–765. [Google Scholar] [CrossRef]
- Domínguez-Muñoz, F.J.; Villafaina, S.; García-Gordillo, M.A.; Hernández-Mocholi, M.Á.; Collado-Mateo, D.; Adsuar, J.C.; Gusi, N. Effects of 8-week whole-body vibration training on the HbA1c, quality of life, physical fitness, body composition and foot health status in people with T2DM: A double-blinded randomized controlled trial. Int. J. Environ. Res. 2020, 17, 1317. [Google Scholar] [CrossRef] [PubMed]
- Manimmanakorn, N.; Manimmanakorn, A.; Phuttharak, W.; Hamlin, M.J. Effects of whole body vibration on glycemic indices and peripheral blood flow in type II diabetic patients. Malays. J. Med. Sci. MJMS 2017, 24, 55. [Google Scholar] [CrossRef] [PubMed]
- Little, J.P.; Gillen, J.B.; Percival, M.E.; Safdar, A.; Tarnopolsky, M.A.; Punthakee, Z.; Jung, M.E.; Gibala, M.J. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. J. Appl. Physiol. 2011, 111, 1554–1560. [Google Scholar] [CrossRef]
- Gibala, M.J.; Little, J.P.; MacDonald, M.J.; Hawley, J.A. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J. Physiol. 2012, 590, 1077–1084. [Google Scholar] [CrossRef]
- Stokes, A.; Collins, J.M.; Grant, B.F.; Scamuffa, R.F.; Hsiao, C.W.; Johnston, S.S.; Ammann, E.M.; Manson, J.E.; Preston, S.H. Obesity progression between young adulthood and midlife and incident diabetes: A retrospective cohort study of US adults. Diabetes Care 2018, 41, 1025–1031. [Google Scholar] [CrossRef]
- Coker, R.H.; Williams, R.H.; Yeo, S.E.; Kortebein, P.M.; Bodenner, D.L.; Kern, P.A.; Evans, W.J. The impact of exercise training compared to caloric restriction on hepatic and peripheral insulin resistance in obesity. J. Clin. Endocrinol. Metab. 2009, 94, 4258–4266. [Google Scholar] [CrossRef]
- Sigal, R.J.; Kenny, G.P.; Wasserman, D.H.; Castaneda-Sceppa, C.; White, R.D. Physical activity/exercise and type 2 diabetes: A consensus statement from the American Diabetes Association. Diabetes Care 2006, 29, 1433–1438. [Google Scholar] [CrossRef]
- Umpierre, D.; Ribeiro, P.A.; Kramer, C.K.; Leitao, C.B.; Zucatti, A.T.; Azevedo, M.J.; Gross, J.L.; Ribeiro, J.P.; Schaan, B.D. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: A systematic review and meta-analysis. JAMA 2011, 305, 1790–1799. [Google Scholar] [CrossRef] [PubMed]
- Ottesen, L.; Jeppesen, R.S.; Krustrup, B.R. The development of social capital through football and running: Studying an intervention program for inactive women. Scand. J. Med. Sci. Sports 2010, 20, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Baldi, J.C.; Snowling, N. Resistance training improves glycaemic control in obese type 2 diabetic men. Int. J. Sports Med. 2003, 24, 419–423. [Google Scholar] [CrossRef]
- Baños, R.F. Prescription of exercise in subjects with type 2 diabetes mellitus and gestational diabetes. Retos Nuevas Tendencias en Educación Física Deporte Y Recreación 2016, 29, 134–139. [Google Scholar] [CrossRef]
- Chulvi-Medrano, I.; Muñoz, S.S. Programas de acondicionamiento neuromuscular en la diabetes mellitus 2. Rev. Int. Med. Cienc. AC 2010, 10, 77–92. [Google Scholar]
- Huebschmann, A.G.; Reis, E.N.; Emsermann, C.; Dickinson, L.M.; Reusch, J.E.; Bauer, T.A.; Regensteiner, J.G. Women with type 2 diabetes perceive harder effort during exercise than nondiabetic women. Appl. Physiol. Nutr. Metab. 2009, 34, 851–857. [Google Scholar] [CrossRef]
- Kessler, H.S.; Sisson, S.B.; Short, K.R. The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. 2012, 42, 489–509. [Google Scholar] [CrossRef]
- Billat, L.V. Interval training for performance: A scientific and empirical practice: Special recommendations for middle-and long-distance running. Part I: Aerobic interval training. Sports Med. 2001, 31, 13–31. [Google Scholar] [CrossRef]
- Álvarez, C.; Ramírez, R.; Flores, M.; Zúñiga, C.; Celis-Morales, C.A. Effect of sprint interval training and resistance exercise on metabolic markers in overweight women. Rev. Med. Chile 2012, 140, 1289–1296. [Google Scholar] [CrossRef]
- Marcinko, K.; Sikkema, S.R.; Samaan, M.C.; Kemp, B.E.; Fullerton, M.D.; Steinberg, G.R. High intensity interval training improves liver and adipose tissue insulin sensitivity. Mol. Metab. 2015, 4, 903–915. [Google Scholar] [CrossRef]
- Castillo Retamal, M.E. Teachers’ Workplace: Physical Activity and Sedentary Behaviour. Ph.D. Thesis, Auckland University of Technology, Auckland, New Zealand, 2013. [Google Scholar]
- Dempsey, P.C.; Larsen, R.N.; Sethi, P.; Sacre, J.W.; Straznicky, N.E.; Cohen, N.D.; Cerin, E.; Lambert, G.W.; Owen, N.; Kingwell, B.A.; et al. Benefits for type 2 diabetes of interrupting prolonged sitting with brief bouts of light walking or simple resistance activities. Diabetes Care 2016, 39, 964–972. [Google Scholar] [CrossRef] [PubMed]
- Cuddy, T.F.; Ramos, J.S.; Dalleck, L.C. Reduced exertion high-intensity interval training is more effective at improving cardiorespiratory fitness and cardiometabolic health than traditional moderate-intensity continuous training. Int. J. Environ. Res. 2019, 16, 483. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Lee, S.; Song, C. Whole-body vibration training improves balance, muscle strength and glycosylated hemoglobin in elderly patients with diabetic neuropathy. Tohoku J. Exp. Med. 2013, 231, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Gomes-Neto, M.; de Sa-Caputo, D.D.; Paineiras-Domingos, L.L.; Brandao, A.A.; Neves, M.F.; Marin, P.J.; Sanudo, B.; Bernardo-Filho, M. Effects of whole-body vibration in older adult patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Can. J. Diabetes. 2019, 43, 524–529; [Google Scholar] [CrossRef] [PubMed]
- Behboudi, L.; Azarbayjani, M.A.; Aghaalinejad, H.; Salavati, M. Effects of aerobic exercise and whole-body vibration on glycaemia control in type 2 diabetic males. Asian J Sports Med. 2011, 2, 83. [Google Scholar] [CrossRef] [PubMed]
- Sañudo, B.; Alfonso-Rosa, R.; del Pozo-Cruz, B.; del Pozo-Cruz, J.; Galiano, D.; Figueroa, A. Whole body vibration training improves leg blood flow and adiposity in patients with type 2 diabetes mellitus. Eur. J. Appl. Physiol. 2013, 113, 2245–2252. [Google Scholar] [CrossRef]
PE Method | Articles (n) | Study Duration | Study Variables | ||
---|---|---|---|---|---|
Long * | Short ** | GC and BC | GC | ||
Aerobic | 6 | 2 | 4 | 3 | 3 |
Interval | 1 | 0 | 1 | 0 | 1 |
Resistance | 1 | 1 | 0 | 1 | 0 |
Combined | 5 | 3 | 2 | 5 | 0 |
Other | 2 | 0 | 2 | 2 | 0 |
Aerobic vs. Interval | 7 | 1 | 6 | 5 | 2 |
Aerobic vs. Resistance | 1 | 1 | 0 | 1 | 0 |
Aerobic vs. Other | 2 | 0 | 2 | 1 | 1 |
Total | 25 | 8 | 17 | 18 | 7 |
PE Method | PE Description | Interventions (n) |
---|---|---|
Aerobic | Moderate/vigorous intensity PE, continuous or in long-duration segments; on treadmill, cycle ergometer and/or elliptical trainer. | 18 |
Interval | PE in intervals of high intensity and short/medium duration, alternating with recovery phases; on treadmill and/or cycle ergometer. | 9 |
Resistance | Anaerobic PE of strength, with and without the use of external weight; with dumbbells or multifunctional machines. | 3 |
Combined | Combination of any of the described methods. | 9 |
Other | Reduced Exertion High Intensity Interval Training (REHIT); Isometric PE based on squats (SE); Whole Body Electrical Vibration PE (WBVE); restriction of sedentary behaviors (sitting less). | 5 |
Total | 44 |
Author | Sample | Prescription | Results | Conclusion | ||
---|---|---|---|---|---|---|
n (M/W) | Age (SD) | Variables | Significant Effects | |||
Church et al., 2010 [12] | 262 (97/165) | 55.8 (8) | 36 weeks. 3 days/wk. AE: 12 kcal/kg per wk; 50–80 VO2max. RE: 4 upper body Ex, 3 lower body ex and 2 abdominal-back Ex; 2 sets × 10–12 repetitions. AE + RE: AE × 1 day/wk + RE × 2 days/wk. CG: Stretching and relaxation exercises. | HbA1c (%) TFM (kg) MM (kg) | AE: ↓ MM (−0.5 [* vs. RE y COM]). RE: ↓ TFM (−1.4 [* vs. CG]). AE + RE: ↓ HbA1c (−0.34 [* vs. CG]) and ↓ TFM (−1.7 [* vs. CG y AE]). CG: No change. | A combination of continuous aerobic and resistance PE improves glycemic control in adults with T2DM; not so with separate methods of similar caloric expenditure. Body composition only improves with resistance and combined methods. |
AE: 72 (27/45) | 53.7 (9) | |||||
RE: 73 (30/43) | 56.9 (8) | |||||
AE + RE: 76 (27/49) | 55.4 (8) | |||||
CG: 41 (13/28) | 58.6 (8) | |||||
Plotnikoff et al., 2010 [13] | 48 (16/32) | 16 weeks. 3 days/wk. RE: 8 ex with dumbbells at progressive intensity (2–3 sets × 8–12 repetitions at 50–85% 1RM). CG: No PE. | HbA1c (%) TFM (kg) MM (kg) | No significant effects are reported. | 16 weeks of supervised home-based resistance PE does not improve glycemic control or body composition in adults with T2DM. | |
RE: 27 (8/19) | 55 (12) | |||||
CG: 21 (8/13) | 54 (12) | |||||
Belli et al., 2011 [14] | 19 (0/19) | 12 weeks. 3 days/wk. AE: Continuous outdoor walking × 20 min (wk 1), 30 min (wk 2), 40 min (wk 3) 50 min (wk 4) and 60 min (wk 5–12) at individual VT speed. CG: No PE. | HbA1c (%) FG (mmol/L) BMI (kg/m2) BW (kg) TFM (kg) | AE: ↓ HbA1c (−0.9 [* p-p]), ↓ BMI (−1.1 [* p-p and CG]), ↓ BW (−2.5 [** p-p and CG]) and ↓ TFM (−3.4 [** p-p]). CG: No change. | 12 weeks of continuous outdoor aerobic walking PE supports glycemic control and body composition in adult women with T2DM. | |
AE: 9 (0/9) | 53.4 (2) | |||||
CG: 10 (0/10) | 55.9 (2) | |||||
Bacchi et al., 2012 [15] | 38 (26/12) | 16 weeks. 3 days/wk. AE: Variety of continuous aerobic activities on treadmill and cycle ergometer × 60 min at 60–65% HRR. RE: 9 ex × 3 sets × 10 repetitions at 70–80% 1RM. | HbA1c (%) FG (mmol/L) BMI (kg/m2) TFM (kg) MM (kg) | AE: ↓ HbA1c (−0.4 [*** p-p]), ↓ FG (−0.84, [*** p-p]), ↓ BMI (−0.76 [*** p-p]) and ↓ TFM (−1 [*** p-p]). RE: ↓ HbA1c (−0.35 [*** p-p]), ↓ FG (−0.67 [*** p-p]), ↓ BMI (−0.54 [*** p-p]) and ↓ TFM (−1.71 [*** p-p]). | 16 weeks of continuous aerobic or resistance PE are equally effective in improving glycemic control and body composition in adults with T2DM. | |
AE: 19 (13/6) | 57.2 (1) | |||||
RE: 19 (13/6) | 55.6 (1) | |||||
Gibbs et al., 2012 [16] | 112 (69/43) | 26 weeks. 3 days/wk. AE + RE: Continuous aerobic exercise × 45 min at 60–90% MHR + RE of 7 Ex × 2 sets × 12–15 repetitions at 50% 1RM. CG: No PE. | HbA1c (%) BMI (kg/m2) TFM (%) | AE + RE: ↓ HbA1c (−0.2 ± 1.2 [* vs. CG]), ↓ BMI (−0.7 ± 1.6 [* vs. CG]) and ↓ TFM (−1.4 ± 1.9 [*** vs. CG]). CG: No change. | 26 weeks of continuous aerobic PE combined with resistance improves glycemic control and body composition in adults with T2DM. | |
AE + RE: 49 (32/17) | 58 (5) | |||||
CG: 63 (37/26) | 56 (6) | |||||
Li et al., 2012 [17] | 55 (30/25) | 12 weeks. 4 days/wk. AE: Aerobic exercise at 50% VO2peak, on treadmill: 1 set × 15 min (wk 1), 2 × 15 min (wk 2), 2 × 20 min (wk 3–4) and 2 × 120 kcal (wk 5–12). IE: Exercise similar to AE (wk 1–2); 2 sets × 15 min at 65% VO2peak (wk 3–4) and 2 × 120 kcal at 75% VO2peak (wk 5–12). | HbA1c (%) FG (mmol/L) BMI (kg/m2) TFM (%) | AE: ↓ BMI (−0.6 [* p-p]) and ↓ TFM (−1% [* p-p]). IE: ↓ BMI (−0.5 [* p-p]) and ↓ TFM (−1% [* p-p]). | 12 weeks of aerobic or interval PE does not favor glycemic control in adults with T2DM. On the other hand, both improve body composition in equal magnitude. | |
AE: 27 (15/12) | 52.0 (1) | |||||
IE: 28 (15/13) | 50.3 (1) | |||||
Mikus et al., 2012 [18] | AE: 13 (8/5) | 53 (2) | 1 week. 7 days/wk. AE (pre): Habitual sedentariness × 3 days. AE (pos): 60 min of aerobic exercise in periods of 20 min of treadmill walking alternated with 20’ of stationary cycling, at 60–75% HRR. | HbA1c (%) MGC (mmol/L) PPG (mmol/L) FG (mmol/L) | AE (pos): ↓ PPG (* p-p). | 7 consecutive days of aerobic PE improves postprandial glycemic control in adults with T2DM. |
Egger et al., 2013 [19] | 32 (13/19) | 64 (7) | 8 weeks. 2 days/wk. RE1 +AE: 6 Ex × 2 sets × 20–30 repetitions at 40% 1RM, with 3–5 min of recovery between sets + AE (60 min of continuous pedaling on a cycle ergometer at 70% HRR). RE 2+ AE: 6 Ex × 2 sets × 20–30 repetitions at 70% 1RM, with 3–5 min recovery between sets + similar AE. | HbA1c (%) FG (mmol/L) BMI (kg/m2) BW (kg) MM (kg) WC (cm) | RE1 + AE: ↓ FG (−0.68 [** p-p]), ↓ BW (−0.3 [** p-p]), ↓ BMI (−0.1 [* p-p]), ↑ MM (0.2 [** p-p]) and ↓ WC (−2 [*** p-p]). RE2 + AE: ↓ FG (−0.76 [** p-p; * vs. RE1]), ↓ BW (−1.4 [** p-p]), ↓ BMI (−0.4 [* p-p]), ↑ MM (0.3 [** p-p]), ↓ WC (−2.1 [*** p-p]). | 8 weeks of resistance PE combined with continuous aerobics promotes FG in adults with T2DM. The effect is superior with higher intensity resistance. In terms of body composition, both methods are effective in equal magnitude. |
RE1 +AE: 16 (5/11) | 64 (7) | |||||
RE2 +AE: 16 (8/8) | 65 (8) | |||||
Karstoft et al., 2013 [20] | 32 (20/12) | 16 weeks. 5 days/wk. AE: 60 min free-living interval-walking training 55% VO2peak. IE: 60 min of free-living walking in intervals of 3’ > 70% VO2peak and 3’ < 70%. CG: No PE. | HbA1c (%) MGC (mmol/L) FG (mmol/L) BMI (kg/m2) BW (kg) TFM (kg MM (kg) | AE: No change. IE: ↓ MGC (−0.7 [* p-p; ** vs. CG]), ↓ BW (−4.2 [*** p-p; ** vs. CG; * vs. AE]), ↓ BMI (−1.4 (* vs. CG y AE; *** p-p]) and ↓ TFM (−3.1 [** vs. CG and AE; *** p-p]). CG: ↑ MGC (1.2 [* p-p]). | High-velocity interval walking is effective in improving glycemic control and body composition in adults with T2DM. On the other hand, aerobic walking does not cause changes and inactivity worsens glycemic parameters. | |
AE: 12 (8/4) | 60 (2) | |||||
IE: 12 (7/5) | 57 (2) | |||||
CG: 8 (5/3) | 57 (3) | |||||
Terada et al., 2013 [21] | 15 (8/7) | 12 weeks. 5 days/wk. IE: Exercise on a cycle ergometer and treadmill in intervals of 1 min at 100% VO2R × 3 min recovery at 20%, × 30 min (wk 1–4), 45’ (wk 5–8) and 60 min (wk 9–12). AE: Continuous exercise × 30 min (wk 1–4), 45 min (wk 5–8) and 60 min (wk 9–12) at 40% VO2R. | HbA1c (%) FG (mmol/L) BMI (kg/m2) BW (kg) TFM (%) | IE: ↓ TFM (−1.9% [** p-p]). AE: ↓ TFM (−1.5% [* p-p]). | Neither high-velocity interval PE nor continuous aerobic PE is effective for glycemic control in adults with T2DM. However, both show improvements in adiposity. | |
IE: 8 (4/4) | 62 (3) | |||||
AE: 7 (4/3) | 63 (5) | |||||
Van Dijk et al., 2013 [22] | 60 (60/0) | 60 (6) | 1 session of 45–60 min AEIR: Continuous pedaling on a cycle ergometer for 45–60 min at 35–50% Wmax. AENRI: Method similar to AEIR. | MGC (mmol/L) | AEIR: ↓ MGC (−0.9 [*** p-p]). AENRI: ↓ MGC (−0.9 [*** p-p]). | One session of continuous aerobic PE is effective for 24 h glycemic control of adult men with insulin-treated and non-insulin-treated T2DM. The effects are greater in uncontrolled subjects (>7% HbA1c). |
AEIR: 23 (23/0) | 60 (5) | |||||
AENRI: 37 (37/0) | 59 (6) | |||||
Crossover trial | ||||||
Andersen et al., 2014 [23] | 21 (21/0) | 49.8 (1) | 24 weeks. 2 days/wk. AE: 60’ of soccer small-sided (5 Ex × 10 min continuous at 83 ± 2% MHR, with 2 min of passive rest. CG: No PE. | HbA1c (mmol/L) TFM (kg) MM (kg) | AE: ↓ HbA1c (−0.4 (** p-p) and ↓ TFM (−1.7 (*** p-p; ** vs. CG). CG: ↓ MM (−0.5 (* p-p). | Aerobic PE via soccer small-sided is effective in improving glycemic control and adiposity in adult men with T2DM. |
AE: 12 (12/0) | ||||||
CG: 9 (9/0) | ||||||
Karstoft et al., 2014 [24] | 10 (7/3) | 60 (2) | 1 session of 60 min AE: Continuous treadmill walking at 73% VO2peak. IE: Treadmill walking with intervals of 3 min at 54% and 3 min at 89% VO2peak. CG: No PE. | FG (mmol/L) PPG (mmol/L) | AE: No change. IE: ↓ PPG (−1.2 [** vs. CG]). CG: No change. | A session of high-velocity interval walking improves postprandial glycemic control in adults with T2DM. Continuous walking of equal volume and energy expenditure does not. |
Crossover trial | ||||||
Jakobsen et al., 2016 [10] | 11 (6/5) | 61.6 (8) | 1 session of 60 min IE1: Treadmill walking in intervals of 3 min at 54% VO2peak and 3 min at 89% VO2peak. IE2: Treadmill walking in intervals of 1 min at 54% VO2peak and 1 min at 89% VO2peak. CG: No PE. | MGC (mmol/L) PPG (mmol/L) | IE1: ↓ MGC (* vs. CG), ↓ PPG (−0.8 [* vs. CG]). IE2: No change. CG: No change. | high-velocity interval walking is effective in postprandial glycemic control in adults with T2DM only at 3 min intervals. Interval duration is more important than intensity and session volume. |
Crossover trial | ||||||
Duvivier et al., 2017 [25] | 19 (13/6) | 63 (9) | 4 consecutive days. “Breaking sitting with light activities”, Replace 4.7 h/day of sitting with 2.5 h/day of standing and 2.2 h/day of light walking. AE: Replace 1h/day of sitting with 3 sets of 20 min of pedaling on a cycle ergometer at 50–60% Wmax. CG: Sedentary regimen of 14 h/day sitting; walking <1 h/day and standing <1 h/day. | MGC (mmol/L) | Breaking sitting with light activities: ↓ MGC (−0.34 [** vs. CG]). AE: ↓ MGC (−0.4 [** vs. CG]). CG: No change. | Replacing sitting time with standing and activities at low intensity is an equally effective alternative to structured aerobic PE for improving 24 h glucose levels in adults with T2DM. |
Crossover trial | ||||||
Karstoft et al., 2017 [11] | 14 (11/3) | 65 (2) | 2 weeks. 5 days/wk. AE: 60 min of continuous treadmill at 73% walking peak VO2. IE: 60 min of treadmill walking in intervals of 3 min at 54% walking peak VO2. and 3 min at 89%. CG: No PE. | HbA1c (%) MGC (mmol/L) FG (mmol/L) BW (kg) TFM (%) MM (kg) | AE: No change. IE: ↓ FG (−0.5 [* vs. CG]), ↓ MGC (−0.7 [* vs. CG; ** p-p]). CG: No change. | 2 weeks of high-velocity interval walking improves glycemic control in adults with T2DM. Continuous aerobic walking does not. Both methods do not cause changes in body composition. |
Crossover trial | ||||||
Najafipour et al., 2017 [26] | 30 (not specified) | 57 (8) | 16 weeks. 3 days/wk. AE: Continuous aerobic PE on treadmill, exercise or elliptical bike × 40–50 min at 50–80% MHR. CG: No PE. | HbA1c (%) BMI (kg/m2) | AE: ↓ HbA1c (−1.84 [*** p-p]) and ↓ BMI (−1.84 [*** p-p]). CG: ↑ BMI (1.83 [* p-p]). | Continuous aerobic PE is effective for glycemic control and body composition in adults with T2DM in the medium (16 weeks) and long term (8 years). |
AE: 15 | 57 (8) | |||||
CG: 15 | 57 (8) | |||||
Ruffino et al., 2017 [27] | 16 (16/0) | 55 (5) | 8 weeks. REHIT: 3 days/wk, 10 min cycling at 25W with 2 sprints of 10 s (sessions 1–4), 15 s (sessions 5–12) and 20 s (sessions 13–24). AE: 5 days/wk, 30 min continuous walking at 40% HRR (wk 1–2), 50% (wk 3–4) and 55% (wk 5–8). | MGC (mmol/L) FG (mmol/L) BW (kg) TFM (%) | No significant effects are reported. | Neither the REHIT method nor continuous aerobic walking is effective in improving short-term glycemic control and body composition in adult men with T2DM. |
Crossover trial | ||||||
Yang et al., 2017 [28] | 62 (32/30) | 52 (1) | 24 weeks. RE (2 days/wk); AE (5 days/wk) RE1 + AE: 12 weeks of RE (10 ex × 2 sets × 15 repetitions at 50% 1RM) + 12 weeks of AE (30’ of walking/biking at 60–80% HRR). RE2 + AE: 24 weeks of RE (10 ex × 3 sets × 7 repetitions at 75% 1RM) + AE (similar). RE3 + AE: 24 weeks of RE (similar to RE1) + AE (similar). | HbA1c (%) FG (mmol/L) BMI (kg/m2) BW (kg) TFM (%) MM (kg) | RE1 + AE: ↓ HbA1c (−1.1 [*** p-p]), ↓ BMI (2.5 [* p-p]) and ↓ TFM (−2.8 [*** p-p]). RE2 + AE: ↓ HbA1c (−1 [*** p-p]) and ↓ TFM (−2.5 [*** p-p]). RE3 + AE: ↓ HbA1c (−0.5 [*** p-p]), ↓ BMI (−1.8 [* p-p]) and ↓ TFM (−4.8 [*** p-p]). | Resistance PE combined with continuous aerobic exercise improves glycemic control and body composition in adults with T2DM in the long term. The effect is independent of volume and intensity. |
RE1 + AE: 20 (14/6) | 52 (1) | |||||
RE2 + AE: 20 (8/12) | 49 (1) | |||||
RE3 + AE: 22 (10/12) | 54 (1) | |||||
Winding et al., 2018 [29] | 32 (19/13) | 11 weeks. 3 days/wk. AE: Continuous pedaling × 40 min at 50% HRR. IE: 10 intervals of 1 min of pedaling at 95% HRR × 1 min al 20%. CG: No PE. | HbA1c (%) MGC (mmol/L) PPG (mmol/L) FG (mmol/L) BMI (kg/m2) BW (kg) TFM (kg) MM (kg) | AE: ↓ MGC (−0.6 [* p-p]) and ↓ BW (−1 [* vs. CG]). IE: ↓ HbA1c (−0.1 [* p-p]), ↓ FG (−0.7 [* p-p]), ↓ BW (−1.2 [* vs. CG; * p-p]) and ↓ BMI (−0.3 [* p-p]). CG: No change. | 11 weeks of continuous aerobic or high-intensity interval PE improves glycemic control and body composition in adults with T2DM. | |
AE: 12 (7/5) | 58 (8) | |||||
IE: 13 (7/6) | 54 (6) | |||||
CG: 7 (5/2) | 57 (7) | |||||
Womgoor et al., 2018 [30] | 23 (23/0) | 12 weeks. 3 days/wk. AE + RE: Continuous pedaling × 10 min (wk 1–3); 17,5 min (wk 4–7); and 26 min (wk 8–12) at 55% HRR + RE of 5 ex × 2 sets × 15 repetitions at 67% 1RM (wk 1–3); 3 sets × 10 repetitions at 75% (wk 4–7); and 2 sets × 12 repetitions at 75%. IE + RE: Continuous pedaling × 10 min at 50%HRR (wk 1–3); 3 intervals of 3.5 min at 75%HRR × 3.5 min at 45% (wk 4–7); and 12 intervals of 1 min at 95%HRR × 1 min at 40% (wk 8–12) + RE similar to the group with AE. | HbA1c (%) BMI (kg/m2) WC (cm) SF (mm) | AE + RE: ↓ HbA1c (−0.8 [** p-p]), ↓ WC (−2 [** p-p]) and ↓ SF (−29 [*** p-p]). IE + RE: ↓ HbA1c (−0.5 [** p-p]), ↓ WC (−0.5 [** p-p]) and ↓ SF (−25 [*** p-p]). | Resistance PE, in combination with continuous aerobic or high-velocity interval exercise, improves glycemic control and adiposity in men with T2DM, in the short term. These benefits are maintained in the medium term only in adiposity. | |
AE + RE: 11 | 52 (7) | |||||
IE + RE: 12 | 52 (7) | |||||
Mendes et al., 2019 [31] | 15 (7/8) | 60.2 (3) | 1 session of 40 min AE: 30 min of continuous treadmill walking at 50% HRR. IE: 30 min of treadmill walking in intervals of 3’ at 70% HRR × 3’ at 30%. CG: 40 min in sedentary position. | MGC (mmol/L) | AE: ↓ MGC (−3.7 [*** vs. CG]). IE: ↓ MGC (−4.1 [*** vs. CG; ** vs. AE]). CG: No change. | Both continuous walking and high-velocity interval walking are effective for acute glycemic control in adults with T2DM. Upon comparison, interval has better results. |
Crossover trial | ||||||
Rees et al., 2019 [32] | 63 (29/34) | 64 (8) | 1 session of 50 min AE: Continuous walking at 5 km/h pre-dinner. CG: No pre-dinner PE. | MGC (mmol/L) PPG (mmol/L) | AE: ↓ MGC (−1.56 [*** vs. CG]). CG: No change. | A continuous aerobic walking session before dinner is not effective for either postprandial or 24 h glycemic control in adults with T2DM. |
Crossover trial | ||||||
Domínguez-Muñoz et al., 2020 [33] | 90 (not specified) | 40–85 | 8 weeks. 3 days/wk. SE: 5–9 1 min isometric squats, with knee flexion at 45° × 30 s recovery. WBVE: Same protocol, but whole-body vibration frequency of 12.5–18.5 Hz was added. | HbA1c (%) FG (mmol/L) BMI (kg/m2) TFM (%) MM (%) | SE: ↓ HbA1c (−0.19 [** p-p]), ↓ FG (−0.83 [*** p-p]) and ↑ BMI (1.28 [* p-p]). WBVE: ↓ HbA1c (−0.24 [*** p-p]), ↓ FG (−0.58 [* p-p]), ↓ BMI (−1.94 [** p-p]) and ↓ TFM (−0.67 [* vs. CG; ** p-p]). | 8 weeks of physical exercise based on isometric squats improves glycemic control in adults with T2DM. In terms of body composition, there are only improvements when incorporating whole-body vibrations. |
SE: 45 | ||||||
WBVE: 45 | ||||||
Manimmanakorn et al., 2017 [34] | 36 (13/23) | 12 weeks. 3 days/wk. WBVE: 2 sets × 6 isometric squats of 1 min with vibration frequency of 40 Hz, ×20 s recovery. CG: No PE. | HbA1c (%) FG (mmol/L) BMI (kg/m2) BW (kg) | No significant effects are reported. | 12 weeks of whole-body vibration exercise does not result in changes in glycemic control or body composition in adults with T2DM. | |
WBVE: 17 (7/10) | 60.9 (1) | |||||
CG: 19 (6/13) | 63.9 (4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parada Flores, B.; Luna-Villouta, P.; Martínez Salazar, C.; Flández Valderrama, J.; Valenzuela Contreras, L.; Flores-Rivera, C.; Vargas-Vitoria, R. Physical Exercise Methods and Their Effects on Glycemic Control and Body Composition in Adults with Type 2 Diabetes Mellitus (T2DM): A Systematic Review. Eur. J. Investig. Health Psychol. Educ. 2023, 13, 2529-2545. https://doi.org/10.3390/ejihpe13110176
Parada Flores B, Luna-Villouta P, Martínez Salazar C, Flández Valderrama J, Valenzuela Contreras L, Flores-Rivera C, Vargas-Vitoria R. Physical Exercise Methods and Their Effects on Glycemic Control and Body Composition in Adults with Type 2 Diabetes Mellitus (T2DM): A Systematic Review. European Journal of Investigation in Health, Psychology and Education. 2023; 13(11):2529-2545. https://doi.org/10.3390/ejihpe13110176
Chicago/Turabian StyleParada Flores, Bastián, Pablo Luna-Villouta, Cristian Martínez Salazar, Jorge Flández Valderrama, Luis Valenzuela Contreras, Carol Flores-Rivera, and Rodrigo Vargas-Vitoria. 2023. "Physical Exercise Methods and Their Effects on Glycemic Control and Body Composition in Adults with Type 2 Diabetes Mellitus (T2DM): A Systematic Review" European Journal of Investigation in Health, Psychology and Education 13, no. 11: 2529-2545. https://doi.org/10.3390/ejihpe13110176
APA StyleParada Flores, B., Luna-Villouta, P., Martínez Salazar, C., Flández Valderrama, J., Valenzuela Contreras, L., Flores-Rivera, C., & Vargas-Vitoria, R. (2023). Physical Exercise Methods and Their Effects on Glycemic Control and Body Composition in Adults with Type 2 Diabetes Mellitus (T2DM): A Systematic Review. European Journal of Investigation in Health, Psychology and Education, 13(11), 2529-2545. https://doi.org/10.3390/ejihpe13110176