Italian University Students’ Resilience during the COVID-19 Lockdown—A Structural Equation Model about the Relationship between Resilience, Emotion Regulation and Well-Being
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chu, I.Y.-H.; Alam, P.; Larson, H.J.; Lin, L. Social consequences of mass quarantine during epidemics: A systematic review with implications for the COVID-19 response. J. Travel Med. 2020, 27, taaa192. [Google Scholar] [CrossRef] [PubMed]
- Serafini, G.; Parmigiani, B.; Amerio, A.; Aguglia, A.; Sher, L.; Amore, M. The psychological impact of COVID-19 on the mental health in the general population. Qjm Int. J. Med. 2020, 113, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Rohman, M.; Marji, D.A.S.; Sugandi, R.M.; Nurhadi, D. Online learning in higher education during COVID-19 pandemic: Students’ perceptions. J. Talent Dev. Excell. 2020, 12, 3644–3651. [Google Scholar]
- Cruz, M.F.; Rodríguez, J.; Ruiz, I.; López, M.C.; Camargo, C.D.B.; Rosas, F.D.; Castellón, E.G.; González, D.G.; Fernández, A.H.; Cubillas, P.I.; et al. Evaluation of the Emotional and Cognitive Regulation of Young People in a Lockdown Situation Due to the COVID-19 Pandemic. Front. Psychol. 2020, 11, 565503. [Google Scholar] [CrossRef]
- Fioretti, C.; Palladino, B.E.; Nocentini, A.; Menesini, E. Positive and Negative Experiences of Living in COVID-19 Pandemic: Analysis of Italian Adolescents’ Narratives. Front. Psychol. 2020, 11, 599531. [Google Scholar] [CrossRef]
- Bruni, O.; Malorgio, E.; Doria, M.; Finotti, E.; Spruyt, K.; Melegari, M.G.; Villa, M.P.; Ferri, R. Changes in sleep patterns and disturbances in children and adolescents in Italy during the COVID-19 outbreak. Sleep Med. 2021, 91, 166–174. [Google Scholar] [CrossRef]
- Loades, M.E.; Chatburn, E.; Higson-Sweeney, N.; Reynolds, S.; Shafran, R.; Brigden, A.; Linney, C.; Niamh, M.; Borwick, C.; Crawley, E. Rapid systematic review: The impact of social isolation and loneliness on the mental health of children and adolescents in the context of COVID-19. J. Am. Acad. Child Adolesc. Psychiatry 2020, 59, 1218–1239. [Google Scholar] [CrossRef]
- Penna, M.P.; Stara, V. The failure of e-learning: Why should we use a learner centred design. J. e-Learn. Knowl. Soc. 2007, 3, 127–135. [Google Scholar] [CrossRef]
- Turner, G. Peer support and young people’s health. J. Adolesc. 1999, 22, 567–572. [Google Scholar] [CrossRef]
- Saladino, V.; Algeri, D.; Auriemma, V. The Psychological and Social Impact of COVID-19: New Perspectives of Well-Being. Front. Psychol. 2020, 11, 2550. [Google Scholar] [CrossRef]
- Gross, J.J. Emotion and Emotion Regulation: Personality Processes and Individual Differences, 3rd ed.; Lewis, M., Haviland-Jones, J., Barrett, L., Eds.; Guilford: New York, NY, USA, 2008; pp. 497–512. [Google Scholar]
- Thompson, R.A. Emotional regulation and emotional development. Educ. Psychol. Rev. 1991, 3, 269–307. [Google Scholar] [CrossRef]
- Chew, Q.H.; Wei, K.C.; Vasoo, S.; Chua, H.C.; Sim, K. Narrative synthesis of psychological and coping responses towards emerging infectious disease outbreaks in the general population: Practical considerations for the COVID-19 pandemic. Singap. Med. J. 2020, 61, 350. [Google Scholar] [CrossRef]
- Polizzi, C.; Perry, A.; Lynn, S.J. Stress and Coping in the Time of COVID-19: Pathways to Resilience and Recovery. Clin. Neuropsychiatry 2020, 17, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xia, Q.; Xiong, Z.; Li, Z.; Xiang, W.; Yuan, Y.; Liu, Y.; Li, Z. The psychological distress and coping styles in the early stages of the 2019 coronavirus disease (COVID-19) epidemic in the general mainland Chinese population: A web-based survey. PLoS ONE 2020, 15, e0233410. [Google Scholar] [CrossRef] [PubMed]
- Grigoletto, V.; Cognigni, M.; Occhipinti, A.A.; Abbracciavento, G.; Carrozzi, M.; Barbi, E.; Cozzi, G. Rebound of Severe Alcoholic Intoxications in Adolescents and Young Adults After COVID-19 Lockdown. J. Adolesc. Heal. 2020, 67, 727–729. [Google Scholar] [CrossRef] [PubMed]
- Conversano, C.; Di Giuseppe, M.; Miccoli, M.; Ciacchini, R.; Gemignani, A.; Orrù, G. Mindfulness, Age and Gender as Protective Factors Against Psychological Distress During COVID-19 Pandemic. Front. Psychol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Friborg, O.; Hjemdal, O.; Rosenvinge, J.H.; Martinussen, M. A new rating scale for adult resilience: What are the central protective resources behind healthy adjustment? Int. J. Methods Psychiatr. Res. 2003, 12, 65–76. [Google Scholar] [CrossRef]
- Bonfiglio, N.S.; Renati, R.; Hjemdal, O.; Friborg, O. The resilience scale for adults in italy: A validation study comparing clinical substance abusers with a nonclinical sample. Psychol. Addict. Behav. 2016, 30, 509–515. [Google Scholar] [CrossRef]
- Gratz, K.L.; Roemer, L. Multidimensional assessment of emotion regulation and dysregulation: Development, factor structure, and initial validation of the difficulties in emotion regulation scale. J. Psychopathol. Behav. Assess. 2004, 26, 41–54. [Google Scholar] [CrossRef]
- Sighinolfi, C.; Pala, A.N.; Chiri, L.R.; Marchetti, I.; Sica, C. Difficulties in emotion regulation scale (DERS): Traduzione e adattamento italiano. Psicoterapia Cognitiva e Comportamentale 2010, 1, 1–44. [Google Scholar]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.H. Review of the psychometric evidence of the perceived stress scale. Asian Nurs. Res. 2012, 6, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Derogatis, L.R. SCL-90-R: Administration, Scoring and Procedures Manual; National Computer Systems Google Scholar: Minneapolis, MN, USA, 1994. [Google Scholar]
- Sarno, I.; Preti, E.; Prunas, A.; Madeddu, F. SCL-90-R: Symptom Check List 90 R. Versione Italiana Validata e Standardizzata; Giunti OS: Firenze, Italy, 2011. [Google Scholar]
- Şahin, M.; Aybek, E. Jamovi: An easy to use statistical software for the social scientists. Int. J. Assess. Tools Educ. 2019, 6, 670–692. [Google Scholar] [CrossRef] [Green Version]
- Beaton, D.M.; Sirois, F.; Milne, E. The role of self-compassion in the mental health of adults with ADHD. J. Clin. Psychol. 2022, 78, 2497–2512. [Google Scholar] [CrossRef] [PubMed]
- Elliott, M.R. Causality and how to model it. BT Technol. J. 2003, 21, 120–125. [Google Scholar] [CrossRef]
- Kline, R.B. Assumptions in structural equation modeling. In Handbook of Structural Equation Modeling; Hoyle, R.H., Ed.; The Guildford Press: New York, NY, USA, 2012; pp. 111–125. [Google Scholar]
- Schreiber, J.B.; Nora, A.; Stage, F.K.; Barlow, E.A.; King, J. Reporting Structural Equation Modeling and Confirmatory Factor Analysis Results: A Review. J. Educ. Res. 2006, 99, 323–338. [Google Scholar] [CrossRef]
- Finney, S.J.; DiStefano, C. Non-normal and categorical data in structural equation modeling. Struct. Equ. Model. A Second. Course 2008, 10, 269–314. [Google Scholar]
- Mischel, H.N.; Mischel, W. The development of children’s knowledge of self-control strategies. In Motivation, Intention, and Volition; Springer: Berlin, Heidelberg, 1987; pp. 321–336. [Google Scholar]
- Fioretti, C.; Smorti, A. How emotional content of memories changes in narrative. Narrat. Inq. 2015, 25, 37–56. [Google Scholar] [CrossRef] [Green Version]
- Bonfiglio, N.S.; Mascia, M.L.; Penna, M.P. Digital Treatment Paths for Substance Use Disorders (SUDs). Int. J. Environ. Res. Public Health 2022, 19, 7322. [Google Scholar] [CrossRef]
- Bonfiglio, N.S.; Mascia, M.L.; Cataudella, S.; Penna, M.P. Digital help for substance users (SU): A systematic review. Int. J. Environ. Res. Public Health 2022, 19, 11309. [Google Scholar] [CrossRef]
- Renati, R.; Bonfiglio, N.S.; Rollo, D. Dealing with Loved Ones’ Addiction: Development of an App to Cope with Caregivers’ Stress. Int. J. Environ. Res. Public Health 2022, 19, 15950. [Google Scholar] [CrossRef] [PubMed]
- Bonfiglio, N.S.; Renati, R.; Costa, S.; Rollo, D.; Sulla, F.; Penna, M.P. An exploratory study on the relationship between video game addiction and the constructs of coping and resilience. In Proceedings of the 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Bari, Italy, June 1–July 1 2020; pp. 1–5. [Google Scholar]
- Mazzoleni, M.; Previdi, F.; Bonfiglio, N.S. Classification algorithms analysis for brain–computer interface in drug craving therapy. Biomed. Signal Process. Control. 2019, 52, 463–472. [Google Scholar] [CrossRef]
- Bonfiglio, N.S.; Renati, R.; Agus, M.; Penna, M.P. Validation of a substance craving questionnaire (SCQ) in Italian population. Addict. Behav. Rep. 2019, 9, 100172. [Google Scholar] [CrossRef] [PubMed]
- Bonfiglio, N.S.; Renati, R.; Di Lucia, K.; Rollo, D.; Penna, M.P. The use of cognitive training, combined with tDCS, for craving reduction and inhibitory control improvement in cocaine dependence: A case study. In Proceedings of the 2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Lausanne, Switzerland, 23–25 June 2021; pp. 1–6. [Google Scholar]
- Bonfiglio, N.S.; Renati, R.; Pessa, E.; Penna, M.P. The influence of resilience factors in the treatment of substances addiction: A Multylayer Perceptron Predictive Model. In Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy, 13 June 2018; pp. 1–5. [Google Scholar]
N | Mean | Median | Standard Deviation | Minimum | Maximum | |
---|---|---|---|---|---|---|
PSS | 339 | 24.6 | 24.0 | 3.95 | 15.0 | 38.0 |
post_PSS | 65 | 20.2 | 19.0 | 4.63 | 0.00 | 30.0 |
AXS | 339 | 1.77 | 1.50 | 0.971 | 0.00 | 4.00 |
post_ANX | 64 | 1.75 | 1.50 | 1.07 | 0.00 | 4.00 |
DEP | 339 | 1.67 | 1.50 | 1.07 | 0.00 | 4.00 |
post_DEP | 64 | 1.67 | 1.50 | 0.981 | 0.00 | 4.00 |
DER_la_ac | 339 | 1.86 | 1.50 | 0.939 | 1.00 | 5.00 |
DER_di_di | 339 | 2.97 | 3.00 | 1.05 | 1.00 | 5.00 |
DER_di_co | 339 | 2.05 | 1.83 | 0.911 | 1.00 | 5.00 |
DER_re_se | 339 | 2.56 | 2.33 | 1.02 | 1.00 | 5.00 |
DER_la_co | 339 | 2.49 | 2.38 | 0.615 | 1.38 | 4.50 |
DER_di_re | 339 | 2.39 | 2.20 | 0.839 | 1.00 | 4.60 |
RSA_Pe_se | 339 | 19.9 | 20.0 | 4.21 | 9.00 | 29.0 |
RSA_Pe_fu | 339 | 13.8 | 14.0 | 3.72 | 4.00 | 20.0 |
RSA_St_st | 339 | 15.7 | 16.0 | 3.24 | 7.00 | 20.0 |
RSA_So_co | 339 | 28.1 | 29.0 | 5.18 | 11.0 | 37.0 |
RSA_Fa_co | 339 | 22.3 | 23.0 | 5.33 | 8.00 | 30.0 |
RSA_So_re | 339 | 30.8 | 32.0 | 3.91 | 15.0 | 35.0 |
95% Confidence Intervals | ||||||||
---|---|---|---|---|---|---|---|---|
Latent | Observed | Estimate | SE | Lower | Upper | β | z | p |
res | RSA_Pe_se | 1.000 | 0.000 | 10.000 | 1.000 | 0.681 | ||
RSA_Pe_fu | 1.017 | 0.210 | 0.6062 | 1.428 | 0.779 | 4.853 | <0.001 | |
RSA_St_st | 0.363 | 0.175 | 0.0188 | 0.707 | 0.336 | 2.067 | 0.039 | |
RSA_So_co | 1.102 | 0.310 | 0.4938 | 1.710 | 0.521 | 3.552 | <0.001 | |
RSA_Fa_co | 0.573 | 0.268 | 0.0485 | 1.097 | 0.302 | 2.141 | 0.032 | |
RSA_So_re | 1.062 | 0.240 | 0.5909 | 1.532 | 0.670 | 4.421 | <0.001 | |
mtl_hlt_pre | ANX | 1.000 | 0.000 | 10.000 | 1.000 | 0.775 | ||
DEP | 0.996 | 0.193 | 0.6169 | 1.375 | 0.731 | 5.149 | <0.001 | |
mtl_hlt_pos | post_DEP | 1.000 | 0.000 | 10.000 | 1.000 | 0.722 | ||
post_ANX | 1.291 | 0.254 | 0.7935 | 1.788 | 0.855 | 5.086 | <0.001 | |
DER | DER_la_ac | 1.000 | 0.000 | 10.000 | 1.000 | 0.347 | ||
DER_di_di | 2.285 | 0.786 | 0.7433 | 3.826 | 0.766 | 2.905 | 0.004 | |
DER_di_co | 1.991 | 0.633 | 0.7510 | 3.231 | 0.745 | 3.147 | 0.002 | |
DER_re_se | 0.367 | 0.419 | −0.4549 | 1.188 | 0.120 | 0.875 | 0.382 | |
DER_la_co | 1.652 | 0.596 | 0.4828 | 2.821 | 0.923 | 2.770 | 0.006 | |
DER_di_re | 1.718 | 0.688 | 0.3696 | 3.067 | 0.649 | 2.497 | 0.013 |
Variable | α | ω₁ | ω₂ | ω₃ | AVE |
---|---|---|---|---|---|
res | 0.750 | 0.653 | 0.653 | 0.624 | 0.310 |
mtl_hlt_pre | 0.723 | 0.723 | 0.723 | 0.723 | 0.566 |
mtl_hlt_pos | 0.761 | 0.774 | 0.774 | 0.774 | 0.635 |
DER | 0.736 | 0.694 | 0.694 | 0.710 | 0.364 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renati, R.; Bonfiglio, N.S.; Rollo, D. Italian University Students’ Resilience during the COVID-19 Lockdown—A Structural Equation Model about the Relationship between Resilience, Emotion Regulation and Well-Being. Eur. J. Investig. Health Psychol. Educ. 2023, 13, 259-270. https://doi.org/10.3390/ejihpe13020020
Renati R, Bonfiglio NS, Rollo D. Italian University Students’ Resilience during the COVID-19 Lockdown—A Structural Equation Model about the Relationship between Resilience, Emotion Regulation and Well-Being. European Journal of Investigation in Health, Psychology and Education. 2023; 13(2):259-270. https://doi.org/10.3390/ejihpe13020020
Chicago/Turabian StyleRenati, Roberta, Natale Salvatore Bonfiglio, and Dolores Rollo. 2023. "Italian University Students’ Resilience during the COVID-19 Lockdown—A Structural Equation Model about the Relationship between Resilience, Emotion Regulation and Well-Being" European Journal of Investigation in Health, Psychology and Education 13, no. 2: 259-270. https://doi.org/10.3390/ejihpe13020020
APA StyleRenati, R., Bonfiglio, N. S., & Rollo, D. (2023). Italian University Students’ Resilience during the COVID-19 Lockdown—A Structural Equation Model about the Relationship between Resilience, Emotion Regulation and Well-Being. European Journal of Investigation in Health, Psychology and Education, 13(2), 259-270. https://doi.org/10.3390/ejihpe13020020