Physical Exercise Decreases Endoplasmic Reticulum Stress in Central and Peripheral Tissues of Rodents: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources and Search Strategy
2.3. Selection
2.4. Data Extraction and Items Collection
2.5. Methodological Quality Assessment
3. Results
Methodological Quality of Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schwarz, D.S.; Blower, M.D. The endoplasmic reticulum: Structure, function and response to cellular signaling. Cell. Mol. Life Sci. 2016, 73, 79–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almanza, A.; Carlesso, A.; Chintha, C.; Creedican, S.; Doultsinos, D.; Leuzzi, B.; Luís, A.; McCarthy, N.; Montibeller, L.; More, S.; et al. Endoplasmic reticulum stress signalling—From basic mechanisms to clinical applications. FEBS J. 2019, 286, 241–278. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, J.; Huang, E.Y.; Olzmann, J.A. Endoplasmic Reticulum–Associated Degradation and Lipid Homeostasis. Annu. Rev. Nutr. 2016, 36, 511–542. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, U.; Cao, Q.; Yilmaz, E.; Lee, A.-H.; Iwakoshi, N.N.; Özdelen, E.; Tuncman, G.; Görgün, C.; Glimcher, L.H.; Hotamisligil, G.S. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004, 306, 457–461. [Google Scholar] [CrossRef] [Green Version]
- Bañuls, C.; de Marañón, A.M.; Castro-Vega, I.; López-Doménech, S.; Escribano-López, I.; Salom, C.; Veses, S.; Hernández-Mijares, A. Role of Endoplasmic Reticulum and Oxidative Stress Parameters in the Pathophysiology of Disease-Related Malnutrition in Leukocytes of an Outpatient Population. Nutrients 2019, 11, 1838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passos, E.; Ascensão, A.; Martins, M.J.; Magalhães, J. Endoplasmic Reticulum Stress Response in Non-alcoholic Steatohepatitis: The Possible Role of Physical Exercise. Metabolism 2015, 64, 780–792. [Google Scholar] [CrossRef]
- Wang, M.; Kaufman, R.J. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 2016, 529, 326–335. [Google Scholar] [CrossRef]
- Chuang, A.W.; Kepp, O.; Kroemer, G.; Bezu, L. Endoplasmic reticulum stress in the cellular release of damage-associated molecular patterns. Int. Rev. Cell Mol. Biol. 2020, 350, 1–28. [Google Scholar] [CrossRef]
- Qi, Z.; Chen, L. Endoplasmic Reticulum Stress and Autophagy. In Autophagy: Biology and Diseases; Springer: Singapore, 2019; Volume 1206, pp. 167–177. [Google Scholar] [CrossRef]
- Song, S.; Burleson, P.D.; Passo, S.; Messina, E.J.; Levine, N.; Thompson, C.I.; Belloni, F.L.; Recchia, F.A.; Ojaimi, C.; Kaley, G.; et al. Cardiac structure and function in humans: A new cardiovascular physiology laboratory. Adv. Physiol. Educ. 2009, 33, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Raichle, M.E.; Mintun, M.A. Brain work and brain imaging. Annu. Rev. Neurosci. 2006, 29, 449–476. [Google Scholar] [CrossRef]
- Frontera, W.R.; Ochala, J. Skeletal muscle: A brief review of structure and function. Calcif. Tissue Int. 2015, 96, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Sahin, G.S.; Lee, H.; Engin, F. An accomplice more than a mere victim: The impact of β-cell ER stress on type 1 diabetes pathogenesis. Mol. Metab. 2021, 54, 101365. [Google Scholar] [CrossRef]
- Maekawa, H.; Inagi, R. Stress Signal Network between Hypoxia and ER Stress in Chronic Kidney Disease. Front. Physiol. 2017, 8, 74. [Google Scholar] [CrossRef]
- Oakes, S.A.; Papa, F.R. The role of endoplasmic reticulum stress in human pathology. Annu. Rev. Pathol. Mech. Dis. 2015, 10, 173–194. [Google Scholar] [CrossRef] [Green Version]
- Lebeaupin, C.; Vallée, D.; Hazari, Y.; Hetz, C.; Chevet, E.; Bailly-Maitre, B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J. Hepatol. 2018, 69, 927–947. [Google Scholar] [CrossRef] [PubMed]
- Ghemrawi, R.; Khair, M. Endoplasmic Reticulum Stress and Unfolded Protein Response in Neurodegenerative Diseases. Int. J. Mol. Sci. 2020, 21, 6127. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Saltin, B. Exercise as medicine–Evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sport. 2015, 25 (Suppl. S3), 1–72. [Google Scholar] [CrossRef] [Green Version]
- Warburton, D.E.R.; Bredin, S.S.D. Health benefits of physical activity: A systematic review of current systematic reviews. Curr. Opin. Cardiol. 2017, 32, 541–556. [Google Scholar] [CrossRef]
- Thirupathi, A.; Wang, M.; Lin, J.K.; Fekete, G.; István, B.; Baker, J.S.; Gu, Y. Effect of Different Exercise Modalities on Oxidative Stress: A Systematic Review. BioMed Res. Int. 2021, 2021, 947928. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, C.V.; Sales, M.M.; Rosa, T.S.; Lewis, J.E.; De Andrade, R.V.; Simões, H.G. The Antioxidant Effect of Exercise: A Systematic Review and Meta-Analysis. Sport. Med. 2017, 47, 277–293. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Hooijmans, C.R.; Rovers, M.M.; De Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, P.; Zhang, X.; Zhang, M.; Li, G.; Hu, L.; Zhao, H.; Zhu, X.; Wu, J.; Wang, X.; Wang, K.; et al. Swimming exercise inhibits myocardial ER stress in the hearts of aged mice by enhancing cGMP-PKG signaling. Mol. Med. Rep. 2020, 21, 549–556. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Ahn, N.; Jung, S. Comparison of endoplasmic reticulum stress and mitochondrial biogenesis responses after 12 weeks of treadmill running and ladder climbing exercises in the cardiac muscle of middle-aged obese rats. Braz. J. Med. Biol. Res. 2018, 51, e7508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, M.; Chen, W.; Hua, Y.; Jia, H.; Song, Y.; Wang, Y. Aerobic exercise ameliorates cardiac hypertrophy by regulating mitochondrial quality control and endoplasmic reticulum stress through M2 AChR. J. Cell. Physiol. 2021, 236, 6581–6596. [Google Scholar] [CrossRef]
- Murlasits, Z.; Lee, Y.; Powers, S.K. Short-term exercise does not increase ER stress protein expression in cardiac muscle. Med. Sci. Sport. Exerc. 2007, 39, 1522–1528. [Google Scholar] [CrossRef] [PubMed]
- de Vicente, L.G.; Muñoz, V.R.; Pinto, A.P.; Rovina, R.L.; da Rocha, A.L.; Marafon, B.B.; Tavares, M.E.d.A.; Teixeira, G.R.; Ferrari, G.D.; Alberici, L.C.; et al. TLR4 deletion increases basal energy expenditure and attenuates heart apoptosis and ER stress but mitigates the training-induced cardiac function and performance improvement. Life Sci. 2021, 285, 119988. [Google Scholar] [CrossRef]
- de Vicente, L.G.; Pinto, A.P.; Muñoz, V.R.; Rovina, R.L.; da Rocha, A.L.; Gaspar, R.C.; da Silva, L.E.; Simabuco, F.M.; Frantz, F.G.; Pauli, J.R.; et al. Tlr4 participates in the responses of markers of apoptosis, inflammation, and ER stress to different acute exercise intensities in mice hearts. Life Sci. 2020, 240, 117107. [Google Scholar] [CrossRef]
- Pinto, A.P.; da Rocha, A.L.; Pereira, B.C.; Oliveira, L.D.C.; Morais, G.P.; Moura, L.P.; Ropelle, E.R.; Pauli, J.R.; Da Silva, A.S.R. Excessive training is associated with endoplasmic reticulum stress but not apoptosis in the hypothalamus of mice. Appl. Physiol. Nutr. Metab. 2017, 42, 354–360. [Google Scholar] [CrossRef]
- Li, F.; Liu, B.B.; Cai, M.; Li, J.J.; Lou, S.-J. Excessive endoplasmic reticulum stress and decreased neuroplasticity-associated proteins in prefrontal cortex of obese rats and the regulatory effects of aerobic exercise. Brain Res. Bull. 2018, 140, 52–59. [Google Scholar] [CrossRef]
- Kim, Y.; Park, M.; Boghossian, S.; York, D.A. Three weeks voluntary running wheel exercise increases endoplasmic reticulum stress in the brain of mice. Brain Res. 2010, 1317, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Belaya, I.; Suwa, M.; Chen, T.; Giniatullin, R.; Kanninen, K.M.; Atalay, M.; Kumagai, S. Long-Term Exercise Protects against Cellular Stresses in Aged Mice. Oxidative Med. Cell. Longev. 2018, 2018, 2894247. [Google Scholar] [CrossRef] [Green Version]
- Pereira, B.C.; da Rocha, A.L.; Pinto, A.P.; Pauli, J.R.; de Souza, C.T.; Cintra, D.E.; Ropelle, E.R.; de Freitas, E.C.; Zagatto, A.M.; da Silva, A.S. Excessive eccentric exercise-induced overtraining model leads to endoplasmic reticulum stress in mice skeletal muscles. Life Sci. 2016, 145, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.P.; da Rocha, A.L.; Kohama, E.B.; Gaspar, R.C.; Simabuco, F.; Frantz, F.G.; De Moura, L.P.; Pauli, J.R.; Cintra, D.E.; Ropelle, E.R.; et al. Exhaustive acute exercise-induced ER stress is attenuated in IL-6-knockout mice. J. Endocrinol. 2019, 240, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-T.; Luo, L.-J.; Chen, W.-J.; Zhao, L.; Tang, C.-S.; Qi, Y.-F.; Zhang, J. IL-15 expression increased in response to treadmill running and inhibited endoplasmic reticulum stress in skeletal muscle in rats. Endocrine 2015, 48, 152–163. [Google Scholar] [CrossRef]
- Wu, J.; Ruas, J.L.; Estall, J.L.; Rasbach, K.A.; Choi, J.H.; Ye, L.; Boström, P.; Tyra, H.M.; Crawford, R.W.; Campbell, K.P.; et al. The unfolded protein response mediates adaptation to exercise in skeletal muscle through a PGC-1α/ATF6α complex. Cell Metab. 2011, 13, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Bi, Y.; Sowers, J.R.; Hetz, C.; Zhang, Y. Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat. Rev. Cardiol. 2021, 18, 499–521. [Google Scholar] [CrossRef]
- Ji, D.-R.; Qi, Y.-F. New research advances in relationship of endoplasmic reticulum stress and cardiovascular diseases. Sheng Li Xue Bao 2020, 72, 190–204. [Google Scholar]
- Hong, J.; Kim, K.; Kim, J.-H.; Park, Y. The Role of Endoplasmic Reticulum Stress in Cardiovascular Disease and Exercise. Int. J. Vasc. Med. 2017, 2017, 2049217. [Google Scholar] [CrossRef] [Green Version]
- Dandekar, A.; Mendez, R.; Zhang, K. Cross talk between ER stress, oxidative stress, and inflammation in health and disease. Methods Mol. Biol. 2015, 1292, 205–214. [Google Scholar] [CrossRef]
- Lee, W.; Yoo, W.; Chae, H. ER Stress and Autophagy. Curr. Mol. Med. 2015, 15, 735–745. [Google Scholar] [CrossRef]
- Raichle, M.E. The brain’s default mode network. Annu. Rev. Neurosci. 2015, 38, 433–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burbridge, S.; Stewart, I.; Placzek, M. Development of the Neuroendocrine Hypothalamus. Compr. Physiol. 2016, 6, 623–643. [Google Scholar] [CrossRef] [PubMed]
- Teffer, K.; Semendeferi, K. Human prefrontal cortex: Evolution, development, and pathology. Prog. Brain Res. 2012, 195, 191–218. [Google Scholar] [CrossRef] [PubMed]
- Knierim, J.J. The hippocampus. Curr. Biol. 2015, 25, R1116–R1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doyle, K.M.; Kennedy, D.; Gorman, A.M.; Gupta, S.; Healy, S.J.M.; Samali, A. Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J. Cell. Mol. Med. 2011, 15, 2025–2039. [Google Scholar] [CrossRef] [Green Version]
- Shibasaki, T. Hypothalamus * pituitary. Nihon Rinsho 2011, 69 (Suppl. S2), 77–80. [Google Scholar]
- Toni, R.; Malaguti, A.; Benfenati, F.; Martini, L. The human hypothalamus: A morpho-functional perspective. J. Endocrinol. Investig. 2004, 27, 73–94. [Google Scholar]
- Cakir, I.; Nillni, E.A. Endoplasmic Reticulum Stress, the Hypothalamus, and Energy Balance. Trends Endocrinol. Metab. 2019, 30, 163–176. [Google Scholar] [CrossRef]
- Ismail, I.; Keating, S.; Baker, M.; Johnson, N.A. A systematic review and meta-analysis of the effect of aerobic vs. resistance exercise training on visceral fat. Obes. Rev. 2012, 13, 68–91. [Google Scholar] [CrossRef]
- Carraça, E.V.; Encantado, J.; Battista, F.; Beaulieu, K.; Blundell, J.E.; Busetto, L.; van Baak, M.; Dicker, D.; Ermolao, A.; Farpour-Lambert, N.; et al. Effect of exercise training on psychological outcomes in adults with overweight or obesity: A systematic review and meta-analysis. Obes. Rev. 2021, 22 (Suppl. S4), e13261. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kim, Y.-H.; Lee, S.-H.; Jeon, M.-J.; Park, S.-Y.; Doh, K.-O. Effect of exercise intensity on unfolded protein response in skeletal muscle of rat. Korean J. Physiol. Pharmacol. 2014, 18, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Fernández, V.; Llinares-Benadero, C.; Borrell, V. Cerebral cortex expansion and folding: What have we learned? EMBO J. 2016, 35, 1021–1044. [Google Scholar] [CrossRef] [PubMed]
- Hiser, J.; Koenigs, M. The Multifaceted Role of the Ventromedial Prefrontal Cortex in Emotion, Decision Making, Social Cognition, and Psychopathology. Biol. Psychiatry 2018, 83, 638–647. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.-R.; Hu, W.; Yin, Y.-Y.; Wang, Y.-C.; Li, W.-P. Chronic restraint stress promotes learning and memory impairment due to enhanced neuronal endoplasmic reticulum stress in the frontal cortex and hippocampus in male mice. Int. J. Mol. Med. 2015, 35, 553–559. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Wen, L.; Xiao, B.; Han, F.; Shi, Y. Single Prolonged Stress induces ATF6 alpha-dependent Endoplasmic reticulum stress and the apoptotic process in medial Frontal Cortex neurons. BMC Neurosci. 2014, 15, 115. [Google Scholar] [CrossRef] [Green Version]
- Ajoolabady, A.; Wang, S.; Kroemer, G.; Klionsky, D.J.; Uversky, V.N.; Sowers, J.R.; Aslkhodapasandhokmabad, H.; Bi, Y.; Ge, J.; Ren, J. ER Stress in Cardiometabolic Diseases: From Molecular Mechanisms to Therapeutics. Endocr. Rev. 2021, 42, 839–871. [Google Scholar] [CrossRef]
- Morgan, J.; Singhal, G.; Corrigan, F.; Jaehne, E.J.; Jawahar, M.C.; Breen, J.; Pederson, S.; Baune, B.T. Ceasing exercise induces depression-like, anxiety-like, and impaired cognitive-like behaviours and altered hippocampal gene expression. Brain Res. Bull. 2019, 148, 118–130. [Google Scholar] [CrossRef]
- Wu, C.; Yang, L.; Li, Y.; Dong, Y.; Yang, B.; Tucker, L.D.; Zong, X.; Zhang, Q. Effects of Exercise Training on Anxious–Depressive-like Behavior in Alzheimer Rat. Med. Sci. Sport. Exerc. 2020, 52, 1456–1469. [Google Scholar] [CrossRef]
- Gokdemir, O.; Cetinkaya, C.; Gumus, H.; Aksu, I.; Kiray, M.; Ates, M.; Kiray, A.; Baykara, B.; Sisman, A.R.; Uysal, N.; et al. The effect of exercise on anxiety- and depression-like behavior of aged rats. Biotech. Histochem. 2020, 95, 8–17. [Google Scholar] [CrossRef]
- Ament, W.; Verkerke, G.J. Exercise and fatigue. Sport. Med. 2009, 39, 389–422. [Google Scholar] [CrossRef]
- Jin, C.-H.; Paik, I.-Y.; Kwak, Y.-S.; Jee, Y.-S.; Kim, J.-Y. Exhaustive submaximal endurance and resistance exercises induce temporary immunosuppression via physical and oxidative stress. J. Exerc. Rehabil. 2015, 11, 198–203. [Google Scholar] [CrossRef]
- Antunes-Neto, J.M.F.; Toyama, M.H.; Carneiro, E.M.; Boschero, A.C.; Pereira-Da-Silva, L.; Macedo, D.V. Circulating leukocyte heat shock protein 70 (HSP70) and oxidative stress markers in rats after a bout of exhaustive exercise. Stress 2006, 9, 107–115. [Google Scholar] [CrossRef]
- Bottinelli, R.; Reggiani, C. Human skeletal muscle fibres: Molecular and functional diversity. Prog. Biophys. Mol. Biol. 2000, 73, 195–262. [Google Scholar] [CrossRef]
- Brooks, S.V. Current topics for teaching skeletal muscle physiology. Adv. Physiol. Educ. 2003, 27, 171–182. [Google Scholar] [CrossRef]
- Severinsen, M.C.K.; Pedersen, B.K. Muscle–Organ Crosstalk: The Emerging Roles of Myokines. Endocr. Rev. 2020, 41, 594–609. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef] [Green Version]
- Ursini, F.; Maiorino, M.; Forman, H.J. Redox homeostasis: The Golden Mean of healthy living. Redox Biol. 2016, 8, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.P. Radical-free biology of oxidative stress. Am. J. Physiol. Cell Physiol. 2008, 295, C849–C868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annesley, S.J.; Fisher, P.R. Mitochondria in Health and Disease. Cells 2019, 8, 680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadenas, S. Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim. Biophys. Acta Bioenerg. 2018, 1859, 940–950. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria | Exclusion Criteria | |
---|---|---|
Population | Rodents | Humans and other species |
Intervention | Physical exercise/physical training | Absence of the physical exercise/physical training |
Comparator | Animals that did not undergo training | Absence of the control group |
Outcomes | Endoplasmic reticulum stress markers | No endoplasmic reticulum stress markers |
Study design | Experimental | Observational, reviews, case reports, and scientific abstracts |
Database | Code Line |
---|---|
Pubmed/Medline, Scopus, and Scielo | (Exercise) OR (Physical Activity) OR (Physical Exercise) OR (Physical Exercises) OR (Exercise Training) OR (Exercise Trainings) AND (Endoplasmic Reticulum Stress) OR (Endoplasmic Reticulum Stresses) OR (Stress, Endoplasmic Reticulum) OR (Stresses, Endoplasmic Reticulum) |
ScienceDirect | (“Exercise”) OR (“Physical Activity”) OR (“Physical Exercise”) AND (“Endoplasmic Reticulum Stress”) OR (“Endoplasmic Reticulum Stresses”) OR (“Stress, Endoplasmic Reticulum”) OR (“Stresses, Endoplasmic Reticulum”) |
Author, Year | Species | Sex | Age/n | Intervention | Physical Exercise Protocol Characteristics |
---|---|---|---|---|---|
Belaya, 2018 | ICR mice | Male | 3 months old/n = 22 | Aerobic Exercise | F: Not applicable; D: 21 weeks/free movement on running wheel; I: not applicable |
Chang, 2020 | C57BL/6J mice | Male | 4–20 months old/n = 64 | Swimming | F: 5 days/week; D: 8 weeks/60 min per session; I: not applicable (free of any loading) |
Feng, Li 2018 | Sprague Dawley rats | Male | 7 weeks old/n = 150 | Aerobic Exercise | F: 5 days/week; D: 8 weeks/40 min per session; I: 18 m/min of speed |
Kim, 2010 | C57BL/6J mice | Male | 8 weeks old/n = 20 | Aerobic Exercise | F: Not applicable; D: 3 weeks/free movement on running wheel; I: not applicable |
Kim, 2018 | Sprague Dawley rats | Male | 50 weeks old/n = 30 | Aerobic and Resistance Exercise | Aerobic Exercise: F: 3 days/week; D: 12 weeks/30 min per session; I: in the first week, the rats underwent 5 min of exercise at a speed of 10 m/min; after that, the intensity was maintained in 60% of VOmax or 22 m/min. Resistance Exercise: F: 3 days/week; D: 12 weeks/60 min per session; I: eight sets were used with different volume percentages (30%, 40%, 50%, 70%, 80%, 90%, and 100%) of the rat’s body weight with 2 min of rest |
Ma, 2021 | C57BL/6J mice | Male | 8 weeks old/n = 12 | Aerobic Exercise | F: 5 days/week; D: 8 weeks/60 min per session; I: 12–15 m/min |
Murlasits, 2007 | Sprague Dawley rats | Male | 4 months old/n = 54 | Aerobic Exercise | F: Not applicable; D: 1 week (short-term)/60 min per session; I: 70% of VOmax |
Pereira, 2016 | C57BL/6J mice | Male | 8 weeks old/n = 48 | Aerobic Exercise | F: 5 days/week; D: 8 weeks/60 min per session; I: first to fifth week (60% of EV), sixth week (70% of EV), seventh week (75% of EV), in the eighth week, two training sessions with 4 h of interval applied. |
Pinto, 2017 | C57BL/6N mice | Male | 8 weeks old/n = 48 | Aerobic Exercise | F: 5 days/week; D: 8 weeks/10 min per session; I: 3 m/min with 2 days of recovery |
Pinto, 2019 | C57BL/6N mice | Uninformed | 8 weeks old/n = 15 | Aerobic Exercise | F: Not applicable; D: 1 week (acute exercise)/60–90 min; I: 22 m/min |
Vicente, 2020 | C57BL/6N mice | Uninformed | 8 weeks old/n = 40 | Aerobic Exercise | F: Uninformed; D: Uninformed; I: 45–60% of EV |
Vicente, 2021 | C57BL/6N mice | Male | 8 weeks old/n = 40 | Aerobic Exercise | F: 5 days/week; D: 4 weeks/60 min per session; I: in the adaptation, a speed of 6 m/min was used. A total of 60% of the EV was used every week, with a 48-h interval between sessions. |
Wu, 2011 | C57BL/6N mice | Male/Female | Uninformed | Aerobic Exercise | F: 5 days/week; D: 4 weeks/10, 15, 30, 45, and 60 min per session; I: three speed standards were used: 5 m/min (warm-up), 20 m/min, and 25 m/min until exhaustion |
Yang, 2015 | Sprague Dawley rats | Male | 5 weeks old/n = 24 | Aerobic Exercise | F: 5 days/week; D: 8 weeks/60 min per session; I: 26 m/min of speed |
Tissue | Endoplasmic Reticulum Stress Markers after Exercise | |
---|---|---|
Belaya et al., 2018 | Skeletal Muscle | Soleus: = HSP25, HSP60, HSP90, GRP75, GRP78; ↑ HSP70, HSC70; ↓ CHOP Anterior Tibial: = HSP25, HSP60, HSP70, HSP90, HSC70, GRP75, GRP78, CHOP; ↑ GRP75 |
Chang et al., 2020 | Heart | Myocardium: ↑ PDE5; ↓ CHOP, GRP78, PERK, PKG; |
Feng, Li et al., 2018 | Prefrontal Cortex | =ATF4, p-IRE1, IRE1, p-JNK; ↓ CHOP, GRP78, p-eIF2α; eIF2α; p-PERK/PERK |
Kim et al., 2010 | Cortex, Hypothalamus, and Hippocampus | LR Cortex (mRNA): = ATF6, eIF2α; GRP78, XBP1. HR Cortex (mRNA): ↑ ATF-6, eIF2α, GRP78, XBP1 LR Hippocampus (mRNA): = ATF6, eIF2α, XBP1/↑ GRP78. (Protein): =ATF-6, p-eIF2α, eIF2α, GRP78, p-PERK/PERK, XBP1u; ↑ XBP1s. HR Hippocampus (mRNA): ↑ ATF6, eIF2α, GRP78, XBP1. (Protein): = ATF6, eIF2α, GRP78, p-PERK/PERK, XBP1s, XBP1u; ↑ p-eIF2α LR Hypothalamus (mRNA): = eIF2α; ↑ ATF6, GRP78, XBP1. HR Hypothalamus (mRNA): ↑ ATF-6, eIF2α, GRP78, XBP1 |
Kim et al., 2018 | Heart | Myocardium: AE: = GRP78; ↓ CHOP, p-PERK/PERK RE: = CHOP, GRP78;↓ p-PERK/PERK; |
Ma et al., 2021 | Heart | Myocardium: ↓ ATF4, CHOP, p-eIF2α, eIF2α, GRP78 |
Murlasits et al., 2007 | Heart | Myocardium: = ATF3, CHOP, GRP94; ↑ HSP72; ↓ GRP78 |
Pereira et al., 2016 | Skeletal Muscle | OTR EDL (8 Wk): = ATF6, BIP, p-eIF2α, eIF2α p-IRE1, IRE1, p-PERK/PERK. EDL (10 Wk): ↑ p-PERK/PERK;↓ ATF6; ↓ BIP; = p-eIF2α, eIF2α, p-IRE1, IRE1 OTR-U EDL (8 Wk): = ATF6, p-eIF2α, eIF2α, p-IRE1, IRE1; ↑ p-PERK/PERK; ↓ BIP. EDL (10 Wk): = ATF6, p-IRE1, IRE1, p-PERK/PERK; ↑ BIP, p-eIF2α, eIF2α OTR-D EDL (8 Wk): ↑ ATF6, BIP, p-eIF2α; eIF2α; p-IRE1, IRE1, p-PERK/PERK. EDL (10 Wk): = ATF6, ↑ BIP, p-eIF2α, eIF2α, p-IRE1, IRE1; p-PERK/PERK OTR Soleus (8 Wk): = BIP;↑ p-eIF2α; eIF2α; p-PERK/PERK;↓ ATF6, p-IRE1, IRE1. OTR Soleus (10 Wk): ↑ ATF-6; = p-PERK/PERK; ↓ BIP, p-IRE1, IRE1 OTR-U Soleus (8 Wk): = ATF6; ↑ BIP, p-eIF2α; eIF2α; p-PERK/PERK; p-IRE1, IRE1. OTR-U Soleus (10 Wk): = ATF-6, BIP, p-IRE1, IRE1; ↑ p-eIF2α; eIF2α; p-PERK/PERK OTR-D Soleus (8 Wk): ↑ BIP, p-eIF2α; eIF2α; p-IRE1, IRE1, p-PERK/PERK; ↓ ATF6. OTR-D Soleus (10 Wk): ↑ ATF-6, BIP, p-eIF2α; eIF2α; p-IRE1, IRE1, p-PERK/PERK |
Pinto et al., 2017 | Hypothalamus | OTR and OTR-U: = ATF-6; ↑ BIP, GRP94, p-IRE1, IRE1; OTR-D: ↑ ATF-6, BIP, GRP94, p-IRE1, IRE1 |
Pinto et al., 2019 | Skeletal Muscle | EDL: = ATF6, p-eIF2α; eIF2α; ↑ BIP, CHOP. Soleus: ↓ ATF-6, BIP, CHOP, eIF2α; ↑ p-eIF2α |
Vicente et al., 2020 | Heart | Left Ventricle: ↑ BIP, p-PERK/PERK |
Vicente et al., 2021 | Heart | Left Ventricle: = CHOP, p-eIF2α; eIF2α; JNK; ↓ p-IRE1, IRE1 |
Wu et al., 2011 | Skeletal Muscle | Quadriceps: = GRP94, XBP1t; ↑ ATF3, ATF-4, BIP, CHOP, XBP1s |
Yang et al., 2015 | Skeletal Muscle | Gastrocnemius and Soleus: = GRP94; ↓ CHOP, GRP78 |
Author, Year | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Score |
---|---|---|---|---|---|---|---|---|---|---|---|
Belaya et al., 2018 | Y | Y | Y | Y | N | Y | N | Y | Y | Y | 8 |
Chang et al., 2020 | Y | Y | Y | Y | N | Y | N | Y | Y | Y | 8 |
Feng, Li et al., 2018 | Y | Y | Y | Y | N | Y | N | Y | Y | Y | 8 |
Kim et al., 2010 | Y | Y | Y | Y | N | Y | N | Y | Y | Y | 8 |
Kim et al., 2018 | Y | Y | Y | Y | N | Y | N | Y | Y | Y | 8 |
Ma et al., 2021 | Y | Y | Y | Y | N | Y | N | Y | Y | Y | 8 |
Murlasits et al., 2007 | Y | Y | Y | Y | N | Y | N | Y | Y | Y | 8 |
Pereira et al., 2016 | Y | Y | Y | Y | N | Y | N | Y | Y | Y | 8 |
Pinto et al., 2016 | Y | Y | Y | Y | N | Y | N | Y | Y | Y | 8 |
Pinto et al., 2019 | Y | Y | Y | Y | N | Y | N | Y | Y | Y | 8 |
Vicente et al., 2020 | Y | Y | Y | Y | N | Y | N | Y | Y | Y | 8 |
Vicente et al., 2021 | Y | Y | Y | Y | N | Y | N | Y | Y | Y | 8 |
Wu et al., 20211 | Y | Y | Y | Y | N | Y | N | Y | Y | Y | 8 |
Yang et al., 2014 | Y | Y | Y | Y | N | Y | N | Y | Y | Y | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Sousa Fernandes, M.S.; Badicu, G.; Santos, G.C.J.; Filgueira, T.O.; Henrique, R.d.S.; de Souza, R.F.; Aidar, F.J.; Souto, F.O.; Brum, P.C.; Lagranha, C.J. Physical Exercise Decreases Endoplasmic Reticulum Stress in Central and Peripheral Tissues of Rodents: A Systematic Review. Eur. J. Investig. Health Psychol. Educ. 2023, 13, 1082-1096. https://doi.org/10.3390/ejihpe13060082
de Sousa Fernandes MS, Badicu G, Santos GCJ, Filgueira TO, Henrique RdS, de Souza RF, Aidar FJ, Souto FO, Brum PC, Lagranha CJ. Physical Exercise Decreases Endoplasmic Reticulum Stress in Central and Peripheral Tissues of Rodents: A Systematic Review. European Journal of Investigation in Health, Psychology and Education. 2023; 13(6):1082-1096. https://doi.org/10.3390/ejihpe13060082
Chicago/Turabian Stylede Sousa Fernandes, Matheus Santos, Georgian Badicu, Gabriela Carvalho Jurema Santos, Tayrine Ordonio Filgueira, Rafael dos Santos Henrique, Raphael Fabrício de Souza, Felipe J. Aidar, Fabrício Oliveira Souto, Patrícia Chakur Brum, and Claudia Jacques Lagranha. 2023. "Physical Exercise Decreases Endoplasmic Reticulum Stress in Central and Peripheral Tissues of Rodents: A Systematic Review" European Journal of Investigation in Health, Psychology and Education 13, no. 6: 1082-1096. https://doi.org/10.3390/ejihpe13060082
APA Stylede Sousa Fernandes, M. S., Badicu, G., Santos, G. C. J., Filgueira, T. O., Henrique, R. d. S., de Souza, R. F., Aidar, F. J., Souto, F. O., Brum, P. C., & Lagranha, C. J. (2023). Physical Exercise Decreases Endoplasmic Reticulum Stress in Central and Peripheral Tissues of Rodents: A Systematic Review. European Journal of Investigation in Health, Psychology and Education, 13(6), 1082-1096. https://doi.org/10.3390/ejihpe13060082