Genetic Polymorphisms and Their Impact on Body Composition and Performance of Brazilians in a 105 Km Mountain Ultramarathon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Ethical Approval
2.2. Anthropometric Assessment
2.3. Genotyping
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fornasiero, A.; Savoldelli, A.; Fruet, D.; Boccia, G.; Pellegrini, B.; Schena, F. Physiological intensity profile, exercise load and performance, predictors of a 65-km mountain ultra-marathon. J. Sports Sci. 2018, 36, 1287–1295. [Google Scholar] [CrossRef]
- Chiu, Y.H.; Lai, J.I.; Tseng, C.Y.; Wang, S.H.; Li, L.H.; Kao, W.F.; How, C.K.; Chang, W.H.; Hsieh, C.Y. Impact of angiotension I converting enzyme gene I/D polymorphism on running performance, lipid, and biochemical parameters in ultra-marathoners. Medicine 2019, 98, e16476. [Google Scholar] [CrossRef] [PubMed]
- Scheer, V. Participation trends of ultra endurance events. Sports Med. Arthrosc. Rev. 2019, 27, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Balducci, P.; Clémençon, M.; Trama, R.; Blache, Y.; Hautier, C. Performance Factors in a Mountain Ultramarathon. Int. J. Sports Med. 2017, 38, 819–826. [Google Scholar] [CrossRef]
- Martínez-Navarro, I.; Montoya-Vieco, A.; Collado, E.; Hernando, B.; Hernando, C. Pacing and Body Weight Changes During a Mountain Ultramarathon: Sex Differences and Performance. J. Hum. Kinet. 2021, 80, 71–82. [Google Scholar] [CrossRef]
- Guilherme, J.P.L.F.; Bertuzzi, R.; Lima-Silva, A.E.; Pereira, A.D.C.; Lancha Junior, A.H. Analysis of sports-relevant polymorphisms in a large Brazilian cohort of top-level athletes. Ann. Hum. Genet. 2018, 82, 254–264. [Google Scholar] [CrossRef]
- Besson, T.; Macchi, R.; Rossi, J.; Morio, C.Y.M.; Kunimasa, Y.; Nicol, C.; Vercruyssen, F.; Millet, G.Y. Sex Differences in Endurance Running. Sports Med. 2022, 52, 1235–1257. [Google Scholar] [CrossRef] [PubMed]
- O’Loughlin, E.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. Different predictor variables for women and men in ultra-marathon running—The Wellington Urban Ultramarathon 2018. Int. J. Environ. Res. Public Health 2019, 16, 1844. [Google Scholar] [CrossRef]
- Coates, A.M.; Berard, J.A.; King, T.J.; Burr, J.F. Physiological determinants of ultramarathon trail-running performance. Int. J. Sports Physiol. 2021, 16, 1454–1461. [Google Scholar] [CrossRef]
- Belli, T.; Meireles, C.L.d.S.; Costa, M.d.O.; Ackermann, M.A.; Gobatto, C.A. Somatotype, body composition and performance in ultramarathon. Rev. Bras. Cineantropom. Desempenho. Hum. 2016, 18, 127–135. [Google Scholar] [CrossRef]
- Christou, G.A.; Pagourelias, E.D.; Deligiannis, A.P.; Kouidi, E.J. Exploring the Anthropometric, Cardiorespiratory, and Haematological Determinants of Marathon Performance. Front. Physiol. 2021, 12, 693733. [Google Scholar] [CrossRef]
- Wei, Q. ACE and ACTN3 Gene Polymorphisms and Genetic Traits of Rowing Athletes in the Northern Han Chinese Population. Front. Genet. 2021, 12, 736876. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.; Kiely, J.; Grgic, J.; Lucia, A.; Del Coso, J. Can Genetic Testing Identify Talent for Sport? Genes 2019, 10, 972. [Google Scholar] [CrossRef]
- Bell, W.; Colley, J.P.; Evans, W.D.; Darlington, S.E.; Cooper, S.M. ACTN3 genotypes of Rugby Union players: Distribution, power output and body composition. Ann. Hum. Biol. 2012, 39, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Silva, H.H.; Silva, M.G.; Cerqueira, F.; Tavares, V.; Medeiros, R. Genomic profile in association with sport-type, sex, ethnicity, psychological traits and sport injuries of elite athletes. J. Sports Med. Phys. Fitness 2022, 62, 418–434. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Moreno, V.; Gutiérrez-Hellín, J.; Baltazar-Martins, G.; Ruíz-Moreno, C.; Aguilar-Navarro, M.; Lara, B.; Lucía, A. ACTN3 R577X Genotype and Exercise Phenotypes in Recreational Marathon Runners. Genes 2019, 10, 413. [Google Scholar] [CrossRef] [PubMed]
- Tharabenjasin, P.; Pabalan, N.; Jarjanazi, H. Association of the ACTN3 R577X (rs1815739) polymorphism with elite power sports: A meta-analysis. PLoS ONE 2019, 14, e0217390. [Google Scholar] [CrossRef]
- Flück, M.; Kramer, M.; Fitze, D.P.; Kasper, S.; Franchi, M.V.; Valdivieso, P. Cellular Aspects of Muscle Specialization Demonstrate Genotype—Phenotype Interaction Effects in Athletes. Front. Physiol. 2019, 10, 526. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Ding, M.; Liang, N.; Li, Z.; Li, D.; Guan, L.; Liu, H. Associations of ACE I/D polymorphism with the levels of ACE, kallikrein, angiotensin II and interleukin-6 in STEMI patients. Sci. Rep. 2019, 9, 19719. [Google Scholar] [CrossRef]
- Montes-de-Oca-García, A.; Perez-Bey, A.; Velázquez-Díaz, D.; Corral-Pérez, J.; Opazo-Díaz, E.; Rebollo-Ramos, M.; Gómez-Gallego, F.; Cuenca-García, M.; Casals, C.; Ponce-González, J.G. Influence of ACE Gene I/D Polymorphism on Cardiometabolic Risk, Maximal Fat Oxidation, Cardiorespiratory Fitness, Diet and Physical Activity in Young Adults. Int. J. Environ. Res. Public Health 2021, 18, 3443. [Google Scholar] [CrossRef]
- Balberova, O.V.; Bykov, E.V.; Medvedev, G.V.; Zhogina, M.A.; Petrov, K.V.; Petrova, M.M.; Al-Zamil, M.; Trefilova, V.V.; Goncharova, P.S.; Shnayder, N.A. Candidate Genes of Regulation of Skeletal Muscle Energy Metabolism in Athletes. Genes 2021, 12, 1682. [Google Scholar] [CrossRef]
- Ginevičienė, V.; Jakaitienė, A.; Utkus, A.; Hall, E.C.R.; Semenova, E.A.; Andryushchenko, L.B.; Larin, A.K.; Moreland, E.; Generozov, E.V.; Ahmetov, I.I. CKM Gene rs8111989 Polymorphism and Power Athlete Status. Genes 2021, 12, 1499. [Google Scholar] [CrossRef]
- Saito, M.; Ginszt, M.; Semenova, E.A.; Massidda, M.; Huminska-Lisowska, K.; Michałowska-Sawczyn, M.; Homma, H.; Cięszczyk, P.; Okamoto, T.; Larin, A.K.; et al. Genetic profile of sports climbing athletes from three different ethnicities. Biol. Sport 2022, 39, 913–919. [Google Scholar] [CrossRef]
- Papadimitriou, I.D.; Lockey, S.J.; Voisin, S.; Herbert, A.J.; Garton, F.; Houweling, P.J.; Cieszczyk, P.; Maciejewska-Skrendo, A.; Sawczuk, M.; Massidda, M.; et al. No association between ACTN3 R577X and ACE I/D polymorphisms and endurance running times in 698 Caucasian athletes. BMC Genom. 2018, 1, 13. [Google Scholar] [CrossRef] [PubMed]
- Belli, T.; Crisp, A.H.; Verlengia, R. Greater muscle damage in athletes with ACTN3 R577X (RS1815739) gene polymorphism after an ultra-endurance race: A pilot study. Biol. Sport 2017, 34, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Jung, E.S.; Kim, C.H.; Youn, H.; Kim, H.R. Genetic associations of body composition, flexibility and injury risk with ACE, ACTN3 and COL5A1 polymorphisms in Korean ballerinas. J. Exerc. Nutr. Biochem. 2014, 18, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Borga, M.; West, J.; Bell, J.D.; Harvey, N.C.; Romu, T.; Heymsfield, S.B.; Dahlqvist Leinhard, O. Advanced body composition assessment: From body mass index to body composition profiling. J. Investig. Med. 2018, 66, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Santoro, G.F.; Mello, K.D.d.; Oliveira Netto, Z.C.d.; Pfutzenreuter, G.; Bassan, J.C.; Salgueirosa, F.de.M. The influence of ACE I/D gene polymorphism in amateur American Football athletes in Brazil. Rev. Bras. Med. Esporte 2019, 25, 460–463. [Google Scholar] [CrossRef]
- De Almeida, K.Y.; Cetolin, T.; Marrero, A.R.; Aguiar Junior, A.S.; Mohr, P.; Kikuchi, N. A Pilot Study on the Prediction of Non-Contact Muscle Injuries Based on ACTN3 R577X and ACE I/D Polymorphisms in Professional Soccer Athletes. Genes 2022, 13, 2009. [Google Scholar] [CrossRef] [PubMed]
- Zehsaz, F.; Safabakhsh, A.H.; Farhangi, N.; Keynezhad, N.; Ghahramani, M. Do ACE and CKMM gene variations have potent effects on physical performance in inactive male adolescents? Mol. Biol. Rep. 2019, 46, 1835–1843. [Google Scholar] [CrossRef]
- Végh, D.; Reichwalderová, K.; Slaninová, M.; Vavák, M. The Effect of Selected Polymorphisms of the ACTN3, ACE, HIF1A and PPARA Genes on the Immediate Supercompensation Training Effect of Elite Slovak Endurance Runners and Football Players. Genes 2022, 13, 1525. [Google Scholar] [CrossRef]
- Domańska-Senderowska, D.; Szmigielska, P.; Snochowska, A.; Jastrzębski, Z.; Jegier, A.; Kiszałkiewicz, J.; Jastrzębska, J.; Pastuszak-Lewandoska, D.; Cięszczyk, P.; Suchanecka, A.; et al. Relationships between the Expression of the ACTN3 Gene and Explosive Power of Soccer Players. J. Hum. Kinet. 2019, 18, 79–87. [Google Scholar] [CrossRef]
- Mueller, S.M.; Anliker, E.; Knechtle, P.; Knechtle, B.; Toigo, M. Changes in body composition in triathletes during an Ironman race. Eur. J. Appl. Physiol. 2013, 113, 2343–2352. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Lin, W.; Jia, M.; Chen, H. Association between ACE and ACTN3 genes polymorphisms and athletic performance in elite and sub-elite Chinese youth male football players. PeerJ 2023, 11, e14893. [Google Scholar] [CrossRef] [PubMed]
- Tobina, T.; Michishita, R.; Yamasawa, F.; Zhang, B.; Sasaki, H.; Tanaka, H.; Saku, K.; Kiyonaga, A. Association between the angiotensin I-converting enzyme gene insertion/deletion polymorphism and endurance running speed in Japanese runners. J. Physiol. Sci. 2010, 60, 325–330. [Google Scholar] [CrossRef]
- Fedotovskaya, O.; Eider, J.; Pawel, C.; Jascaniene, N. Association of muscle-specific creatine kinase (CKM) gene polymorphism with combat athlete status in polish and Russian cohorts. Arch. Budo 2013, 9, 233–237. [Google Scholar]
- Fedotovskaia, O.N.; Popov, D.V.; Vinogradova, O.L.; Akhmetov, I.I. Association of the muscle-specific creatine kinase (CKMM) gene polymorphism with physical performance of athletes. Fiziol. Cheloveka. 2012, 38, 105–109. [Google Scholar] [CrossRef]
Gene | Primer Forward | Primer Reverse | Accession Number |
---|---|---|---|
ACTN3 | 5′-CTGTTGCCTGTGGTAAGTGGG-3′ | 5′-TGGTCACAGTATGCAGGAGGG-3′ | 89 |
ACE | 5’-TGGGACCACAGCGCCCGCCACTAC-3’ | 5′-CTGGAGACCACTCCCATCCTTTCT-3′ | 1636 |
CKMM | 5′-GTGCGGTGGACACAGCTGCCG-3′ | 5-CAGCTTGGTCAAAGACATTGAGG-3 | 1158 |
Polymorphism | Genotype Comparison | |||||||
---|---|---|---|---|---|---|---|---|
ACTN3 R577X | RX (n = 12) vs. RR (n = 5) | |||||||
Variables | Pre | p-value | Hedges’ g | 95% CI | Post | p-value | Hedges’ g | 95% CI |
Weight (Kg) | 72.0 ± 6.1–70.7 ± 6.8 | 0.71 | 0.2 | 0.80–1.19 | 70.5 ± 5.4–69.5 ± 6.9 | 0.73 | 0.16 | −0.83–1.15 |
BMI (Kg/m2) | 24.5 ± 1.8–22.8 ± 2.6 | 0.18 | 0.79 | −0.24–1.81 | 23.9 ± 1.5–22.4 ± 2.7 | 0.17 | 0.75 | −0.27–1.77 |
%F | 11.2 ± 2.7–9.9 ± 2.0 | 0.28 | 0.49 | −0.52–1.49 | 9.6 ± 1.8–8.8 ± 1.9 | 0.42 | 0.42 | −0.58–1.42 |
FM (Kg) | 8.1 ± 1.7–6.9 ± 1.2 | 0.2 | −0.84 | −1.87–0.19 | 6.8 ± 1.5–6.0 ± 1.2 | 0.34 | 0.53 | −0.47–1.54 |
LM (Kg) | 64.0 ± 5.6–63.8 ± 6.9 | 0.93 | 0.05 | −0.94–1.04 | 63.7 ± 4.6–63.4 ± 7.0 | 0.9 | 0.05 | −0.94–1.04 |
RX (n = 12) vs. XX (n = 5) | ||||||||
Variables | Pre | p-value | Hedges’ g | 95% CI | Post | p-value | Hedges’ g | 95% CI |
Weight (Kg) | 72.0 ± 6.1–75.5 ± 7.8 | 0.33 | −0.5 | −1.51–0.50 | 70.5 ± 5.4–72.6 ± 7.6 | 0.53 | −0.33 | −1.33–0.67 |
BMI (Kg/m2) | 24.5 ± 1.8–25.5 ± 2.7 | 0.38 | −0.46 | −1.46–0.55 | 23.9 ± 1.5–23.9 ± 1.1 | 0.94 | 0 | −0.99–0.99 |
%F | 11.2 ± 2.7–11.1 ± 2.5 | 0.95 | 0.04 | −0.95–1.03 | 9.6 ± 1.8–8.8 ± 1.1 | 0.38 | 0.46 | −0.54–1.46 |
FM (Kg) | 8.1 ± 1.7–8.7 ± 2.4 | 0.57 | −0.3 | −1.29–0.70 | 6.8 ± 1.5–6.4 ± 2.2 | 0.58 | 0.22 | −0.77–1.21 |
LM (Kg) | 64.0 ± 5.6–68.8 ± 8.0 | 0.18 | −0.72 | −1.74–0.30 | 63.7 ± 4.6–66.2 ± 7.0 | 0.4 | −0.44 | −1.45–0.56 |
RR (n = 5) vs. XX (n = 5) | ||||||||
Variables | Pre | p-value | Hedges’ g | 95% CI | Post | p-value | Hedges’ g | 95% CI |
Weight (Kg) | 70.7 ± 6.8–75.5 ± 7.8 | 0.33 | 0.59 | −0.56–1.74 | 69.5 ± 6.9–72.6 ± 7.6 | 0.53 | 0.39 | 0.75–1.52 |
BMI (Kg/m2) | 22.8 ± 7.2–25.5 ± 2.7 | 0.16 | 0.32 | −0.80–1.45 | 22.4 ± 2.7–23.9 ± 1.1 | 0.41 | 0.66 | −0.50–1.81 |
%F | 9.9 ± 2.0–11.1 ± 2.5 | 0.4 | 0.48 | −0.66–1.62 | 8.8 ± 1.9–8.8 ± 1.1 | 0.85 | 0 | −1.12–1.12 |
FM (Kg) | 6.9 ± 1.2–8.7 ± 2.4 | 0.19 | 0.86 | −0.32–2.04 | 6.0 ± 1.2–6.4 ± 2.2 | 0.75 | 0.2 | −0.92–1.33 |
LM (Kg) | 63.8 ± 6.9–68.8 ± 8.0 | 0.32 | 0.6 | −0.55–1.76 | 63.4 ± 7.0–66.2 ± 7.0 | 0.46 | −0.36 | −1.49–0.77 |
Polymorphism | Genotype Comparison | |||||||
---|---|---|---|---|---|---|---|---|
ACE I/D | ID (n = 14) vs. II (n = 7) | |||||||
Variables | Pre | p-value | Hedges’ g | 95% CI | Post | p-value | Hedges’ g | 95% CI |
Weight (Kg) | 71.6 ± 5.9–74.2 ± 7.5 | 0.37 | −0.39 | −1.27–0.49 | 69.6 ± 5.0–72.1± 7.7 | 0.37 | −0.40 | −1.28–0.48 |
BMI (Kg/m2) | 24.5 ± 2.2–24.1 ± 2.6 | 0.68 | 0.16 | −0.71–1.04 | 23.7 ± 1.9–22.9 ± 2.1 | 0.36 | 0.99 | −0.49–1.27 |
%F | 10.9 ± 2.7–10.4 ± 1.6 | 0.66 | −0.24 | −1.11–0.64 | 9.2 ± 1.5–9.3 ± 2.3 | 0.86 | −0.05 | −0.92–0.82 |
FM (Kg) | 7.8 ± 2.1–7.8 ± 1.5 | 0.99 | 0.00 | −0.87–0.87 | 6.4 ± 1.0–6.7 ± 2.0 | 0.57 | −0.21 | −1.08–0.67 |
LM (Kg) | 63.9 ± 5.4–67.2 ± 8.2 | 0.26 | −0.49 | −1.38–0.39 | 63.2 ± 4.9–65.3 ± 6.7 | 0.43 | −0.36 | −1.24–0.51 |
Polymorphism | Genotype Comparison | |||||||
CK MM A/G NcoI | AA (n = 7) vs. AG (n = 11) | |||||||
Variables | Pre | p-value | Hedges’ g | 95% CI | Post | p-value | Hedges’ g | 95% CI |
Weight (Kg) | 77.1± 5.9–69.9 ± 5.7 | 0.02 * | 1.19 | 0.20–2.17 | 74.6 ± 5.6–68 ± 5.1 | 0.02 * | 1.19 | 0.21–2.17 |
BMI (Kg/m2) | 25.6 ± 2.3–23.9 ± 2.0 | 0.13 | 0.76 | −0.17–1.70 | 24.4 ± 2.0–23.3 ± 1.8 | 0.27 | 0.56 | −0.36–1.48 |
%F | 10.5 ± 1.8–11.2 ± 2.8 | 0.56 | −0.27 | −1.18–0.64 | 9.4 ± 2.4–9.1 ± 1.4 | 0.75 | 0.16 | −0.75–1.06 |
FM (Kg) | 8.2 ± 1.3–7.9 ± 2.4 | 0.79 | 0.14 | −0.76–1.04 | 7.0 ± 1.8–6.2 ± 1.0 | 0.12 | 0.56 | −0.36–1.48 |
LM (Kg) | 70.3 ± 6.9–62.1 ± 4.2 | 0.006 * | 1.45 | 0.43–2.47 | 67.7 ± 5.5–61.9 ± 4.8 | 0.03 * | 1.09 | 0.12–2.06 |
AA (n = 7) vs. GG (n = 4) | ||||||||
Variables | Pre | p-value | Hedges’ g | 95% CI | Post | p-value | Hedges’ g | 95% CI |
Weight (Kg) | 77.1 ± 5.9–71.6 ± 6.8 | 0.19 | 0.81 | −0.36–1.98 | 74.6 ± 5.6–70.9 ± 6.8 | 0.35 | 0.56 | −0.59–1.71 |
BMI (Kg/m2) | 25.6 ± 2.3–23.2 ± 2.4 | 0.14 | 0.94 | −0.25–2.13 | 24.4 ± 2.0–23.0 ± 2.5 | 0.33 | 0.59 | −0.56–1.74 |
%F | 10.5 ± 1.8–10.6 ± 1.5 | 0.96 | 0.05 | −1.07–1.18 | 9.4 ± 2.4–9.1 ± 1.3 | 0.78 | 0.13 | −0.99–1.26 |
FM (Kg) | 8.2 ± 1.3–7.5 ± 1.0 | 0.41 | 0.53 | −0.62–1.67 | 7.0 ± 1.8–6.5 ± 1.4 | 0.61 | 0.27 | −0.86–1.40 |
LM (Kg) | 70.3 ± 6.9–64.0 ± 6.5 | 0.17 | 0.85 | −0.33–2.03 | 67.7 ± 5.5–64.4 ± 5.6 | 0.37 | 0.55 | −0.60–1.69 |
GG (n = 4) vs. AG (n = 11) | ||||||||
Variables | Pre | p-value | Hedges’ g | 95% CI | Post | p-value | Hedges’ g | 95% CI |
Weight (Kg) | 71.6 ± 6.8–69.9 ± 5.7 | 0.62 | 0.27 | −0.81–1.35 | 70.9 ± 6.8–68.0 ± 5.1 | 0.42 | 0.49 | −0.60–1.58 |
BMI (Kg/m2) | 23.2 ± 2.4–23.9 ± 2.0 | 0.57 | 0.31 | 0.77–1.40 | 23.0 ± 2.5–23.3 ± 3.5 | 0.78 | 0.09 | −0.99–1.16 |
%F | 10.6 ± 1.5–11.2 ± 2.8 | 0.66 | 0.22 | −0.86–1.30 | 9.1 ± 1.3–9.1 ± 1.4 | 0.92 | 0.00 | −1.08–1.08 |
FM (Kg) | 7.5 ± 1.0–7.9 ± 2.4 | 0.66 | 0.17 | −0.90–1.25 | 6.5 ± 1.4–6.2 ± 1.2 | 0.74 | 0.23 | −0.85–1.31 |
LM (Kg) | 64.0 ± 6.5–62.1 ± 4.2 | 0.50 | 0.37 | −0.71–1.46 | 64.4 ± 5.6–61.9 ± 4.8 | 0.41 | 0.47 | −0.62–1.56 |
Genotype | Variables | R | R2 | Adjusted R | Std. Error | p-Value | Adjusted p-Value |
---|---|---|---|---|---|---|---|
RR (n = 5) | Weight (Kg) | 0.56 | 0.31 | 0.08 | 9.4 | 0.32 | 1.6 |
BMI (Kg/m2) | 0.97 | 0.95 | 0.94 | 6.1 | 0.004 | 0.004 * | |
%F | 0.20 | 0.04 | −0.27 | 40.7 | 0.74 | 3.7 | |
FM (Kg) | 0.54 | 0.29 | 0.06 | 55.2 | 0.34 | 1.7 | |
LM (Kg) | 0.46 | 0.21 | −0.04 | 10.6 | 0.43 | 2.15 | |
RX (n = 12) | Weight (Kg) | 0.32 | 0.10 | 0.01 | 9.4 | 0.29 | 3.48 |
BMI (Kg/m2) | 0.03 | 0.00 | −0.09 | 64.5 | 0.90 | 10.8 | |
%F | 0.18 | 0.03 | −0.06 | 28.4 | 0.55 | 6.6 | |
FM (Kg) | 0.24 | 0.06 | −0.03 | 33.2 | 0.44 | 5.28 | |
LM (Kg) | 0.30 | 0.09 | 0.00 | 11.2 | 0.34 | 4.08 | |
XX (n = 5) | Weight (Kg) | 0.63 | 0.40 | 0.20 | 10.2 | 0.25 | 1.25 |
BMI (Kg/m2) | 0.83 | 0.69 | 0.59 | 25.3 | 0.07 | 0.35 | |
%F | 0.07 | 0.00 | −0.32 | 87.8 | 0.90 | 4.5 | |
FM (Kg) | 0.30 | 0.09 | −0.21 | 87.0 | 0.61 | 3.05 | |
LM (Kg) | 0.63 | 0.40 | 0.21 | 11.1 | 0.24 | 1.2 |
Genotype | Variables | R | R2 | Adjusted R | Std. Error | p-Value | Adjusted p-Value |
---|---|---|---|---|---|---|---|
ID (n = 14) | Weight (Kg) | 0.47 | 0.22 | 0.15 | 9.6 | 0.08 | 1.12 |
BMI (Kg/m2) | 0.44 | 0.19 | 0.12 | 25.4 | 0.11 | 1.54 | |
%F | 0.24 | 0.06 | −0.01 | 35.3 | 0.38 | 5.32 | |
FM (Kg) | 0.47 | 0.22 | 0.15 | 46.5 | 0.08 | 1.12 | |
LM (Kg) | 0.38 | 0.14 | 0.07 | 10.2 | 0.17 | 2.38 | |
II (n = 7) | Weight (Kg) | 0.63 | 0.40 | 0.28 | 6.28 | 0.12 | 0.84 |
BMI (Kg/m2) | 0.82 | 0.67 | 0.61 | 17.02 | 0.02 | 0.14 | |
%F | 0.91 | 0.84 | 0.81 | 10.7 | 0.003 | 0.003 * | |
FM (Kg) | 0.99 | 0.99 | 0.98 | 3.08 | <0.0001 | <0.0001 * | |
LM (Kg) | 0.43 | 0.18 | 0.02 | 8.46 | 0.33 | 2.31 |
Genotype | Variables | R | R2 | Adjusted R | Std. Error | p-Value | Adjusted p-Value |
---|---|---|---|---|---|---|---|
AA (n = 7) | Weight (Kg) | 0.09 | 0.00 | −0.18 | 10.5 | 0.83 | 5.81 |
BMI (Kg/m2) | 0.63 | 0.39 | 0.27 | 22.9 | 0.12 | 0.84 | |
%F | 0.15 | 0.02 | −0.17 | 24.2 | 0.35 | 2.45 | |
FM (Kg) | 0.15 | 0.02 | −0.17 | 32.5 | 0.73 | 5.11 | |
LM (Kg) | 0.15 | 0.02 | −0.17 | 10.5 | 0.74 | 5.18 | |
AG (n = 11) | Weight (Kg) | 0.68 | 0.46 | 0.40 | 8.9 | 0.02 | 0.22 |
BMI (Kg/m2) | 0.58 | 0.34 | 0.27 | 27.1 | 0.05 | 0.55 | |
%F | 0.08 | 0.00 | −0.10 | 43.0 | 0.80 | 8.8 | |
FM (Kg) | 0.21 | 0.04 | −0.05 | 56.5 | 0.52 | 5.72 | |
LM (Kg) | 0.67 | 0.45 | 0.39 | 9.5 | 0.02 | 0.22 | |
GG (n = 4) | Weight (Kg) | 0.90 | 0.82 | 0.73 | 9.5 | 0.09 | 0.36 |
BMI (Kg/m2) | 0.72 | 0.52 | 0.28 | 42.2 | 0.27 | 1.08 | |
%F | 0.68 | 0.47 | 0.21 | 82.6 | 0.31 | 1.24 | |
FM (Kg) | 0.85 | 0.72 | 0.59 | 54.6 | 0.14 | 0.56 | |
LM (Kg) | 0.88 | 0.78 | 0.67 | 12.8 | 0.11 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribas, M.R.; Schneider, F.K.; Ribas, D.I.R.; Lass, A.D.; Badicu, G.; Bassan, J.C. Genetic Polymorphisms and Their Impact on Body Composition and Performance of Brazilians in a 105 Km Mountain Ultramarathon. Eur. J. Investig. Health Psychol. Educ. 2023, 13, 1751-1761. https://doi.org/10.3390/ejihpe13090127
Ribas MR, Schneider FK, Ribas DIR, Lass AD, Badicu G, Bassan JC. Genetic Polymorphisms and Their Impact on Body Composition and Performance of Brazilians in a 105 Km Mountain Ultramarathon. European Journal of Investigation in Health, Psychology and Education. 2023; 13(9):1751-1761. https://doi.org/10.3390/ejihpe13090127
Chicago/Turabian StyleRibas, Marcelo Romanovitch, Fábio Kurt Schneider, Danieli Isabel Romanovitch Ribas, André Domingues Lass, Georgian Badicu, and Júlio Cesar Bassan. 2023. "Genetic Polymorphisms and Their Impact on Body Composition and Performance of Brazilians in a 105 Km Mountain Ultramarathon" European Journal of Investigation in Health, Psychology and Education 13, no. 9: 1751-1761. https://doi.org/10.3390/ejihpe13090127
APA StyleRibas, M. R., Schneider, F. K., Ribas, D. I. R., Lass, A. D., Badicu, G., & Bassan, J. C. (2023). Genetic Polymorphisms and Their Impact on Body Composition and Performance of Brazilians in a 105 Km Mountain Ultramarathon. European Journal of Investigation in Health, Psychology and Education, 13(9), 1751-1761. https://doi.org/10.3390/ejihpe13090127