A Method to Explore the Best Mixed-Effects Model in a Data-Driven Manner with Multiprocessing: Applications in Public Health Research
Abstract
:1. Introduction
1.1. Methods for Model Exploration
1.2. Current Study
2. Methods
2.1. Software
- Y ∼ X3.
- Y ∼ X1 + X3.
- Y ∼ X2 + X3.
- Y ∼ X1 + X2 + X3 (so far, models with only fixed effects).
- Y ∼ X3 + (1|G).
- Y ∼ X1 + X3 + (1|G).
- Y ∼ X2 + X3 + (1|G).
- Y ∼ X1 + X2 + X3 + (1|G) (so far, models including a random intercept).
- Y ∼ X1 + X3 + (1+X1|G).
- Y ∼ X2 + X3 + (1+X2|G).
- Y ∼ X1 + X2 + X3 + (1+X1|G).
- Y ∼ X1 + X2 + X3 + (1+X2|G).
- Y ∼ X1 + X2 + X3 + (1+X1+X2|G) (so far, models including random slopes).
2.2. Tested Datasets
2.3. Test Procedures
3. Results
3.1. Model Exploration Test Result
3.2. Processing Time Analysis
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brown, V.A. An introduction to linear mixed-effects modeling in R. Adv. Methods Pract. Psychol. Sci. 2021, 4, 2515245920960351. [Google Scholar] [CrossRef]
- Schmidt-Catran, A.W.; Fairbrother, M. The random effects in multilevel models: Getting them wrong and getting them right. Eur. Sociol. Rev. 2016, 32, 23–38. [Google Scholar] [CrossRef]
- Schielzeth, H.; Forstmeier, W. Conclusions beyond support: Overconfident estimates in mixed models. Behav. Ecol. 2009, 20, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, A.M.; Han, H.; Gelpí, R.A.; Stöckli, S.; Jeftić, A.; Ch’ng, B.; Koszałkowska, K.; Lacko, D.; Milfont, T.L.; Lee, Y.; et al. Mediation analysis of conspiratorial thinking and anti-expert sentiments on vaccine willingness. Health Psychol. 2023, 42, 235–246. [Google Scholar] [CrossRef]
- Han, H. Trust in the scientific research community predicts intent to comply with COVID-19 prevention measures: An analysis of a large-scale international survey dataset. Epidemiol. Infect. 2022, 150, e36. [Google Scholar] [CrossRef] [PubMed]
- Han, H. Testing the validity of the modified vaccine attitude question battery across 22 languages with a large-scale international survey dataset: Within the context of COVID-19 vaccination. Hum. Vaccines Immunother. 2022, 18, 2024066. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.I.; Kim, S.; Jin, Y.; Valentini, C.; Badham, M.; Colleoni, E.; Romenti, S. Effects of individuals’ cultural orientations and trust in government health communication sources on behavioral intentions during a pandemic: A cross-country study. Health Commun. 2024, 39, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Nasvytienė, D.; Lazdauskas, T. Temperament and academic achievement in children: A meta-analysis. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 736–757. [Google Scholar] [CrossRef] [PubMed]
- Ta, K.N.T.; Bai, C.H.; Chuang, K.J. Prevention of Work Absence Due to Back Pain: A Network Meta-Analysis. Eur. J. Investig. Health Psychol. Educ. 2023, 13, 2891–2903. [Google Scholar] [CrossRef]
- Lochbaum, M.; Sisneros, C. A Systematic Review with a Meta-Analysis of the Motivational Climate and Hedonic Well-Being Constructs: The Importance of the Athlete Level. Eur. J. Investig. Health Psychol. Educ. 2024, 14, 976–1001. [Google Scholar] [CrossRef]
- Bagherzadeh-Khiabani, F.; Ramezankhani, A.; Azizi, F.; Hadaegh, F.; Steyerberg, E.W.; Khalili, D. A tutorial on variable selection for clinical prediction models: Feature selection methods in data mining could improve the results. J. Clin. Epidemiol. 2016, 71, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Wagenmakers, E.J.; Love, J.; Marsman, M.; Jamil, T.; Ly, A.; Verhagen, J.; Selker, R.; Gronau, Q.F.; Dropmann, D.; Boutin, B.; et al. Bayesian inference for psychology. Part II: Example applications with JASP. Psychon. Bull. Rev. 2018, 25, 58–76. [Google Scholar] [CrossRef]
- Han, H.; Dawson, K.J. Applying elastic-net regression to identify the best models predicting changes in civic purpose during the emerging adulthood. J. Adolesc. 2021, 93, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Dawson, K.J.; Walker, D.I.; Nguyen, N.; Choi, Y.J. Exploring the association between character strengths and moral functioning. Ethics Behav. 2023, 33, 286–303. [Google Scholar] [CrossRef]
- Babyak, M.A. What you see may not be what you get: A brief, nontechnical introduction to overfitting in regression-type models. Psychosom. Med. 2004, 66, 411–421. [Google Scholar] [PubMed]
- Genell, A.; Nemes, S.; Steineck, G.; Dickman, P.W. Model selection in medical research: A simulation study comparing Bayesian model averaging and stepwise regression. BMC Med. Res. Methodol. 2010, 10, 108. [Google Scholar] [CrossRef]
- Smith, G. Step away from stepwise. J. Big Data 2018, 5, 32. [Google Scholar] [CrossRef]
- Raftery, A.E. Bayesian model selection in social research. Sociol. Methodol. 1995, 25, 111–163. [Google Scholar] [CrossRef]
- Astin, A.W.; Denson, N. Multi-campus studies of college impact: Which statistical method is appropriate? Res. High. Educ. 2009, 50, 354–367. [Google Scholar] [CrossRef]
- Wetzels, R.; van Ravenzwaaij, D.; Wagenmakers, E.J. Bayesian analysis. In The Encyclopaedia of Clinical Psychology; Wiley: Hoboken, NJ, USA, 2014; pp. 1–11. [Google Scholar]
- Rouder, J.N.; Morey, R.D. Default Bayes factors for model selection in regression. Multivar. Behav. Res. 2012, 47, 877–903. [Google Scholar] [CrossRef]
- Rouder, J.N.; Haaf, J.M.; Vandekerckhove, J. Bayesian inference for psychology, part IV: Parameter estimation and Bayes factors. Psychon. Bull. Rev. 2018, 25, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Han, H. BayesFactorFMRI: Implementing Bayesian Second-Level fMRI Analysis with Multiple Comparison Correction and Bayesian Meta-Analysis of fMRI Images with Multiprocessing. J. Open Res. Softw. 2021, 9. [Google Scholar] [CrossRef]
- Morey, R.D.; Rouder, J.N.; Jamil, T.; Urbanek, K.; Ly, A. Package ‘BayesFactor’, 2022.
- Kuha, J. AIC and BIC: Comparisons of assumptions and performance. Sociol. Methods Res. 2004, 33, 188–229. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Ghosh, J.K. AIC, BIC and recent advances in model selection. Philos. Stat. 2011, 7, 583–605. [Google Scholar]
- Aho, K.; Derryberry, D.; Peterson, T. Model selection for ecologists: The worldviews of AIC and BIC. Ecology 2014, 95, 631–636. [Google Scholar] [CrossRef]
- Weakliem, D.L. A critique of the Bayesian information criterion for model selection. Sociol. Methods Res. 1999, 27, 359–397. [Google Scholar] [CrossRef]
- Raftery, A.E. Comment on “A Critique of the Bayesian Information Criterion for Model Selection”. Sociol. Methods Res. 1999, 27, 411–427. [Google Scholar] [CrossRef]
- Raftery, A.E.; Madigan, D.; Hoeting, J.A. Bayesian model averaging for linear regression models. J. Am. Stat. Assoc. 1997, 92, 179–191. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. Stat. Methodol. 2005, 67, 301–320. [Google Scholar] [CrossRef]
- McGrath, R.E.; Han, H.; Brown, M.; Meindl, P. What does character education mean to character education experts? A prototype analysis of expert opinions. J. Moral Educ. 2022, 51, 219–237. [Google Scholar] [CrossRef]
- Makieła, K.; Mazur, B. Bayesian model averaging and prior sensitivity in stochastic frontier analysis. Econometrics 2020, 8, 13. [Google Scholar] [CrossRef]
- Buja, A.; Brown, L. Discussion: “A significance test for the lasso”. Ann. Stat. 2014, 42, 509–517. [Google Scholar] [CrossRef]
- Ntontis, E.; Blackburn, A.M.; Han, H.; Stöckli, S.; Milfont, T.L.; Tuominen, J.; Griffin, S.M.; Ikizer, G.; Jeftic, A.; Chrona, S.; et al. The effects of secondary stressors, social identity, and social support on perceived stress and resilience: Findings from the COVID-19 pandemic. J. Environ. Psychol. 2023, 88, 102007. [Google Scholar] [CrossRef] [PubMed]
- Lieberoth, A.; Lin, S.Y.; Stöckli, S.; Han, H.; Kowal, M.; Gelpi, R.; Chrona, S.; Tran, T.P.; Jeftić, A.; Rasmussen, J.; et al. Stress and worry in the 2020 coronavirus pandemic: Relationships to trust and compliance with preventive measures across 48 countries in the COVIDiSTRESS global survey. R. Soc. Open Sci. 2021, 8, 200589. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, A.M.; Han, H.; Jeftić, A.; Stöckli, S.; Gelpí, R.; Acosta-Ortiz, A.M.; Travaglino, G.A.; Alvarado, R.; Lacko, D.; Milfont, T.L.; et al. Predictors of Compliance with COVID-19 Guidelines Across Countries: The role of social norms, moral values, trust, stress, and demographic factors. Curr. Psychol. 2024, 43, 17939–17955. [Google Scholar] [CrossRef]
- Neville, F.G.; Templeton, A.; Smith, J.R.; Louis, W.R. Social norms, social identities and the COVID-19 pandemic: Theory and recommendations. Soc. Personal. Psychol. Compass 2021, 15, e12596. [Google Scholar] [CrossRef] [PubMed]
- Merkley, E. Anti-intellectualism, populism, and motivated resistance to expert consensus. Public Opin. Q. 2020, 84, 24–48. [Google Scholar] [CrossRef]
- Weston, S.; Calaway, R. Getting Started with doParallel and Foreach. 2015. Available online: https://cran.r-project.org/web/packages/doParallel/vignettes/gettingstartedParallel.pdf (accessed on 1 February 2024).
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Pelčić, G.; Karačić, S.; Mikirtichan, G.L.; Kubar, O.I.; Leavitt, F.J.; Tai, M.C.t.; Morishita, N.; Vuletić, S.; Tomašević, L. Religious exception for vaccination or religious excuses for avoiding vaccination. Croat. Med. J. 2016, 57, 516. [Google Scholar] [CrossRef]
- Bürkner, P.C. brms: An R Package for Bayesian Multilevel Models Using Stan. J. Stat. Softw. 2017, 80, 1–28. [Google Scholar] [CrossRef]
- Bürkner, P.C. Advanced Bayesian Multilevel Modeling with the R Package brms. R J. 2018, 10, 395–411. [Google Scholar] [CrossRef]
- Kass, R.E.; Raftery, A.E. Bayes factors. J. Am. Stat. Assoc. 1995, 90, 773–795. [Google Scholar] [CrossRef]
- Vrieze, S.I. Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychol. Methods 2012, 17, 228. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Ćepulić, D.B.; Coll-Martín, T.; Debove, S.; Gautreau, G.; Han, H.; Rasmussen, J.; Tran, T.P.; Travaglino, G.A.; COVIDiSTRESS Global Survey Consortium; et al. COVIDiSTRESS Global Survey dataset on psychological and behavioural consequences of the COVID-19 outbreak. Sci. Data 2021, 8, 3. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, A.M.; Vestergren, S. COVIDiSTRESS diverse dataset on psychological and behavioural outcomes one year into the COVID-19 pandemic. Sci. Data 2022, 9, 331. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, W. Aspects of theory-ladenness in data-intensive science. Philos. Sci. 2015, 82, 905–916. [Google Scholar] [CrossRef]
- Blagden, D. Induction and deduction in international relations: Squaring the circle between theory and evidence. Int. Stud. Rev. 2016, 18, 195–213. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H. A Method to Explore the Best Mixed-Effects Model in a Data-Driven Manner with Multiprocessing: Applications in Public Health Research. Eur. J. Investig. Health Psychol. Educ. 2024, 14, 1338-1350. https://doi.org/10.3390/ejihpe14050088
Han H. A Method to Explore the Best Mixed-Effects Model in a Data-Driven Manner with Multiprocessing: Applications in Public Health Research. European Journal of Investigation in Health, Psychology and Education. 2024; 14(5):1338-1350. https://doi.org/10.3390/ejihpe14050088
Chicago/Turabian StyleHan, Hyemin. 2024. "A Method to Explore the Best Mixed-Effects Model in a Data-Driven Manner with Multiprocessing: Applications in Public Health Research" European Journal of Investigation in Health, Psychology and Education 14, no. 5: 1338-1350. https://doi.org/10.3390/ejihpe14050088
APA StyleHan, H. (2024). A Method to Explore the Best Mixed-Effects Model in a Data-Driven Manner with Multiprocessing: Applications in Public Health Research. European Journal of Investigation in Health, Psychology and Education, 14(5), 1338-1350. https://doi.org/10.3390/ejihpe14050088