Determinants of Inequalities in the Exposure to and Adoption of Multiple Health Risk Behaviors among Brazilian Adolescents, 2009–2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data
- Individual characteristics: age bracket (<14 years old, 14–16 years old, or ≥17 years old); skin color/ethnicity (white, black, brown, yellow, or indigenous); gender (female or male); age-series distortion of educational attainment; frequency of consumption of foods considered healthy-eating markers (beans, fruits, and vegetables); frequency of consumption of foods considered unhealthy-eating markers (sweets, candies, and soft drinks); physical activity level within international recommendations.
- Household environment characteristics: socioeconomic strata (based on ownership of assets); living with one or two parents or other relatives; parents’ or relatives’ attitudes towards the youngster (attention to the adolescent’s leisure activities; frequency of family meals during the week; and allowing the adolescent to watch television or other activities during the meals).
- School environment characteristics: type of school (public or private); skipping school; relationship of the adolescent with colleagues (support from the colleagues; frequency of being a victim of bullying); security for participating in school activities (absences due to lack of security traveling to and from school; absences due to lack of security at school).
- Control variables: region of residence (North, Northeast, South, Southeast, or Midwest); year of the survey (2009, 2012, 2015, or 2019).
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dahl, R.E.; Allen, N.B.; Wilbrecht, L.; Suleiman, A.B. Importance of investing in adolescence from a developmental science perspective. Nature 2018, 554, 441–450. [Google Scholar] [CrossRef]
- Maslowsky, J.; Owotomo, O.; Huntley, E.D.; Keating, D. Adolescent risk behavior: Differentiating reasoned and reactive risk-taking. J. Youth Adolesc. 2019, 48, 243–255. [Google Scholar] [CrossRef]
- Ciranka, S.; Bos, W.v.D. Adolescent risk-taking in the context of exploration and social influence. Dev. Rev. 2021, 61, 100979. [Google Scholar] [CrossRef]
- Fleary, S.A.; Joseph, P.; Pappagianopoulos, J.E. Adolescent health literacy and health behaviors: A systematic review. J. Adolesc. 2018, 62, 116–127. [Google Scholar] [CrossRef]
- Langford, R.; Bonell, C.P.; Jones, H.E.; Pouliou, T.; Murphy, S.M.; Waters, E.; Komro, K.A.; Gibbs, L.F.; Magnus, D.; Campbell, R. The WHO Health Promoting School framework for improving the health and well-being of students and their academic achievement. Cochrane Database Syst. Rev. 2014, 4, CD008958. [Google Scholar] [CrossRef]
- McPherson, K.E.; Kerr, S.; Morgan, A.; McGee, E.; Cheater, F.M.; McLean, J.; Egan, J. The association between family and community social capital and health risk behaviours in young people: An integrative review. BMC Public Health 2013, 13, 971. [Google Scholar] [CrossRef]
- Wang, A.; Peterson, G.W.; Morphey, L.K. Who is more important for early adolescents’ developmental choices? Peers or parents? Marriage Fam. Rev. 2007, 42, 95–122. [Google Scholar] [CrossRef]
- McCubbin, H.I.; Needle, R.H.; Wilson, M. Adolescent health risk behaviors: Family stress and adolescent coping as critical factors. Fam. Relations 1985, 34, 51–62. [Google Scholar] [CrossRef]
- Guthrie, B.J.; Loveland-Cheny, C.P.; Frey, M.A.; Dielman, T.E. A theoretical approach to studying health behaviors in adolescents: An at-risk population. Fam. Community Health 1994, 17, 35–48. [Google Scholar] [CrossRef]
- Zozaya, N.; Vallejo, L. The effect of the economic crisis on adolescents’ perceived health and risk behaviors: A multilevel analysis. Int. J. Environ. Res. Public Health 2020, 17, 643. [Google Scholar] [CrossRef]
- da Silva, A.G.; Gomes, C.S.; Ferreira, A.C.M.; Malta, D.C. Demand and use of health services by Brazilian adolescents, according to the National School Health Survey 2019. Rev. Bras. Epidemiol. 2023, 26 (Suppl. S1), e230008. [Google Scholar] [CrossRef]
- Hale, D.R.; Viner, R.M. The correlates and course of multiple health risk behaviour in adolescence. BMC Public Health 2016, 16, 458. [Google Scholar] [CrossRef]
- Alves, C.F.; Zappe, J.G.; Dell’Aglio, D.D. Risk behavior index: Construction and analysis of psychometric properties. Estud. Psicol. 2015, 32, 371–382. [Google Scholar] [CrossRef]
- Bozzini, A.B.; Bauer, A.; Maruyama, J.; Simões, R.; Matijasevich, A. Factors associated with risk behaviors in adolescence: A systematic review. Rev. Bras. Psiquiatr. 2021, 43, 210–221. [Google Scholar] [CrossRef]
- Ricardo, C.Z.; Azeredo, C.M.; de Rezende, L.F.M.; Levy, R.B. Co-occurrence and clustering of the four major non-communicable disease risk factors in Brazilian adolescents: Analysis of a national school-based survey. PLoS ONE 2019, 14, e0219370. [Google Scholar] [CrossRef]
- Silva, R.M.A.; Andrade, A.C.d.S.; Caiaffa, W.T.; Bezerra, V.M. Co-occurrence of health risk behaviors and the family context among Brazilian adolescents, National Survey of School Health (2015). Rev. Bras. Epidemiol. 2021, 24, e210023. [Google Scholar] [CrossRef]
- de Winter, A.F.; Visser, L.; Verhulst, F.C.; Vollebergh, W.A.; Reijneveld, S.A. Longitudinal patterns and predictors of multiple health risk behaviors among adolescents: The TRAILS study. Prev. Med. 2016, 84, 76–82. [Google Scholar] [CrossRef]
- Azeredo, C.M.; De Rezende, L.F.M.; Mallinson, P.A.C.; Ricardo, C.Z.; Kinra, S.; Levy, R.B.; Barros, A.J.D. Progress and setbacks in socioeconomic inequalities in adolescent health-related behaviours in Brazil: Results from three cross-sectional surveys 2009–2015. BMJ Open 2019, 9, e025338. [Google Scholar] [CrossRef]
- Fleary, S.A. Combined patterns of risk for problem and obesogenic behaviors in adolescents: A latent class analysis approach. J. Sch. Health 2017, 87, 182–193. [Google Scholar] [CrossRef]
- Rocha, F.L.; Velasquez-Melendez, G. Simultaneity and aggregation of risk factors for noncommunicable diseases among brazilian adolescents. Esc. Anna Nery 2019, 23, e20180320. [Google Scholar] [CrossRef]
- Brazilian Institute for Geography and Statistics (IBGE). Pesquisa Nacional de Saúde do Escolar 2009; Brazilian Institute for Geography and Statistics: Rio de Janeiro, Brazil, 2009. Available online: https://biblioteca.ibge.gov.br/visualizacao/livros/liv43063.pdf (accessed on 6 March 2023).
- Brazilian Institute for Geography and Statistics (IBGE). Pesquisa Nacional de Saúde do Escolar 2012; IBGE: Rio de Janeiro, Brazil, 2013. Available online: https://biblioteca.ibge.gov.br/visualizacao/livros/liv64436.pdf (accessed on 6 March 2023).
- Brazilian Institute for Geography and Statistics (IBGE). Pesquisa Nacional de Saúde do Escolar 2015; IBGE: Rio de Janeiro, Brazil, 2016. Available online: https://biblioteca.ibge.gov.br/visualizacao/livros/liv97870.pdf (accessed on 6 March 2023).
- Brazilian Institute for Geography and Statistics (IBGE). Pesquisa Nacional de Saúde do Escolar 2019; IBGE: Rio de Janeiro, Brazil, 2021. Available online: https://biblioteca.ibge.gov.br/visualizacao/livros/liv101852.pdf (accessed on 20 April 2024).
- Brazilian Institute for Geography and Statistics (IBGE). Pesquisa Nacional de Saúde do Escolar 2019—Análise de Indicadores Comparáveis do 9o. Ano do Ensino Fundamental: Municípios das Capitais: 2009/2019; IBGE: Rio de Janeiro, Brazil, 2022. Available online: https://biblioteca.ibge.gov.br/visualizacao/livros/liv101955.pdf (accessed on 20 April 2024).
- Underwood, J.M.; Brener, N.; Thornton, J.; Harris, W.A.; Bryan, L.N.; Shanklin, S.L.; Deputy, N.; Roberts, A.M.; Queen, B.; Chyen, D.; et al. Overview and Methods for the Youth Risk Behavior Surveillance System—United States, 2019. MMWR Suppl. 2020, 69, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, F. Being black in Brazil: Achievements and limitations. Estud. Av. 2004, 18, 57–60. [Google Scholar] [CrossRef]
- Almeida, G.; Sarti, F.M. Measuring evolution of income-related inequalities in health and health care utilization in selected Latin American and Caribbean countries. Rev. Panam. Salud Publica 2013, 33, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Icenogle, G.; Cauffman, E. Adolescent decision making: A decade in review. J. Res. Adolesc. 2021, 31, 1006–1022. [Google Scholar] [CrossRef] [PubMed]
- van Duijvenvoorde, A.C.; Peters, S.; Braams, B.R.; Crone, E.A. What motivates adolescents? Neural responses to rewards and their influence on adolescents’ risk taking, learning, and cognitive control. Neurosci. Biobehav. Rev. 2016, 70, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Gubbels, J.S. Environmental influences on dietary intake of children and adolescents. Nutrients 2020, 12, 922. [Google Scholar] [CrossRef] [PubMed]
- Havdal, H.H.; Fosse, E.; Gebremariam, M.K.; Lakerveld, J.; Arah, O.A.; Stronks, K.; Lien, N. Perceptions of the social and physical environment of adolescents’ dietary behaviour in neighbourhoods of different socioeconomic position. Appetite 2021, 159, 105070. [Google Scholar] [CrossRef] [PubMed]
- Mannocci, A.; Saulle, R.; Villari, P.; La Torre, G. Male gender, age and low income are risk factors for road traffic injuries among adolescents: An umbrella review of systematic reviews and meta-analyses. J. Public Health 2019, 27, 263–272. [Google Scholar] [CrossRef]
- Kılınç, E.; Gür, K. Behaviours of adolescents towards safety measures at school and in traffic and their health beliefs for injuries. Int. J. Nurs. Pract. 2020, 26, e12861. [Google Scholar] [CrossRef]
- Uddin, R.; Lee, E.-Y.; Khan, S.R.; Tremblay, M.S.; Khan, A. Clustering of lifestyle risk factors for non-communicable diseases in 304,779 adolescents from 89 countries: A global perspective. Prev. Med. 2020, 131, 105955. [Google Scholar] [CrossRef]
- Bosque-Prous, M.; Kuipers, M.A.G.; Espelt, A.; Richter, M.; Rimpelä, A.; Perelman, J.; Federico, B.; Brugal, M.T.; Lorant, V.; Kunst, A.E. Adolescent alcohol use and parental and adolescent socioeconomic position in six European cities. BMC Public Health 2017, 17, 646. [Google Scholar] [CrossRef] [PubMed]
- Brunborg, G.S.; von Soest, T.; Andreas, J.B. Adolescent income and binge drinking initiation: Prospective evidence from the MyLife study. Addiction 2021, 116, 1389–1398. [Google Scholar] [CrossRef] [PubMed]
- Lintonen, T.; Nevalainen, J. Has the role of personal income in alcohol drinking among teenagers changed between 1983 and 2013: A series of nationally representative surveys in Finland. BMJ Open 2017, 7, e013994. [Google Scholar] [CrossRef] [PubMed]
- Bastos, F.I.P.M.; Vasconcellos, M.T.L.; De Boni, R.B.; Reis, N.B.d.C.; Carolina, F.d.S. III Levantamento Nacional Sobre o Uso de Drogas Pela População Brasileira. [III National Survey on Drug Use by the Brazilian Population]. Rio de Janeiro: Fiocruz/ICICT. 2017. Available online: https://www.arca.fiocruz.br/bitstream/icict/34614/1/III%20LNUD_PORTUGU%c3%8aS.pdf (accessed on 16 March 2023).
- Wang, H.; Shi, L.; Schwebel, D.C. Relations between adolescent sensation seeking and traffic injury: Multiple-mediating effects of road safety attitudes, intentions and behaviors. Traffic Inj. Prev. 2019, 20, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Brazilian Ministry of Health. 1o. Plano Nacional de Prevenção Primária do Risco Sexual Precoce e Gravidez de Adolescentes [1st. National Plan for Primary Prevention of Early Sexual Risk and Adolescent Pregnancy]; Ministry of Health: Brasília, Brazil, 2022. [Google Scholar]
- Scharmanski, S.; Heßling, A. Sexual- und verhütungsverhalten von jugendlichen und jungen erwachsenen in Deutschland. Aktuelle ergebnisse der repräsentativbefragung “jugendsexualität” [Sexual and contraceptive behavior of adolescents and young adults in Germany. Current results of the representative survey “Youth Sexuality”]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2021, 64, 1372–1381. [Google Scholar] [CrossRef] [PubMed]
- Prendergast, L.E.; Toumbourou, J.W.; McMorris, B.J.; Catalano, R.F. Outcomes of early adolescent sexual behavior in australia: Longitudinal findings in young adulthood. J. Adolesc. Health 2019, 64, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Rotermann, M.; McKay, A. Sexual behaviours, condom use and other contraceptive methods among 15-to 24-year-olds in Canada. Health Rep. 2020, 31, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.A.; Donnellan, M.B.; Durbin, C.E.; Nuttall, A.K.; Hicks, B.M.; Robins, R.W. Sex, drugs, and early emerging risk: Examining the association between sexual debut and substance use across adolescence. PLoS ONE 2020, 15, e0228432. [Google Scholar] [CrossRef]
- Ma, C.; Xi, B.; Li, Z.; Wu, H.; Zhao, M.; Liang, Y.; Bovet, P. Prevalence and trends in tobacco use among adolescents aged 13–15 years in 143 countries, 1999–2018: Findings from the Global Youth Tobacco Surveys. Lancet Child Adolesc. Health 2021, 5, 245–255. [Google Scholar] [CrossRef]
- Ignaszewski, M.J. The epidemiology of drug abuse. J. Clin. Pharmacol. 2021, 61 (Suppl. S2), S10–S17. [Google Scholar] [CrossRef]
- Pinto, I.V.; Ribeiro, A.P.; dos Santos, A.P.; Bevilacqua, P.; Lachtim, S.A.F.; Pereira, V.O.d.M.; Malta, D.C. Wounded adolescences: A portrait of firearm violence reported in Brazil. Rev. Bras. Epidemiol. 2020, 23 (Suppl. S1), E200002.SUPL1. [Google Scholar] [CrossRef]
- Baiden, P.; Tadeo, S.K. Investigating the association between bullying victimization and suicidal ideation among adolescents: Evidence from the 2017 Youth Risk Behavior Survey. Child Abus. Negl. 2020, 102, 104417. [Google Scholar] [CrossRef] [PubMed]
- Cheah, Y.K.; Lim, H.K.; Kee, C.C. Personal and family factors associated with high-risk behaviours among adolescents in malaysia. J. Pediatr. Nurs. 2019, 48, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Currie, K.; Bray, I. Health inequalities, risky behaviours and protective factors in adolescents: An analysis of secondary survey data from the UK. Public Health 2019, 170, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Goodrum, N.M.; Smith, D.W.; Hanson, R.F.; Moreland, A.D.; Saunders, B.E.; Kilpatrick, D.G. Longitudinal relations among adolescent risk behavior, family cohesion, violence exposure, and mental health in a national sample. J. Abnorm. Child Psychol. 2020, 48, 1455–1469. [Google Scholar] [CrossRef] [PubMed]
- Haddad, M.R.; Sarti, F.M. Sociodemographic determinants of health behaviors among Brazilian adolescents: Trends in physical activity and food consumption, 2009–2015. Appetite 2020, 144, 104454. [Google Scholar] [CrossRef]
- Tkacova, H.; Pavlíková, M.; Azizi, M.; Sotirofski, K. Oversharing of content online by children during the holidays and parental control. Acta Missiologica 2023, 17, 60–74. [Google Scholar]
- Robinson, S.L.; Mora-Plazas, M.; Oliveros, H.; Marin, C.; Lozoff, B.; Villamor, E. Dietary patterns in middle childhood and behavior problems in adolescence. Eur. J. Clin. Nutr. 2021, 75, 1809–1818. [Google Scholar] [CrossRef] [PubMed]
- Haddad, M.R.; Sarti, F.M.; Nishijima, M. Association between selected individual and environmental characteristics in relation to health behavior of Brazilian adolescents. Eat. Weight. Disord.-Stud. Anorex. Bulim. Obes. 2021, 26, 331–343. [Google Scholar] [CrossRef]
- Brazilian Institute for Geography and Statistics (IBGE). PIB per Capita—Variação em Volume (%). [Gross Domestic Product (GDP) per Capita—Variation in Volume]; IBGE: Rio de Janeiro, Brazil, 2022. Available online: https://ftp.ibge.gov.br/Contas_Nacionais/Sistema_de_Contas_Nacionais/2019/tabelas_xls/sinoticas/tab06.xls (accessed on 3 July 2023).
- Locatelli, N.T.; Canella, D.S.; Bandoni, D.H. Positive influence of school meals on food consumption in Brazil. Nutrition 2018, 53, 140–144. [Google Scholar] [CrossRef]
- Žalec, B.; Pavlíková, M. Civic virtues and functions of religion in public life. Eur. J. Sci. Theol. 2019, 15, 75–84. [Google Scholar]
Sociodemographic Characteristics | 2009 | 2012 | 2015 | 2019 | ||||
---|---|---|---|---|---|---|---|---|
N | 63,411 | 61,145 | 51,135 | 40,017 | ||||
% | 95%CI | % | 95%CI | % | 95%CI | % | 95%CI | |
Gender | ||||||||
Male | 46.2 | 45.3;47.0 | 48.8 | 48.0;49.6 | 48.8 | 47.9;49.7 | 49.5 | 48.3;50.7 |
Female | 53.8 | 53.0;54.7 | 51.2 | 50.4;52.0 | 51.2 | 50.3;52.1 | 50.5 | 49.3;51.7 |
Age | ||||||||
<14 years old | 2.3 | 2.1;2.6 | 2.4 | 2.2;2.7 | 1.5 | 1.3;1.7 | 0.2 | 0.2;0.3 |
14–16 years old | 90.9 | 90.1;91.6 | 90.9 | 90.1;91.5 | 93.1 | 92.5;93.6 | 72.6 | 69.9;75.1 |
≥17 years old | 6.8 | 6.1;7.5 | 6.7 | 6.1;7.4 | 5.5 | 4.9;6.0 | 27.2 | 24.6;29.8 |
Skin color/Ethnicity | ||||||||
White | 40.4 | 38.6;42.2 | 37.8 | 36.2;39.5 | 36.7 | 34.9;38.5 | 35.8 | 33.4;38.3 |
Black | 12.6 | 11.8;13.5 | 14.0 | 13.3;14.8 | 13.3 | 12.6;14.1 | 15.1 | 13.9;16.4 |
Brown | 39.2 | 37.7;40.7 | 40.0 | 38.7;41.4 | 41.8 | 40.2;43.3 | 42.3 | 40.1;44.5 |
Yellow | 3.7 | 3.4;4.1 | 4.5 | 4.2;4.8 | 5.1 | 4.7;5.4 | 3.7 | 3.4;4.2 |
Indigenous | 4.0 | 3.7;4.4 | 3.7 | 3.4;3.9 | 3.2 | 2.9;3.4 | 3.0 | 2.6;3.5 |
Age-grade distortion | 10.2 | 9.3;11.2 | 11.4 | 10.5;12.4 | 8.6 | 7.9;9.4 | 9.4 | 8.0;10.9 |
Family Health Strategy coverage 1 | 0.32 | 0.31;0.33 | 0.38 | 0.38;0.39 | 0.45 | 0.44;0.46 | 0.46 | 0.44;0.47 |
Region | ||||||||
North | 10.6 | 9.1;12.4 | 11.6 | 10.2;13.3 | 12.9 | 11.3;14.6 | 15.6 | 10.6;22.5 |
Northeast | 23.5 | 20.9;26.4 | 23.8 | 21.5;26.3 | 24.0 | 21.6;26.5 | 24.1 | 19.8;28.9 |
Southeast | 49.8 | 45.3;54.3 | 45.2 | 41.1;49.3 | 44.5 | 40.4;48.6 | 39.2 | 32.0;46.8 |
South | 5.9 | 5.0;7.1 | 7.1 | 6.0;8.4 | 6.0 | 5.0;7.1 | 7.6 | 5.6;10.4 |
Middle-West | 10.1 | 8.7;11.7 | 12.2 | 10.7;14.0 | 12.7 | 11.1;14.6 | 13.5 | 10.0;18.0 |
Household characteristics | 2009 | 2012 | 2015 | 2019 | ||||
Socioeconomic strata | ||||||||
Low | 41.1 | 39.0;43.3 | 32.7 | 31.0;34.5 | 47.6 | 45.4;49.8 | 47.2 | 44.7;49.7 |
Middle | 47.5 | 45.7;49.2 | 56.4 | 55.1;57.7 | 46.5 | 44.8;48.3 | 47.3 | 45.4;49.2 |
High | 11.4 | 9.7;13.5 | 10.9 | 9.5;12.4 | 5.9 | 4.7;7.3 | 5.5 | 4.5;6.8 |
Living with parents | 59.3 | 58.1;60.4 | 56.8 | 55.7;57.8 | 55.8 | 54.6;57.0 | 51.0 | 49.7;52.2 |
Family monitoring leisure activities | 57.0 | 55.8;58.2 | 60.5 | 59.5;61.5 | 67.6 | 66.5;68.6 | 70.6 | 69.5;71.6 |
Consumption of meals with family | 69.6 | 68.8;70.4 | 67.9 | 67.0;68.8 | 74.0 | 73.2;74.8 | 66.5 | 65.2;67.7 |
Consumption of meals watching TV | 56.5 | 55.5;57.5 | 59.4 | 58.5;60.2 | 55.9 | 54.9;56.9 | 72.8 | 71.2;74.3 |
School characteristics | 2009 | 2012 | 2015 | 2019 | ||||
Type of school | ||||||||
Private | 20.9 | 17.8;24.4 | 25.6 | 22.5;29.0 | 27.6 | 24.3;31.3 | 25.0 | 20.9;29.7 |
Public | 79.1 | 75.6;82.2 | 74.4 | 71.0;77.5 | 72.4 | 68.7;75.7 | 75.0 | 70.3;79.1 |
Skipping school | 18.2 | 17.2;19.2 | 25.6 | 24.5;26.8 | 23.6 | 22.5;24.7 | 21.4 | 19.9;22.9 |
Support of colleagues in school | 65.5 | 64.2;66.7 | 61.8 | 60.6;63.0 | 65.0 | 63.9;66.0 | 64.9 | 63.5;66.3 |
Victim of bullying | 4.6 | 4.2;5.1 | 16.2 | 15.7;16.8 | 21.6 | 20.9;22.2 | 21.5 | 20.3;22.6 |
Lack of security at school | 5.2 | 4.7;5.8 | 7.9 | 7.3;8.5 | 9.1 | 8.5;9.8 | 11.4 | 10.5;12.4 |
Lack of security on the way to school | 6.2 | 5.7;6.8 | 8.9 | 8.3;9.6 | 12.6 | 11.9;13.4 | 13.4 | 12.3;14.5 |
Lifestyle Characteristics | 2009 | 2012 | 2015 | 2019 | ||||
---|---|---|---|---|---|---|---|---|
N | 63,411 | 61,145 | 51,135 | 40,017 | ||||
% | 95%CI | % | 95%CI | % | 95%CI | % | 95%CI | |
Recommended physical activity level | 23.4 | 22.5;24.3 | 34.1 | 33.2;35.0 | 36.5 | 35.6;37.5 | 28.9 | 27.9;30.0 |
Healthy food consumption pattern 1 | 0.52 | 0.51;0.52 | 0.53 | 0.52;0.54 | 0.54 | 0.53;0.54 | 0.48 | 0.47;0.49 |
Unhealthy food consumption pattern 1 | 0.56 | 0.55;0.57 | 0.53 | 0.52;0.53 | 0.49 | 0.49;0.5 | 0.43 | 0.43;0.44 |
Risk behaviors | 2009 | 2012 | 2015 | 2019 | ||||
Exposure to ≥1 risk behavior | 91.3 | 90.7;91.8 | 93.5 | 93.0;93.9 | 95.2 | 94.8;95.5 | 96.2 | 95.7;96.6 |
Exposure to ≥3 risk behaviors | 34.9 | 33.7;36.1 | 39.7 | 38.6;40.8 | 36.7 | 35.4;38.0 | 48.0 | 46.3;49.7 |
Use of cigarettes | 21.5 | 20.5;22.6 | 21.7 | 20.8;22.6 | 18.7 | 17.9;19.6 | 26.4 | 25.2;27.6 |
Consumption of alcohol | 68.3 | 67.4;69.2 | 62.1 | 61.2;63.0 | 54.4 | 53.3;55.6 | 70.3 | 68.9;71.6 |
Use of illicit drugs | 7.6 | 7.0;8.2 | 9.3 | 8.6;10.0 | 10.2 | 9.6;10.9 | 17.7 | 16.5;19 |
Sexual experience | 27.3 | 26.1;28.6 | 30.4 | 29.3;31.6 | 26.7 | 25.5;28.1 | 39.6 | 37.7;41.5 |
Involvement in fight with firearms | 3.5 | 3.2;3.9 | 6.6 | 6.2;6.9 | 5.4 | 5.0;5.8 | 2.5 | 2.1;2.9 |
Involvement in fight with other weapons | 5.4 | 5.0;5.8 | 7.8 | 7.3;8.3 | 7.9 | 7.5;8.4 | 4.3 | 3.8;4.8 |
Driving without permit | 17.9 | 17.1;18.7 | 22.3 | 21.5;23.0 | 24.6 | 23.7;25.6 | 24.2 | 23.2;25.2 |
Adoption of unsafe traffic practices | 72.0 | 70.7;73.3 | 80.9 | 79.7;81.9 | 87.2 | 86.4;87.9 | 87.2 | 86.1;88.2 |
Adoption of ≥2 behaviors | 14.2 | 13.5;14.8 | 18.9 | 18.2;19.7 | 20.7 | 19.8;21.7 | 31.5 | 30.0;33.0 |
Use of cigarettes ≥ 6 days in last 30 days | 2.1 | 1.8;2.4 | 2.0 | 1.8;2.3 | 1.7 | 1.5;1.9 | 2.7 | 2.4;3.0 |
Abusive alcohol consumption ≥ 3 times in life | 6.0 | 5.6;6.4 | 8.0 | 7.5;8.5 | 7.4 | 6.9;7.9 | 16.8 | 15.8;17.9 |
Use of illicit drugs ≥ 3 times in last 30 days | 1.2 | 1.0;1.4 | 1.7 | 1.5;2.0 | 2.3 | 2.1;2.6 | 3.6 | 3.1;4.1 |
Sexual intercourse without condom | 6.2 | 5.7;6.7 | 7.7 | 7.3;8.2 | 9.7 | 9.0;10.4 | 17.5 | 16.2;18.8 |
Involvement in fights with weapons | 2.2 | 2.0;2.5 | 3.5 | 3.3;3.8 | 3.3 | 3.0;3.6 | 1.6 | 1.3;1.8 |
Frequent unsafe traffic practices | 7.9 | 7.4;8.4 | 9.7 | 9.2;10.3 | 10.6 | 10.1;11.2 | 12.1 | 11.2;12.9 |
Characteristics | Exposure to ≥3 Risk Behaviors | ||||||||
---|---|---|---|---|---|---|---|---|---|
2009 | 2012 | 2015 | 2019 | ||||||
% | Sig. | % | Sig. | % | Sig. | % | Sig. | ||
Gender | Male | 44.69 | <0.001 | 47.73 | <0.001 | 43.27 | <0.001 | 52.49 | <0.001 |
Female | 28.54 | 33.78 | 30.36 | 43.65 | |||||
Age | <14 years old | 17.60 | <0.001 | 22.75 | <0.001 | 15.59 | <0.001 | 28.38 | <0.001 |
14–16 years old | 34.87 | 39.09 | 35.16 | 40.85 | |||||
≥17 years old | 59.88 | 67.28 | 68.85 | 67.34 | |||||
Ethnicity | White | 34.47 | <0.001 | 37.21 | <0.001 | 33.16 | <0.001 | 43.74 | <0.001 |
Others | 37.45 | 42.71 | 38.80 | 50.48 | |||||
Age-grade distortion | Yes | 33.62 | <0.001 | 37.18 | <0.001 | 33.83 | <0.001 | 45.35 | <0.001 |
No | 58.39 | 67.26 | 66.83 | 73.98 | |||||
Social class | Low | 33.67 | <0.001 | 39.82 | <0.001 | 37.83 | 0.001 | 50.89 | <0.001 |
Middle | 38.33 | 42.05 | 36.36 | 46.28 | |||||
High | 36.66 | 35.72 | 30.30 | 39.29 | |||||
Living with parents | Yes | 32.47 | <0.001 | 35.95 | <0.001 | 31.88 | <0.001 | 40.94 | <0.001 |
No | 41.43 | 46.69 | 42.86 | 55.47 | |||||
Region | North | 35.40 | <0.001 | 42.90 | <0.001 | 41.11 | <0.001 | 49.89 | 0.174 |
Northeast | 34.02 | 37.81 | 34.01 | 46.81 | |||||
Southeast | 36.17 | 39.95 | 34.92 | 46.81 | |||||
South | 42.03 | 45.01 | 42.16 | 50.55 | |||||
Middle-West | 38.31 | 43.88 | 41.03 | 50.68 | |||||
Family monitoring leisure activities | Yes | 30.76 | <0.001 | 33.26 | <0.001 | 29.86 | <0.001 | 43.41 | <0.001 |
No | 42.60 | 51.36 | 51.06 | 58.95 | |||||
Consumption of meals with family | Yes | 34.42 | <0.001 | 37.82 | <0.001 | 34.24 | <0.001 | 44.46 | <0.001 |
No | 39.76 | 46.24 | 43.93 | 55.27 | |||||
Consumption of meals watching TV | Yes | 39.58 | <0.001 | 44.10 | <0.001 | 39.88 | <0.001 | 51.02 | <0.001 |
No | 31.29 | 35.24 | 32.82 | 40.47 | |||||
Public school | Yes | 37.04 | <0.001 | 43.44 | <0.001 | 40.13 | <0.001 | 52.12 | <0.001 |
No | 33.03 | 32.43 | 27.52 | 35.79 | |||||
Skipping school | Yes | 56.77 | <0.001 | 58.59 | <0.001 | 53.83 | <0.001 | 66.13 | <0.001 |
No | 31.32 | 34.22 | 31.52 | 43.14 | |||||
Support of colleagues in school | Yes | 34.36 | <0.001 | 38.38 | <0.001 | 33.88 | <0.001 | 45.19 | <0.001 |
No | 39.04 | 43.89 | 42.14 | 53.32 | |||||
Victim of bullying | Yes | 66.54 | <0.001 | 43.05 | 0.003 | 39.53 | <0.001 | 53.72 | <0.001 |
No | 34.46 | 39.99 | 35.99 | 46.65 | |||||
Lack of security at school | Yes | 53.96 | <0.001 | 59.06 | <0.001 | 58.89 | <0.001 | 63.10 | <0.001 |
No | 35.03 | 38.82 | 34.52 | 46.09 | |||||
Lack of security on the way to school | Yes | 52.89 | <0.001 | 56.62 | <0.001 | 53.76 | <0.001 | 63.80 | <0.001 |
No | 34.94 | 38.91 | 34.32 | 45.62 |
Characteristics | Adoption of ≥2 Risk Behaviors | ||||||||
---|---|---|---|---|---|---|---|---|---|
2009 | 2012 | 2015 | 2019 | ||||||
% | Sig. | % | Sig. | % | Sig. | % | Sig. | ||
Gender | Male | 21.67 | <0.001 | 25.74 | <0.001 | 27.21 | <0.001 | 35.79 | <0.001 |
Female | 9.56 | 13.26 | 14.30 | 27.40 | |||||
Age | <14 years old | 8.59 | <0.001 | 11.04 | <0.001 | 9.42 | <0.001 | 30.12 | <0.001 |
14–16 years old | 14.19 | 18.21 | 19.47 | 25.20 | |||||
≥17 years old | 31.35 | 37.97 | 43.90 | 48.43 | |||||
Ethnicity | White | 14.80 | 0.097 | 18.04 | <0.001 | 18.76 | <0.001 | 28.81 | <0.001 |
Others | 15.64 | 20.23 | 21.77 | 33.22 | |||||
Age-grade distortion | Yes | 13.51 | <0.001 | 16.92 | <0.001 | 18.51 | <0.001 | 29.06 | <0.001 |
No | 30.35 | 38.49 | 43.09 | 55.59 | |||||
Social class | Low | 12.95 | <0.001 | 17.47 | <0.001 | 20.96 | 0.572 | 32.73 | 0.032 |
Middle | 16.85 | 20.69 | 20.47 | 30.73 | |||||
High | 17.48 | 18.54 | 19.51 | 29.52 | |||||
Living with parents | Yes | 14.03 | <0.001 | 17.33 | <0.001 | 18.20 | <0.001 | 26.40 | <0.001 |
No | 16.95 | 22.07 | 23.80 | 36.98 | |||||
Region | North | 14.91 | <0.001 | 19.37 | 0.004 | 22.28 | 0.003 | 29.47 | 0.594 |
Northeast | 14.33 | 18.69 | 20.65 | 31.99 | |||||
Southeast | 14.98 | 18.83 | 19.19 | 31.84 | |||||
South | 18.01 | 20.63 | 22.15 | 32.91 | |||||
Middle-West | 17.54 | 22.15 | 23.44 | 32.10 | |||||
Family monitoring leisure activities | Yes | 11.87 | <0.001 | 15.44 | <0.001 | 16.15 | <0.001 | 28.09 | <0.001 |
No | 18.90 | 25.04 | 30.04 | 39.61 | |||||
Consumption of meals with family | Yes | 14.22 | <0.001 | 18.07 | <0.001 | 19.61 | <0.001 | 28.64 | <0.001 |
No | 17.02 | 21.84 | 23.69 | 37.48 | |||||
Consumption of meals watching TV | Yes | 16.69 | <0.001 | 21.30 | <0.001 | 23.01 | <0.001 | 33.72 | <0.001 |
No | 12.91 | 16.28 | 17.75 | 26.08 | |||||
Public school | Yes | 15.52 | 0.085 | 20.42 | <0.001 | 22.71 | <0.001 | 34.28 | <0.001 |
No | 14.50 | 16.42 | 15.13 | 23.48 | |||||
Skipping school | Yes | 26.06 | <0.001 | 29.80 | <0.001 | 31.51 | <0.001 | 48.10 | <0.001 |
No | 12.49 | 15.59 | 17.33 | 27.01 | |||||
Support of colleagues in school | Yes | 13.99 | <0.001 | 18.20 | <0.001 | 18.83 | <0.001 | 29.33 | <0.001 |
No | 16.79 | 21.00 | 24.19 | 35.49 | |||||
Victim of bullying | Yes | 38.41 | <0.001 | 21.48 | 0.003 | 22.58 | 0.002 | 34.33 | 0.004 |
No | 13.80 | 18.85 | 20.19 | 30.88 | |||||
Lack of security at school | Yes | 28.85 | <0.001 | 34.03 | <0.001 | 37.54 | <0.001 | 44.35 | <0.001 |
No | 14.23 | 17.97 | 19.00 | 29.82 | |||||
Lack of security on the way to school | Yes | 26.95 | <0.001 | 30.30 | <0.001 | 33.63 | <0.001 | 45.18 | <0.001 |
No | 14.18 | 18.20 | 18.85 | 29.45 |
Exposure to Risk Behavior | 2009 | 2012 | 2015 | 2019 |
---|---|---|---|---|
CI | 0.034 | −0.006 | −0.021 | −0.032 |
HI | 0.036 | −0.004 | −0.017 | −0.026 |
Gender | 0.006 | 0.003 | 0.002 | 0.001 |
Age | −0.004 | −0.002 | −0.002 | −0.008 |
Skin color/Ethnicity | −0.004 | −0.003 | −0.004 | 0.000 |
Age-grade distortion | −0.010 | −0.013 | −0.010 | −0.008 |
Socioeconomic strata | 0.055 | 0.040 | 0.038 | 0.040 |
Positive household environment | −0.018 | −0.019 | −0.022 | −0.013 |
Negative household environment | −0.002 | −0.002 | −0.001 | −0.002 |
Public school | −0.009 | −0.017 | −0.022 | −0.046 |
Positive school environment | 0.000 | 0.000 | −0.002 | 0.000 |
Negative school environment | −0.013 | −0.015 | −0.016 | −0.008 |
Healthy lifestyle patterns | 0.003 | 0.004 | 0.001 | 0.004 |
Unhealthy lifestyle patterns | 0.010 | 0.006 | 0.003 | 0.005 |
Family Health Strategy coverage | 0.000 | 0.000 | 0.000 | 0.002 |
Region | 0.004 | 0.003 | 0.003 | 0.000 |
Residual | 0.016 | 0.008 | 0.012 | 0.000 |
Adoption of Risk Behavior | 2009 | 2012 | 2015 | 2019 |
CI | 0.084 | 0.033 | −0.004 | −0.018 |
HI | 0.073 | 0.028 | −0.009 | −0.008 |
Gender | 0.011 | 0.006 | 0.004 | 0.003 |
Age | 0.000 | 0.000 | 0.000 | −0.013 |
Skin color/Ethnicity | 0.000 | 0.000 | 0.000 | 0.000 |
Age-grade distortion | −0.013 | −0.012 | −0.009 | −0.004 |
Socioeconomic strata | 0.049 | 0.037 | 0.026 | 0.019 |
Positive household environment | −0.009 | −0.002 | −0.005 | −0.003 |
Negative household environment | 0.000 | 0.000 | −0.001 | 0.000 |
Public school | 0.000 | 0.000 | −0.012 | 0.000 |
Positive school environment | 0.000 | 0.000 | 0.000 | 0.000 |
Negative school environment | −0.007 | −0.009 | −0.008 | −0.008 |
Healthy lifestyle patterns | 0.007 | 0.002 | 0.001 | 0.000 |
Unhealthy lifestyle patterns | 0.006 | 0.004 | 0.001 | 0.003 |
Exposure to risk behavior | 0.025 | −0.003 | −0.013 | −0.020 |
Family Health Strategy coverage | 0.000 | 0.000 | 0.000 | 0.001 |
Region | −0.002 | −0.001 | 0.000 | 0.001 |
Residual | 0.017 | 0.012 | 0.011 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haddad, M.R.; Sarti, F.M. Determinants of Inequalities in the Exposure to and Adoption of Multiple Health Risk Behaviors among Brazilian Adolescents, 2009–2019. Eur. J. Investig. Health Psychol. Educ. 2024, 14, 2029-2046. https://doi.org/10.3390/ejihpe14070135
Haddad MR, Sarti FM. Determinants of Inequalities in the Exposure to and Adoption of Multiple Health Risk Behaviors among Brazilian Adolescents, 2009–2019. European Journal of Investigation in Health, Psychology and Education. 2024; 14(7):2029-2046. https://doi.org/10.3390/ejihpe14070135
Chicago/Turabian StyleHaddad, Mariana Rebello, and Flavia Mori Sarti. 2024. "Determinants of Inequalities in the Exposure to and Adoption of Multiple Health Risk Behaviors among Brazilian Adolescents, 2009–2019" European Journal of Investigation in Health, Psychology and Education 14, no. 7: 2029-2046. https://doi.org/10.3390/ejihpe14070135
APA StyleHaddad, M. R., & Sarti, F. M. (2024). Determinants of Inequalities in the Exposure to and Adoption of Multiple Health Risk Behaviors among Brazilian Adolescents, 2009–2019. European Journal of Investigation in Health, Psychology and Education, 14(7), 2029-2046. https://doi.org/10.3390/ejihpe14070135