Advantageous Effects of Sumac Usage in Meatball Preparation on Various Quality Criteria and Formation of Heterocyclic Aromatic Amines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemicals
2.3. Methods
2.3.1. Production of Meatballs
2.3.2. Cooking Conditions
2.3.3. Some Chemical and Physicochemical Analyses
2.3.4. Antioxidant Extraction
2.3.5. DPPH• Free Radical Scavenging Activity
2.3.6. Extraction and Determination of HAAs
2.3.7. Statistical Analysis
3. Results and Discussion
3.1. Some Physicochemical Analyzes of Raw Materials
3.2. Water Contents of the Cooked Meatballs
3.3. pH Values of Meatballs
3.4. TBARS Values of Meatballs
3.5. Cooking Loss of Meatballs
3.6. HAA Results of Cooked Meatballs
3.7. Correlation Results of Samples and PCA Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biesalski, H.K. Meat as a component of a healthy diet–are there any risks or benefits if meat is avoided in the diet? Meat Sci. 2005, 70, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Oz, F. Effects of Water Extract of U rtica dioica L. on the Quality of Meatballs. J. Food Process. Preserv. 2014, 38, 1356–1363. [Google Scholar] [CrossRef]
- Oz, E. Inhibitory effects of black cumin on the formation of heterocyclic aromatic amines in meatball. PLoS ONE 2019, 14, e0221680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, A.K.; Nanda, P.K.; Madane, P.; Biswas, S.; Das, A.; Zhang, W.; Lorenzo, J.M. A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends Food Sci. Tech. 2020, 99, 323–336. [Google Scholar] [CrossRef]
- Babaoglu, A.S.; Karakaya, M.; Oz, F. Formation of polycyclic aromatic hydrocarbons in beef and lamb kokorec: Effects of different animal fats. Int. J. Food Prop. 2017, 20, 1960–1970. [Google Scholar] [CrossRef] [Green Version]
- Lu, F.; Kuhnle, G.K.; Cheng, Q. The effect of common spices and meat type on the formation of heterocyclic amines and polycyclic aromatic hydrocarbons in deep-fried meatballs. Food Control 2018, 92, 399–411. [Google Scholar] [CrossRef]
- Elbir, Z.; Oz, F. The assessment of commercial beef and chicken bouillons in terms of heterocyclic aromatic amines and some of their precursors. Int. J. Food Sci. Tech. 2020, 56, 504–513. [Google Scholar] [CrossRef]
- Cheng, Y.; Yu, Y.; Wang, C.; Zhu, Z.; Huang, M. Inhibitory effect of sugarcane (Saccharum officinarum L.) molasses extract on the formation of heterocyclic amines in deep-fried chicken wings. Food Control 2021, 119, 107490. [Google Scholar] [CrossRef]
- Zamora, R.; Hidalgo, F.J. Formation of heterocyclic aromatic amines with the structure of aminoimidazoazarenes in food products. Food Chem. 2020, 313, 126128. [Google Scholar] [CrossRef]
- Oz, E.; Oz, F. Mutagenic and/or carcinogenic compounds in meat and meat products: Heterocyclic aromatic amines perspective. Theory Prac. Meat Proc. 2022, 7, 112–117. [Google Scholar] [CrossRef]
- Oz, E. Effects of smoke flavoring using different wood chips and barbecuing on the formation of polycyclic aromatic hydrocarbons and heterocyclic aromatic amines in salmon fillets. PLoS ONE 2020, 15, e0227508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilic, S.; Oz, E.; Oz, F. Effect of turmeric on the reduction of heterocyclic aromatic amines and quality of chicken meatballs. Food Control 2021, 128, 108189. [Google Scholar] [CrossRef]
- Vitaglione, P.; Fogliano, V. Use of antioxidants to minimize the human health risk associated to mutagenic/carcinogenic heterocyclic amines in food. J. Chromatogr. B 2004, 802, 189–199. [Google Scholar] [CrossRef]
- Janoszka, B. HPLC-fluorescence analysis of polycyclic aromatic hydrocarbons (PAHs) in pork meat and its gravy fried without additives and in the presence of onion and garlic. Food Chem. 2011, 126, 1344–1353. [Google Scholar] [CrossRef]
- Oz, F.; Kaya, M. The inhibitory effect of black pepper on formation of heterocyclic aromatic amines in meatball. Food Control 2011, 22, 596–600. [Google Scholar] [CrossRef]
- Lee, S.Y.; Yim, D.G.; Kim, O.Y.; Kang, H.J.; Kim, H.S.; Jang, A.; Park, T.S.; Jin, S.K.; Hur, S.J. Overview of the effect of natural products on reduction of potential carcinogenic substances in meat products. Trends Food Sci. Tech. 2020, 99, 568–579. [Google Scholar] [CrossRef]
- Unal, K.; Karakaya, M.; Oz, F. The effects of different spices and fat types on the formation of heterocyclic aromatic amines in barbecued sucuk. J. Sci. Food Agric. 2018, 98, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Nuray, M.; Oz, F. The effect of using different types and rates of onion-water extract in meatball production on the formation of heterocyclic aromatic amines. J. Sci. Food Agric. 2019, 99, 3538–3547. [Google Scholar] [CrossRef]
- Polak, T.; Došler, D.; Žlender, B.; Gašperlin, L. Heterocyclic amines in aged and thermally treated pork longissimus dorsi muscle of normal and PSE quality. LWT-Food Sci. Technol. 2009, 42, 504–513. [Google Scholar] [CrossRef]
- Uzun, I.; Oz, F. Effect of basil use in meatball production on heterocyclic aromatic amine formation. J. Food Sci. Technol. 2021, 58, 3001–3009. [Google Scholar] [CrossRef]
- Korkmaz, A.; Oz, F. Effect of the use of dry breadcrumb in meatball production on the formation of heterocyclic aromatic amines. Brit. Food J. 2020, 122, 2105–2119. [Google Scholar] [CrossRef]
- Li, M.; Lin, S.; Wang, R.; Gao, D.; Bao, Z.; Chen, D.; Tang, Y.; Sun, N.; Zhang, S. Inhibitory effect and mechanism of various fruit extracts on the formation of heterocyclic aromatic amines and flavor changes in roast large yellow croaker (Pseudosciaena crocea). Food Control 2022, 131, 108410. [Google Scholar] [CrossRef]
- Schwab, C.E.; Huber, W.W.; Parzefall, W.; Hietsch, G.; Kassie, F.; Schulte-Hermann, R.; Knasmüller, S. Search for compounds that inhibit the genotoxic and carcinogenic effects of heterocyclic aromatic amines. Crit. Rev Toxic. 2000, 30, 1–69. [Google Scholar] [CrossRef] [PubMed]
- Başoğlu, F.; Cemeroğlu, B. Sumak’ın Kimyasal Bileşimi Üzerine Araştırma. Gıda 1984, 9, 167. Available online: https://dergipark.org.tr/en/pub/gida/issue/6911/92371#article_cite (accessed on 1 January 2023).
- Tohma, H.; Altay, A.; Köksal, E.; Gören, A.C.; Gülçin, İ. Measurement of anticancer. antidiabetic and anticholinergic properties of sumac (Rhus coriaria): Analysis of its phenolic compounds by LC–MS/MS. J. Food Meas. Charact. 2019, 13, 1607–1619. [Google Scholar] [CrossRef]
- Zargham, H.; Zargham, R. Tannin extracted from Sumac inhibits vascular smooth muscle cell migration. MJM 2008, 11, 119. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2582678/ (accessed on 1 January 2023). [CrossRef]
- Ozcan, A.; Susluoglu, Z.; Nogay, G.; Ergun, M.; Sutyemez, M. Phytochemical characterization of some sumac (Rhus coriaria L.) genotypes from southern part of turkey. Food Chem. 2021, 358, 129779. [Google Scholar] [CrossRef]
- Diler, Ö.; Özil, Ö.; Bayrak, H.; Yiğit, N.Ö.; Özmen, Ö.; Saygın, M.; Aslankoç, R. Effect of dietary supplementation of sumac fruit powder (Rhus coriaria L.) on growth performance, serum biochemistry, intestinal morphology and antioxidant capacity of rainbow trout (Oncorhynchus mykiss, Walbaum). Anim. Feed Sci. Tech. 2021, 278, 114993. [Google Scholar] [CrossRef]
- Setorki, M.; Rafieian, M.; Heidarian, E.; Ghatreh, K.; Shahinfard, N.; Ansari, R.; Forouzandeh, Z. Effect of Rhus coriaria Consumption with High Cholesterol Food on Some Atherosclerosis Risk Factors in Rabbit. J. Babol Univ. Med. Sci. 2012, 14, 38–45. Available online: http://jbums.org/files/site1/user_files_a248ba/aaarchive-A-10-1370-784-f58b503.pdf (accessed on 1 January 2023).
- Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arráez-Román, D.; Segura-Carretero, A. HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem. 2015, 166, 179–191. [Google Scholar] [CrossRef] [Green Version]
- Ünder, D.; Saltan, F.Z. Sumak ve Önemli Biyolojik Etkileri. Çukurova J. Agric. Food Sci. 2019, 34, 69–78. Available online: https://dergipark.org.tr/en/download/article-file/765729 (accessed on 1 January 2023).
- Sakhr, K.; El Khatib, S. Physiochemical properties and medicinal, nutritional and industrial applications of Lebanese Sumac (Syrian Sumac-Rhus coriaria): A review. Heliyon 2020, 6, e03207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalil, M.; Hayek, S.; Khalil, N.; Serale, N.; Vergani, L.; Calasso, M.; De Angelis, M.; Portincasa, P. Role of Sumac (Rhus coriaria L.) in the management of metabolic syndrome and related disorders: Focus on NAFLD-atherosclerosis interplay. J. Funct. Foods 2021, 87, 104811. [Google Scholar] [CrossRef]
- Kizil, S.; Turk, M. Microelement contents and fatty acid compositions of Rhus coriaria L. and Pistacia terebinthus L. fruits spread commonly in the south eastern Anatolia region of Turkey. Nat. Prod. Res. 2010, 24, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Reidel, R.V.B.; Cioni, P.L.; Majo, L.; Pistelli, L. Evolution of volatile emission in Rhus coriaria organs during different stages of growth and evaluation of the essential oil composition. Chem. Biodiv. 2017, 14, e1700270. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Hu, H.; Li, C.; Xie, J.; Chen, J.; Zeng, M.; Shen, M.; Xie, M. Effects of cooking factors on the formation of heterocyclic aromatic amines in fried beef patties. J. Food Process. Preserv. 2022, 46, e16288. [Google Scholar] [CrossRef]
- Gibis, M.; Weiss, J. Impact of precursors creatine creatinine and glucose on the formation of heterocyclic aromatic amines in grilled patties of various animal species. J. Food Sci. 2015, 80, C2430–C2439. [Google Scholar] [CrossRef]
- Zeng, M.; Zhang, M.; He, Z.; Qin, F.; Tao, G.; Zhang, S.; Gao, Y.; Chen, J. Inhibitory profiles of chilli pepper and capsaicin on heterocyclic amine formation in roast beef patties. Food Chem. 2017, 221, 404–411. [Google Scholar] [CrossRef]
- Ekiz, E.; Oz, F. The effects of different frying oils on the formation of heterocyclic aromatic amines in meatballs and the changes in fatty acid compositions of meatballs and frying oils. J. Sci. Food Agric. 2019, 99, 1509–1518. [Google Scholar] [CrossRef]
- Kılıc, B.; Richards, M.P. Lipid oxidation in poultry döner kebab: Pro-oxidative and anti-oxidative factors. J. Food Sci. 2003, 68, 686–689 . [Google Scholar] [CrossRef]
- Cemeroğlu, B. Gıda Teknolojisi Derneği Yayın; Gıda Analizleri: Ankara, Türkiye, 2010; p. 634. [Google Scholar]
- Azizah, Z.; Yani, P.; Yetti, R.D. Antioxidant activity ethanol extract of garlic (Allium sativum L.) and black garlic. Int. J. Res. Rev. 2020, 7, 94–103. [Google Scholar]
- Ozcelik, F.; Akan, E.; Kinik, O. Use of Cornelian cherry, hawthorn, red plum, roseship and pomegranate juices in the production of water kefir beverages. Food Biosci. 2021, 42, 101219. [Google Scholar] [CrossRef]
- Binici, H.I.; Şat, İ.G.; Aoudeh, E. The effect of different drying methods on nutritional composition and antioxidantactivity of purslane (Portulaca oleracea). Turk. J. Agric. For. 2021, 45, 680–689. [Google Scholar] [CrossRef]
- Savaş, A.; Oz, E.; Oz, F. Is oven bag really advantageous in terms of heterocyclic aromatic amines and bisphenol-A? Chicken meat perspective. Food Chem. 2021, 355, 129646. [Google Scholar] [CrossRef]
- Oz, F.; Aksu, M.I.; Turan, M. The effects of different cooking methods on some quality criteria and mineral composition of beef steaks. J. Food Process. Preserv. 2017, 41, e13008. [Google Scholar] [CrossRef]
- Bingol, M.; Brennan, C.; Zeng, M.; Oz, F. Effect of the fortification with astaxanthin on the quality parameters and heterocyclic amines content of meatballs. Int. J. Food Sci. Tech. 2022, 57, 7653–7665. [Google Scholar] [CrossRef]
- Morshedloo, M.R.; Fereydouni, S.; Ahmadi, H.; Hassanpouraghdam, M.B.; Aghaee, A.; Mehrabani, L.V.; Maggi, F. Natural diversity in fatty acids profiles and antioxidant properties of sumac fruits (Rhus coriaria L.): Selection of preferable populations for food industries. Food Chem. 2022, 374, 131757. [Google Scholar] [CrossRef]
- Fereidoonfar, H.; Salehi-Arjmand, H.; Khadivi, A.; Akramian, M.; Safdari, L. Chemical variation and antioxidant capacity of sumac (Rhus coriaria L.). Ind. Crops Prod. 2019, 139, 111518. [Google Scholar] [CrossRef]
- Kossah, R.; Nsabimana, C.; Zhao, J.; Chen, H.; Tian, F.; Zhang, H.; Chen, W. Comparative study on the chemical composition of Syrian sumac (Rhus coriaria L.) and Chinese sumac (Rhus typhina L.) fruits. Pak. J. Nut. 2009, 8, 1570–1574. [Google Scholar] [CrossRef] [Green Version]
- Oz, E. The presence of polycyclic aromatic hydrocarbons and heterocyclic aromatic amines in barbecued meatballs formulated with different animal fats. Food Chem. 2021, 352, 129378. [Google Scholar] [CrossRef]
- Karadaş, Ö.; Yılmaz, İ.; Geçgel, Ü. Determination of physicochemical properties of irradiated sumac (Rhus coriaria L.) fruit oils. Radiat. Phys. Chem. 2022, 198, 110210. [Google Scholar] [CrossRef]
- Langroodi, A.M.; Tajik, H.; Mehdizadeh, T.; Moradi, M.; Kia, E.M.; Mahmoudian, A. Effects of sumac extract dipping and chitosan coating enriched with Zataria multiflora Boiss oil on the shelf-life of meat in modified atmosphere packaging. LWT 2018, 98, 372–380. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Wang, Y.; Xing, L.; Zhang, W. Influences of ultrasonic-assisted frying on the flavor characteristics of fried meatballs. Innov. Food Sci. Emerg. 2020, 62, 102365. [Google Scholar] [CrossRef]
- Alfaia, C.M.; Alves, S.P.; Lopes, A.F.; Fernandes, M.J.; Costa, A.S.; Fontes, C.M.; Castro, L.M.F.; Bessa, R.J.B.; Prates, J.A. Effect of cooking methods on fatty acids, conjugated isomers of linoleic acid and nutritional quality of beef intramuscular fat. Meat Sci. 2010, 84, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Modzelewska-Kapituła, M.; Dąbrowska, E.; Jankowska, B.; Kwiatkowska, A.; Cierach, M. The effect of muscle, cooking method and final internal temperature on quality parameters of beef roast. Meat Sci. 2012, 91, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Kondjoyan, A.; Oillic, S.; Portanguen, S.; Gros, J.B. Combined heat transfer and kinetic models to predict cooking loss during heat treatment of beef meat. Meat Sci. 2013, 95, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.A.; Khan, A.; Zou, Y.; Zongshuai, Z.; Xu, W.; Wang, D.; Huang, M. Heterocyclic amines in cooked meat products shortcomings during evaluation factors influencing formation risk assessment and mitigation strategies. Meat Sci. 2022, 184, 108693. [Google Scholar] [CrossRef]
- Tornberg, E.V.A. Effects of heat on meat proteins–Implications on structure and quality of meat products. Meat Sci. 2005, 70, 493–508. [Google Scholar] [CrossRef]
- Gibis, M. Optimized HPLC method for analysis of polar and nonpolar heterocyclic amines in cooked meat products. J. AOAC Int. 2009, 92, 715–724. [Google Scholar] [CrossRef] [Green Version]
- Oz, F.; Kızıl, M.; Zaman, A.; Turhan, S. The effects of direct addition of low and medium molecular weight chitosan on the formation of heterocyclic aromatic amines in beef chop. LWT-Food Sci. Technol. 2016, 65, 861–867. [Google Scholar] [CrossRef]
- Balogh, Z.; Gray, J.I.; Gomaa, E.A.; Booren, A.M. Formation and inhibition of heterocyclic aromatic amines in fried ground beef patties. Food Chem. Toxicol. 2000, 38, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Keşkekoğlu, H.; Üren, A. Inhibitory effects of pomegranate seed extract on the formation of heterocyclic aromatic amines in beef and chicken meatballs after cooking by four different methods. Meat Sci. 2014, 96, 1446–1451. [Google Scholar] [CrossRef] [PubMed]
- Gumus, D.; Kizil, M. Comparison of the reducing effects of blueberry and propolis extracts on heterocyclic aromatic amines formation in pan fried beef. Meat Sci. 2022, 186, 108746. [Google Scholar] [CrossRef] [PubMed]
- Puangsombat, K.; Jirapakkul, W.; Smith, J.S. Inhibitory activity of Asian spices on heterocyclic amines formation in cooked beef patties. J. Food Sci. 2011, 76, T174–T180 . [Google Scholar] [CrossRef]
- Bulan, R.; Oz, F. Impact of tarragon usage on lipid oxidation and heterocyclic aromatic amine formation in meatball. Int. J. Food Sci. Tech. 2022, 57, 942–950. [Google Scholar] [CrossRef]
- Zeng, M.; Wang, J.; Zhang, M.; Chen, J.; He, Z.; Qin, F.; Xu, Z.; Cao, D.; Chen, J. Inhibitory effects of Sichuan pepper (Zanthoxylum bungeanum) and sanshoamide extract on heterocyclic amine formation in grilled ground beef patties. Food Chem. 2018, 239, 111–118. [Google Scholar] [CrossRef]
- Skog, K.I.; Johansson, M.A.E.; Jägerstad, M.I. Carcinogenic heterocyclic amines in model systems and cooked foods: A review on formation, occurrence and intake. Food Chem. Toxicol. 1998, 36, 879–896. [Google Scholar] [CrossRef]
- Gibis, M. Heterocyclic aromatic amines in cooked meat products: Causes formation occurrence and risk assessment. Compr. Rev. Food Sci. Food Saf. 2016, 15, 269–302. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.A.; Liu, D.; Yao, M.; Memon, A.; Huang, J.; Huang, M. Inhibitory effect of Chrysanthemum morifolium flower extract on the formation of heterocyclic amines in goat meat patties cooked by various cooking methods and temperatures. Meat Sci. 2019, 147, 70–81. [Google Scholar] [CrossRef]
- Teng, H.; Deng, H.; Zhang, C.; Cao, H.; Huang, Q.; Chen, L. The role of flavonoids in mitigating food originated heterocyclic aromatic amines that concerns human wellness. Food Sci. Hum. Wellness 2023, 12, 975–985. [Google Scholar] [CrossRef]
- Jägerstad, M.; Reuterswärd, A.L.; Öste, R.; Dahlqvist, A.; Grivas, S.; Olsson, K.; Nyhammar, T. Creatinine and Maillard reaction products as precursors of mutagenic compounds formed in fried beef. Mail. React. Foods Nutr. 1983, 27, 507–519. [Google Scholar] [CrossRef]
- Gibis, M.; Weiss, J. Inhibitory effect of marinades with hibiscus extract on formation of heterocyclic aromatic amines and sensory quality of fried beef patties. Meat Sci. 2010, 85, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Natale, D.; Gibis, M.; Rodriguez-Estrada, M.T.; Weiss, J. Inhibitory effect of liposomal solutions of grape seed extract on the formation of heterocyclic aromatic amines. J. Agric. Food Chem. 2014, 62, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Sabally, K.; Sleno, L.; Jauffrit, J.A.; Iskandar, M.M.; Kubow, S. Inhibitory effects of apple peel polyphenol extract on the formation of heterocyclic amines in pan fried beef patties. Meat Sci. 2016, 117, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Jautz, U.; Gibis, M.; Morlock, G.E. Quantification of heterocyclic aromatic amines in fried meat by HPTLC/UV-FLD and HPLC/UV-FLD: A comparison of two methods. J. Agric. Food Chem. 2008, 56, 4311–4319. [Google Scholar] [CrossRef] [PubMed]
- Erdoğan, B.; Özdestan-Ocak, Ö. Determination the effects of pumpkin and rosehip seed oils on heterocyclic aromatic amine formation in meatballs by high-performance liquid chromatography. J. Food Process. Preserv. 2022, 46, e16299. [Google Scholar] [CrossRef]
- Erdoğan, B.; Özdestan-Ocak, Ö. Inhibitory effects of carob and propolis extracts on the formation of heterocyclic aromatic amines in beef meatballs cooked with different methods. J. Food Process. Preserv. 2022, 46, e16623. [Google Scholar] [CrossRef]
- Shin, H.S.; Rodgers, W.J.; Gomaa, E.A.; Strasburg, G.M.; Gray, J.I. Inhibition of heterocyclic aromatic amine formation in fried ground beef patties by garlic and selected garlic-related sulfur compounds. J. Food Prot. 2002, 65, 1766–1770. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.W.; Wu, Q.; Zheng, Z.P.; Peng, X.; Simon, J.E.; Chen, F.; Wang, M. Inhibitory effect of fruit extracts on the formation of heterocyclic amines. J. Agric. Food Chem. 2002, 55, 10359–10365. [Google Scholar] [CrossRef]
- Oz, F.; Cakmak, I.H.; Zikirov, E.; Kizil, M.; Turhan, S. Heterocyclic aromatic amine contents of kavurma commercially cooked in steam and copper cauldron. J. Food Process. Preserv. 2015, 39, 583–590. [Google Scholar] [CrossRef]
- Oz, F.; Cakmak, I.H. The effects of conjugated linoleic acid usage in meatball production on the formation of heterocyclic aromatic amines. LWT-Food Sci. Technol. 2016, 65, 1031–1037. [Google Scholar] [CrossRef]
- Xu, Y.; Li, H.; Liang, J.; Ma, J.; Yang, J.; Zhao, X.; Zhao, W.; Bai, W.; Zeng, X.; Dong, H. High-throughput quantification of eighteen heterocyclic aromatic amines in roasted and pan-fried meat on the basis of high performance liquid chromatography-quadrupole-orbitrap high resolution mass spectrometry. Food Chem. 2021, 361, 130147. [Google Scholar] [CrossRef] [PubMed]
- Puangsombat, K.; Smith, J.S. Inhibition of heterocyclic amine formation in beef patties by ethanolic extracts of rosemary. J. Food Sci. 2010, 75, T40–T47 . [Google Scholar] [CrossRef] [PubMed]
- Buła, M.; Przybylski, W.; Jaworska, D.; Kajak-Siemaszko, K. Formation of heterocyclic aromatic amines in relation to pork quality and heat treatment parameters. Food Chem. 2019, 276, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Ishak, A.A.; Jinap, S.; Sukor, R.; Sulaiman, R.; Abdulmalek, E.; Hasyimah, A.K.N. Simultaneous kinetics formation of heterocyclic amines and polycyclic aromatic hydrocarbons in phenylalanine model system. Food Chem. 2022, 384, 132372. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Xian, Y.; Li, H.; Bai, W.; Zeng, X. Potential carcinogenic heterocyclic aromatic amines (HAAs) in foodstuffs: Formation, extraction, analytical methods, and mitigation strategies. Compr. Rev. Food Sci. 2020, 19, 365–404. [Google Scholar] [CrossRef] [PubMed]
n | Water (%) ± SD | pH ± SD | TBARS (mg MDA/kg) ± SD | |
---|---|---|---|---|
Meat | 2 | 74.70 ± 0.18 a | 5.46 ± 0.01 b | 0.305 ± 0.035 a |
Intermuscular fat | 2 | 13.89 ± 0.16 c | 6.47 ± 0.37 a | 0.375 ± 0.134 a |
Raw meatball | 2 | 65.62 ± 0.8 b | 5.63 ± 0.08 b | 0.340 ± 0.070 a |
Sign. | ** | * | ns |
Sumac Concentration (SC) | Water (%) | pH | TBARS (mg MDA/kg) | Cooking Loss (%) | Total HAA (ng/g) |
C (0%) | 48.08 ± 4.65 b | 5.83 ± 0.08 a | 1.27 ± 0.11 a | 43.81 ± 3.22 a | 0.33 ± 0.43 a |
0.5% | 57.74 ± 2.24 a | 5.48 ± 0.25 b | 0.61 ± 0.05 b | 38.72 ± 3.69 b | nd |
Sign. | * | ** | ** | * | * |
Cooking Temperature (CT) | |||||
150 °C | 51.68 ± 6.60 a | 5.76 ± 0.07 a | 0.94 ± 0.44 a | 38.61 ± 3.26 b | nd |
250 °C | 54.13 ± 6.42 a | 5.55 ± 0.32 b | 0.95 ± 0.34 a | 43.93 ± 3.42 a | 0.33 ± 0.43 a |
Sign. | ns | ** | ns | * | * |
Interactions | |||||
SC × CT | ns | ** | ns | ns | * |
HAA | LOD (ng/g) | LOQ (ng/g) | R2 | Recovery (%) |
---|---|---|---|---|
IQx | 0.004 | 0.013 | 0.9999 | 75.65 |
IQ | 0.009 | 0.029 | 0.9999 | 60.04 |
MeIQx | 0.024 | 0.081 | 0.9999 | 78.48 |
MeIQ | 0.014 | 0.047 | 0.9999 | 55.63 |
7,8-DiMeIQx | 0.005 | 0.018 | 0.9999 | 75.87 |
4,8-DiMeIOx | 0.008 | 0.025 | 0.9999 | 76.96 |
PhIP | 0.025 | 0.085 | 0.9999 | 87.16 |
AαC | 0.012 | 0.039 | 0.9999 | 79.71 |
MeAαC | 0.010 | 0.035 | 0.9998 | 69.01 |
Sumac Concentration | Temperature | MeIQx | Total |
---|---|---|---|
C (0%) | 150 °C | nd | nd |
250 °C | 0.67 | 0.67 | |
0.5% | 150 °C | nd | nd |
250 °C | nd | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savaş, A.; Ekiz, E.; Elbir, Z.; Savaş, B.D.; Proestos, C.; Elobeid, T.; Khan, M.R.; Oz, F. Advantageous Effects of Sumac Usage in Meatball Preparation on Various Quality Criteria and Formation of Heterocyclic Aromatic Amines. Separations 2023, 10, 29. https://doi.org/10.3390/separations10010029
Savaş A, Ekiz E, Elbir Z, Savaş BD, Proestos C, Elobeid T, Khan MR, Oz F. Advantageous Effects of Sumac Usage in Meatball Preparation on Various Quality Criteria and Formation of Heterocyclic Aromatic Amines. Separations. 2023; 10(1):29. https://doi.org/10.3390/separations10010029
Chicago/Turabian StyleSavaş, Adem, Elif Ekiz, Zeynep Elbir, Burcunur Demir Savaş, Charalampos Proestos, Tahra Elobeid, Mohammad Rizwan Khan, and Fatih Oz. 2023. "Advantageous Effects of Sumac Usage in Meatball Preparation on Various Quality Criteria and Formation of Heterocyclic Aromatic Amines" Separations 10, no. 1: 29. https://doi.org/10.3390/separations10010029
APA StyleSavaş, A., Ekiz, E., Elbir, Z., Savaş, B. D., Proestos, C., Elobeid, T., Khan, M. R., & Oz, F. (2023). Advantageous Effects of Sumac Usage in Meatball Preparation on Various Quality Criteria and Formation of Heterocyclic Aromatic Amines. Separations, 10(1), 29. https://doi.org/10.3390/separations10010029