Effective and Low-Cost Adsorption Procedure for Removing Chemical Oxygen Demand from Wastewater Using Chemically Activated Carbon Derived from Rice Husk
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Activated Carbon
2.2. Optimization of Removal Conditions
2.2.1. Effect of Initial pH of the Solution
2.2.2. Effect of Active Carbon Dose
2.2.3. Effect of Shaking Time
2.2.4. Effect of Temperature
2.2.5. Adsorption Isotherm
2.2.6. Kinetic Studies
2.2.7. Comparison of COD Adsorption Efficiencies with Various Adsorbents
3. Material and Methods
3.1. Chemicals
3.2. Preparation of Active Carbon from Rice Husk
3.3. Characterization of Activated Carbon
3.4. Batch Adsorption Tests with Activated Carbon for COD Removal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burian, S.; Walsh, T.; Kalyanapu, A.; Larsen, S. 5.06-Climate Vulnerabilities and Adaptation of Urban Water Infrastructure Systems. In Climate Vulnerability; Academic Press: Oxford, UK, 2013; pp. 87–107. [Google Scholar]
- Saxena, G.; Chandra, R.; Bharagava, R.N. Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. Rev. Environ. Contam. Toxicol. 2016, 240, 31–69. [Google Scholar]
- Abdalla, K.Z.; Hammam, G. Correlation between biochemical oxygen demand and chemical oxygen demand for various wastewater treatment plants in Egypt to obtain the biodegradability indices. Int. J. Sci. Basic Appl. Res. 2014, 13, 42–48. [Google Scholar]
- Geerdink, R.B.; van den Hurk, R.S.; Epema, O.J. Chemical oxygen demand: Historical perspectives and future challenges. Anal. Chim. Acta 2017, 961, 1–11. [Google Scholar] [CrossRef]
- Lv, Z.; Xiao, X.; Wang, Y.; Zhang, Y.; Jiao, N. Improved water quality monitoring indicators may increase carbon storage in the oceans. Environ. Res. 2022, 206, 112608. [Google Scholar] [CrossRef]
- Alipour, Z.; Azari, A. COD removal from industrial spent caustic wastewater: A review. J. Environ. Chem. Eng. 2020, 8, 103678. [Google Scholar] [CrossRef]
- Bote, M.E. Studies on electrode combination for COD removal from domestic wastewater using electrocoagulation. Heliyon 2021, 7, e08614. [Google Scholar] [CrossRef]
- Ilhan, F.; Ulucan-Altuntas, K.; Dogan, C.; Kurt, U. Treatability of raw textile wastewater using Fenton process and its comparison with chemical coagulation. Desalin. Water Treat. 2019, 162, 142–148. [Google Scholar] [CrossRef]
- Pijarn, N.; Intaraprasert, J.; Ophap, S.; Uma, T.; Deekarnkol, S.; Bowornkietkaew, W. Microstructural characterization of white charcoal for rapid reduction of chemical oxygen demand and automatically adjust pH to neutral in wastewater treatment. J. Mater. Res. Technol. 2021, 13, 336–345. [Google Scholar] [CrossRef]
- Alhweij, H.; Emanuelsson, E.A.C.; Shahid, S.; Wenk, J. Organic matter removal and antifouling performance of sulfonated polyaniline nanofiltration (S-PANI NF) membranes. J. Environ. Chem. Eng. 2022, 10, 107906. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, S.; Li, Z.; Cao, X.; Liu, R.; Yun, J. Simultaneously removal of phosphorous and COD for purification of organophosphorus wastewater by catalytic ozonation over CaO. J. Water Process Eng. 2023, 51, 103397. [Google Scholar] [CrossRef]
- Tan, Y.-J.; Sun, L.-J.; Li, B.-T.; Zhao, X.-H.; Yu, T.; Ikuno, N.; Ishii, K.; Hu, H.-Y. Fouling characteristics and fouling control of reverse osmosis membranes for desalination of dyeing wastewater with high chemical oxygen demand. Desalination 2017, 419, 1–7. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Grillini, V.; Pavlović, D.M.; Verlicchi, P. Activated carbon coupled with advanced biological wastewater treatment: A review of the enhancement in micropollutant removal. Sci. Total Environ. 2021, 790, 148050. [Google Scholar] [CrossRef]
- Karić, N.; Maia, A.S.; Teodorović, A.; Atanasova, N.; Langergraber, G.; Crini, G.; Ribeiro, A.R.; Đolić, M. Bio-waste valorisation: Agricultural wastes as biosorbents for removal of (in) organic pollutants in wastewater treatment. Chem. Eng. J. Adv. 2022, 9, 100239. [Google Scholar] [CrossRef]
- Wong, S.; Ngadi, N.; Inuwa, I.M.; Hassan, O. Recent advances in applications of activated carbon from biowaste for wastewater treatment: A short review. J. Clean. Prod. 2018, 175, 361–375. [Google Scholar] [CrossRef]
- Laksaci, H.; Belhamdi, B.; Khelifi, O.; Khelifi, A.; Trari, M. Elimination of amoxicillin by adsorption on coffee waste based activated carbon. J. Mol. Struct. 2023, 1274, 134500. [Google Scholar] [CrossRef]
- Ugwu, E.I.; Agunwamba, J.C. A review on the applicability of activated carbon derived from plant biomass in adsorption of chromium, copper, and zinc from industrial wastewater. Environ. Monit. Assess. 2020, 192, 240. [Google Scholar] [CrossRef]
- Xiao, W.; Garba, Z.N.; Sun, S.; Lawan, I.; Wang, L.; Lin, M.; Yuan, Z. Preparation and evaluation of an effective activated carbon from white sugar for the adsorption of rhodamine B dye. J. Clean. Prod. 2020, 253, 119989. [Google Scholar] [CrossRef]
- Januário, E.F.D.; Fachina, Y.J.; Wernke, G.; Demiti, G.M.M.; Beltran, L.B.; Bergamasco, R.; Vieira, A.M.S. Application of activated carbon functionalized with graphene oxide for efficient removal of COVID-19 treatment-related pharmaceuticals from water. Chemosphere 2022, 289, 133213. [Google Scholar] [CrossRef]
- Boumaraf, R.; Khettaf, S.; Benmahdi, F.; Bouzzafa, M.; Bouhidel, K.-E.; Bouhelassa, M. Removal of the neutral dissolved organic matter from surface waters by activated carbon. Arab. J. Geosci. 2022, 15, 151. [Google Scholar] [CrossRef]
- Li, G.; Li, J.; Tan, W.; Yang, M.; Wang, H.; Wang, X. Effectiveness and mechanisms of the adsorption of carbendazim from wastewater onto commercial activated carbon. Chemosphere 2022, 304, 135231. [Google Scholar] [CrossRef]
- Shao, Y.; Li, J.; Fang, X.; Yang, Z.; Qu, Y.; Yang, M.; Tan, W.; Li, G.; Wang, H. Chemical modification of bamboo activated carbon surface and its adsorption property of simultaneous removal of phosphate and nitrate. Chemosphere 2022, 287, 132118. [Google Scholar] [CrossRef]
- Yunus, Z.M.; Al-Gheethi, A.; Othman, N.; Hamdan, R.; Ruslan, N.N. Advanced methods for activated carbon from agriculture wastes; a comprehensive review. Int. J. Environ. Anal. Chem. 2022, 102, 134–158. [Google Scholar] [CrossRef]
- Masoud, M.S.; El-Saraf, W.M.; Abdel-Halim, A.M.; Ali, A.E.; Mohamed, E.A.; Hasan, H.M. Rice husk and activated carbon for waste water treatment of El-Mex Bay, Alexandria Coast, Egypt. Arab. J. Chem. 2016, 9, S1590–S1596. [Google Scholar] [CrossRef]
- Oliver, S.P.; Jayarao, B.M.; Almeida, R.A. Foodborne pathogens in milk and the dairy farm environment: Food safety and public health implications. Foodbourne Pathog. Dis. 2005, 2, 115–129. [Google Scholar] [CrossRef] [Green Version]
- Afroze, S.; Sen, T.K. A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water Air Soil Pollut. 2018, 229, 225. [Google Scholar] [CrossRef]
- Spagnoli, A.A.; Giannakoudakis, D.A.; Bashkova, S. Adsorption of methylene blue on cashew nut shell based carbons activated with zinc chloride: The role of surface and structural parameters. J. Mol. Liq. 2017, 229, 465–471. [Google Scholar] [CrossRef]
- Demiral, H.; Demiral, İ. Surface properties of activated carbon prepared from wastes. Surf. Interface Anal. Int. J. Devoted Dev. Appl. Tech. Anal. Surf. Interfaces Thin Film. 2008, 40, 612–615. [Google Scholar] [CrossRef]
- Nahil, M.A.; Williams, P.T. Characterisation of activated carbons with high surface area and variable porosity produced from agricultural cotton waste by chemical activation and co-activation. Waste Biomass Valorization 2012, 3, 117–130. [Google Scholar] [CrossRef]
- Rivas, A.; Vera, G.; Palacios, V.; Rigail, A.; Cornejo Martínez, M. Characterization of Rice Husk and the Crystallization Process of Amorphous Silica from Rice Husk Ash. In Proceedings of the 14th LACCEI International Multi-Conference for Engineering, Education, and Technology: Engineering Innovations for Global Sustainability, San José, CA, USA, 20–22 July 2016; pp. 1–9. [Google Scholar]
- Ketcome, N.; Grisdanurak, N.; Chiarakorn, S. Silylated rice husk MCM-41 and its binary adsorption of water–toluene mixture. J. Porous Mater. 2009, 16, 41–46. [Google Scholar] [CrossRef]
- Nabieh, K.A.; Mortada, W.I.; Helmy, T.E.; Kenawy, I.M.; Abou El-Reash, Y.G. Chemically modified rice husk as an effective adsorbent for removal of palladium ions. Heliyon 2021, 7, e06062. [Google Scholar] [CrossRef]
- Yu, H.-M.; Song, H.; Chen, M.-L. Dithizone immobilized silica gel on-line preconcentration of trace copper with detection by flame atomic absorption spectrometry. Talanta 2011, 85, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Mortada, W.I.; Nabieh, K.A.; Helmy, T.E.; Abou El-Reash, Y.G. Microwave-assisted synthesis of MCM-41 composite with rice husk and its functionalization by dithizone for preconcentration of some metal ions from water and food samples. J. Food Compos. Anal. 2022, 106, 104352. [Google Scholar] [CrossRef]
- Ahiduzzaman, M.; Sadrul Islam, A. Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation. SpringerPlus 2016, 5, 1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lester, E.; Hilal, N.; Henderson, J. Porosity in ancient glass from Syria (c. 800 AD) using gas adsorption and atomic force microscopy. Surf. Interface Anal. Int. J. Devoted Dev. Appl. Tech. Anal. Surf. Interfaces Thin Film. 2004, 36, 1323–1329. [Google Scholar]
- ALOthman, Z.A. A review: Fundamental aspects of silicate mesoporous materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef] [Green Version]
- Mortada, W.I.; Abdelghany, A.M. Preconcentration of lead in blood and urine samples among bladder cancer patients using mesoporous strontium titanate nanoparticles. Biol. Trace Elem. Res. 2020, 193, 100–110. [Google Scholar] [CrossRef]
- Lokeshwari, N.; Joshi, K. Low cost adsorbent for reducing organic components. I Control. Pollut. 2014, 30, 53–58. [Google Scholar]
- Nayl, A.E.A.; Elkhashab, R.A.; El Malah, T.; Yakout, S.M.; El-Khateeb, M.A.; Ali, M.; Ali, H.M. Adsorption studies on the removal of COD and BOD from treated sewage using activated carbon prepared from date palm waste. Environ. Sci. Pollut. Res. 2017, 24, 22284–22293. [Google Scholar] [CrossRef]
- Khurshid, H.; Mustafa, M.R.U.; Rashid, U.; Isa, M.H.; Ho, Y.C.; Shah, M.M. Adsorptive removal of COD from produced water using tea waste biochar. Environ. Technol. Innov. 2021, 23, 101563. [Google Scholar] [CrossRef]
- Halim, A.A.; Aziz, H.A.; Johari, M.A.M.; Ariffin, K.S.; Adlan, M.N. Ammoniacal nitrogen and COD removal from semi-aerobic landfill leachate using a composite adsorbent: Fixed bed column adsorption performance. J. Hazard. Mater. 2010, 175, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Nassar, N.N.; Arar, L.A.; Marei, N.N.; Ghanim, M.M.A.; Dwekat, M.S.; Sawalha, S.H. Treatment of olive mill based wastewater by means of magnetic nanoparticles: Decolourization, dephenolization and COD removal. Environ. Nanotechnol. Monit. Manag. 2014, 1, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Emmanuel, O.A.; Olalekan, A.B. COD removal from industrial wastewater using activated carbon prepared from animal horns. Afr. J. Biotechnol. 2008, 7, 3887–3891. [Google Scholar]
- Mohammad-Pajooh, E.; Turcios, A.E.; Cuff, G.; Weichgrebe, D.; Rosenwinkel, K.-H.; Vedenyapina, M.; Sharifullina, L. Removal of inert COD and trace metals from stabilized landfill leachate by granular activated carbon (GAC) adsorption. J. Environ. Manag. 2018, 228, 189–196. [Google Scholar] [CrossRef] [PubMed]
Adsorbent | Surface Area (m2 g−1) | Adsorption Capacity (mg g−1) | Reference |
---|---|---|---|
Tea waste biochar | 60.0 | 12.0 | [42] |
Zeolite–carbon composite | 60.9 | 4.5 | [43] |
Fe2O3 nanoparticles | - | 21.3 | [44] |
Activated carbon prepared from animal horns | - | 6.5 | [45] |
Granular activated carbon | 719.5 | 13.3 | [46] |
Chemically activated carbon from rice husk | 813.5 | 45.9 | Our study |
Parameter | Value |
---|---|
Temperature | 22.5 °C |
pH | 7.8 |
Electric conductivity | 1.3 dsm−1 |
COD | 200 mg L−1 |
Ammonia | 19.2 mg L−1 |
Nitrate | 19.7 mg L−1 |
Phosphate | 0.67 mg L−1 |
Total solids | 3360 mg L−1 |
Total suspended solids | 1940 mg L−1 |
Total dissolved solids | 1420 mg L−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mortada, W.I.; Mohamed, R.A.; Monem, A.A.A.; Awad, M.M.; Hassan, A.F. Effective and Low-Cost Adsorption Procedure for Removing Chemical Oxygen Demand from Wastewater Using Chemically Activated Carbon Derived from Rice Husk. Separations 2023, 10, 43. https://doi.org/10.3390/separations10010043
Mortada WI, Mohamed RA, Monem AAA, Awad MM, Hassan AF. Effective and Low-Cost Adsorption Procedure for Removing Chemical Oxygen Demand from Wastewater Using Chemically Activated Carbon Derived from Rice Husk. Separations. 2023; 10(1):43. https://doi.org/10.3390/separations10010043
Chicago/Turabian StyleMortada, Wael I., Raed A. Mohamed, Amir A. Abdel Monem, Marwa M. Awad, and Asaad F. Hassan. 2023. "Effective and Low-Cost Adsorption Procedure for Removing Chemical Oxygen Demand from Wastewater Using Chemically Activated Carbon Derived from Rice Husk" Separations 10, no. 1: 43. https://doi.org/10.3390/separations10010043
APA StyleMortada, W. I., Mohamed, R. A., Monem, A. A. A., Awad, M. M., & Hassan, A. F. (2023). Effective and Low-Cost Adsorption Procedure for Removing Chemical Oxygen Demand from Wastewater Using Chemically Activated Carbon Derived from Rice Husk. Separations, 10(1), 43. https://doi.org/10.3390/separations10010043