Application of Walnut Shell Biowaste as an Inexpensive Adsorbent for Methylene Blue Dye: Isotherms, Kinetics, Thermodynamics, and Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of Raw Walnut Shells Powder
2.2. Adsorbent Characterization
2.3. Preparation of Dye Aqueous Solution
2.4. Adsorption Experiments
3. Results and Discussion
3.1. Biosorbent Characterization
3.1.1. FTIR Analysis
3.1.2. Scanning Electron Microscopy Analysis (SEM)
3.1.3. X-ray Diffraction (XRD)
3.2. The Influence of Different Factors on MBD Adsorption onto Walnut Shells
3.2.1. Effect of Initial pH on Adsorption
3.2.2. Effect of the Adsorbent Mass on MBD Adsorption onto Walnut Shells
3.2.3. Effect of the Initial Dye Concentration
3.2.4. Effect of the Contact Time
3.2.5. Effect of Temperature
3.2.6. Adsorption Equilibrium Study of MBD by Raw WNSp Adsorbent
3.2.7. Modeling of Adsorption Isotherms
Langmuir Model
Freundlich Model
3.2.8. Adsorption Kinetic Models
- ❖
- Pseudo-First-Order Model
- ❖
- Pseudo-Second-Order Model:
3.2.9. Thermodynamic Adsorption and the Effect of Temperature
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tahraoui, H.; Amrane, A.; Belhadj, A.-E.; Zhang, J. Modeling the Organic Matter of Water Using the Decision Tree Coupled with Bootstrap Aggregated and Least-Squares Boosting. Environ. Technol. Innov. 2022, 27, 102419. [Google Scholar] [CrossRef]
- Tahraoui, H.; Belhadj, A.-E.; Hamitouche, A.; Bouhedda, M.; Amrane, A. Predicting the Concentration of Sulfate (SO42-) in Drinking Water Using Artificial Neural Networks: A Case Study: Médéa-Algeria. Desalination Water Treat. 2021, 217, 181–194. [Google Scholar] [CrossRef]
- Tahraoui, H.; Belhadj, A.E.; Hamitouche, A.E. Prediction of the Bicarbonate Amount in Drinking Water in the Region of Médéa Using Artificial Neural Network Modelling. Kem. Ind. 2020, 69, 595–602. [Google Scholar] [CrossRef]
- Habila, M.A.; ALOthman, Z.A.; Al-Tamrah, S.A.; Ghafar, A.A.; Soylak, M. Activated Carbon from Waste as an Efficient Adsorbent for Malathion for Detection and Removal Purposes. J. Ind. Eng. Chem. 2015, 32, 336–344. [Google Scholar] [CrossRef]
- Alomar, T.S.; Habila, M.A.; AlMasoud, N.; Alothman, Z.A.; Sheikh, M.; Soylak, M. Biomass-Derived Adsorbent for Dispersive Solid-Phase Extraction of Cr (III), Fe (III), Co (II) and Ni (II) from Food Samples Prior to ICP-MS Detection. Appl. Sci. 2021, 11, 7792. [Google Scholar] [CrossRef]
- Tahraoui, H.; Belhadj, A.-E.; Amrane, A.; Houssein, E.H. Predicting the Concentration of Sulfate Using Machine Learning Methods. Earth Sci. Inform. 2022, 15, 1023–1044. [Google Scholar] [CrossRef]
- Alothman, Z.A.; Habila, M.A.; Moshab, M.S.; Al-Qahtani, K.M.; AlMasoud, N.; Al-Senani, G.M.; Al-Kadhi, N.S. Fabrication of Renewable Palm-Pruning Leaves Based Nano-Composite for Remediation of Heavy Metals Pollution. Arab. J. Chem. 2020, 13, 4936–4944. [Google Scholar] [CrossRef]
- AlOthman, Z.A.; Habila, M.A.; Ali, R.; Ghafar, A.A.; Hassouna, M.S.E. Valorization of Two Waste Streams into Activated Carbon and Studying Its Adsorption Kinetics, Equilibrium Isotherms and Thermodynamics for Methylene Blue Removal. Arab. J. Chem. 2014, 7, 1148–1158. [Google Scholar] [CrossRef] [Green Version]
- Dar, O.A.; Malik, M.A.; Talukdar, M.I.A.; Hashmi, A.A. Bionanocomposites in Water Treatment. In Bionanocomposites; Elsevier: Amsterdam, The Netherlands, 2020; pp. 505–518. [Google Scholar]
- Thabede, P.M.; Shooto, N.D.; Naidoo, E.B. Removal of Methylene Blue Dye and Lead Ions from Aqueous Solution Using Activated Carbon from Black Cumin Seeds. S. Afr. J. Chem. Eng. 2020, 33, 39–50. [Google Scholar] [CrossRef]
- Fu, Y.; Viraraghavan, T. Fungal Decolorization of Dye Wastewaters: A Review. Bioresour. Technol. 2001, 79, 251–262. [Google Scholar] [CrossRef]
- Ginimuge, P.R.; Jyothi, S. Methylene Blue: Revisited. J. Anaesthesiol. Clin. Pharmacol. 2010, 26, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, A.; Hernandez-Ventura, C.; Klimova, T.E. Titanate Nanotubes for Removal of Methylene Blue Dye by Combined Adsorption and Photocatalysis. Fuel 2017, 198, 22–30. [Google Scholar] [CrossRef]
- Zahrim, A.Y.; Hilal, N. Treatment of Highly Concentrated Dye Solution by Coagulation/Flocculation–Sand Filtration and Nanofiltration. Water Resour. Ind. 2013, 3, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.M. Photochemical Characterization and Photocatalytic Properties of a Nanostructure Composite TiO2 Film. Appl. Catal. B Environ. 2001, 31, 145–157. [Google Scholar] [CrossRef]
- Ghuge, S.P.; Saroha, A.K. Catalytic Ozonation for the Treatment of Synthetic and Industrial Effluents-Application of Mesoporous Materials: A Review. J. Environ. Manag. 2018, 211, 83–102. [Google Scholar] [CrossRef]
- Hadadi, A.; Imessaoudene, A.; Bollinger, J.-C.; Cheikh, S.; Assadi, A.A.; Amrane, A.; Kebir, M.; Mouni, L. Parametrical Study for the Effective Removal of Mordant Black 11 from Synthetic Solutions: Moringa Oleifera Seeds’ Extracts Versus Alum. Water 2022, 14, 4109. [Google Scholar] [CrossRef]
- Tahraoui, H.; Belhadj, A.-E.; Triki, Z.; Boudella, N.R.; Seder, S.; Amrane, A.; Zhang, J.; Moula, N.; Tifoura, A.; Ferhat, R.; et al. Mixed Coagulant-Flocculant Optimization for Pharmaceutical Effluent Pretreatment Using Response Surface Methodology and Gaussian Process Regression. Process Saf. Environ. Prot. 2023, 169, 909–927. [Google Scholar] [CrossRef]
- Tahraoui, H.; Belhadj, A.E.; Moula, N.; Bouranene, S.; Amrane, A. Optimisation and Prediction of the Coagulant Dose for the Elimination of Organic Micropollutants Based on Turbidity. Kem. Ind. 2021, 70, 675–691. [Google Scholar] [CrossRef]
- Allaoui, M.; Berradi, M.; Elharfi, A. Synthesis of a New Asymmetric Semi Permeable Membrane and Based Alloy of Two Polymers PVC and PSU. Application in the Treatment of a Colored Solution. Moroc. J. Chem. 2016, 4, 251–258. [Google Scholar]
- Nasar, A.; Mashkoor, F. Application of Polyaniline-Based Adsorbents for Dye Removal from Water and Wastewater—A Review. Environ. Sci. Pollut. Res. 2019, 26, 5333–5356. [Google Scholar] [CrossRef]
- Uddin, M.K. A Review on the Adsorption of Heavy Metals by Clay Minerals, with Special Focus on the Past Decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Shakoor, S.; Nasar, A. Adsorptive Treatment of Hazardous Methylene Blue Dye from Artificially Contaminated Water Using Cucumis Sativus Peel Waste as a Low-Cost Adsorbent. Groundw. Sustain. Dev. 2017, 5, 152–159. [Google Scholar] [CrossRef]
- Bouchelkia, N.; Mouni, L.; Belkhiri, L.; Bouzaza, A.; Bollinger, J.-C.; Madani, K.; Dahmoune, F. Removal of Lead (II) from Water Using Activated Carbon Developed from Jujube Stones, a Low-Cost Sorbent. Sep. Sci. Technol. 2016, 51, 1645–1653. [Google Scholar] [CrossRef]
- Chudhary, Z.; Khera, R.A.; Hanif, M.A.; Ayub, M.A.; Hamrouni, L. Walnut. In Medicinal Plants of South Asia; Elsevier: Amsterdam, The Netherlands, 2020; pp. 671–684. [Google Scholar]
- Liu, M.; Li, X.; Du, Y.; Han, R. Adsorption of Methyl Blue from Solution Using Walnut Shell and Reuse in a Secondary Adsorption for Congo Red. Bioresour. Technol. Rep. 2019, 5, 238–242. [Google Scholar] [CrossRef]
- Wen, X.; Liu, H.; Zhang, L.; Zhang, J.; Fu, C.; Shi, X.; Chen, X.; Mijowska, E.; Chen, M.-J.; Wang, D.-Y. Large-Scale Converting Waste Coffee Grounds into Functional Carbon Materials as High-Efficient Adsorbent for Organic Dyes. Bioresour. Technol. 2019, 272, 92–98. [Google Scholar] [CrossRef]
- Wong, S.; Tumari, H.H.; Ngadi, N.; Mohamed, N.B.; Hassan, O.; Mat, R.; Amin, N.A.S. Adsorption of Anionic Dyes on Spent Tea Leaves Modified with Polyethyleneimine (PEI-STL). J. Clean. Prod. 2019, 206, 394–406. [Google Scholar] [CrossRef]
- Yu, Q.; Li, M.; Ji, X.; Qiu, Y.; Zhu, Y.; Leng, C. Characterization and Methanol Adsorption of Walnut-Shell Activated Carbon Prepared by KOH Activation. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2016, 31, 260–268. [Google Scholar] [CrossRef]
- Albatrni, H.; Qiblawey, H.; Al-Marri, M.J. Walnut Shell Based Adsorbents: A Review Study on Preparation, Mechanism, and Application. J. Water Process Eng. 2022, 45, 102527. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Dhedan, S.K. Equilibrium Isotherms and Kinetics Modeling of Methylene Blue Adsorption on Agricultural Wastes-Based Activated Carbons. Fluid Phase Equilibria 2012, 317, 9–14. [Google Scholar] [CrossRef]
- Kifuani, K.M.; Mayeko, A.K.K.; Vesituluta, P.N.; Lopaka, B.I.; Bakambo, G.E.; Mavinga, B.M.; Lunguya, J.M. Adsorption of Basic Dye, Methylene Blue, in Aqueous Solution on Bioadsorbent from Agricultural Waste of Cucumeropsis Mannii Naudin. Int. J. Biol. Chem. Sci. 2018, 12, 558–575. [Google Scholar] [CrossRef] [Green Version]
- Miyah, Y.; Lahrichi, A.; Idrissi, M.; Boujraf, S.; Taouda, H.; Zerrouq, F. Assessment of Adsorption Kinetics for Removal Potential of Crystal Violet Dye from Aqueous Solutions Using Moroccan Pyrophyllite. J. Assoc. Arab. Univ. Basic Appl. Sci. 2017, 23, 20–28. [Google Scholar] [CrossRef]
- Değermenci, G.D.; Değermenci, N.; Ayvaoğlu, V.; Durmaz, E.; Çakır, D.; Akan, E. Adsorption of Reactive Dyes on Lignocellulosic Waste; Characterization, Equilibrium, Kinetic and Thermodynamic Studies. J. Clean. Prod. 2019, 225, 1220–1229. [Google Scholar] [CrossRef]
- Kuang, Y.; Zhang, X.; Zhou, S. Adsorption of Methylene Blue in Water onto Activated Carbon by Surfactant Modification. Water 2020, 12, 587. [Google Scholar] [CrossRef] [Green Version]
- Uddin, M.; Rahman, M.; Rukanuzzaman, M.; Islam, M. A Potential Low Cost Adsorbent for the Removal of Cationic Dyes from Aqueous Solutions. Appl. Water Sci. 2017, 7, 2831–2842. [Google Scholar] [CrossRef] [Green Version]
- de Yamil, L.O.; Georgin, J.; Franco, D.S.; Netto, M.S.; Grassi, P.; Piccilli, D.G.; Oliveira, M.L.; Dotto, G.L. Powdered Biosorbent from Pecan Pericarp (Carya Illinoensis) as an Efficient Material to Uptake Methyl Violet 2B from Effluents in Batch and Column Operations. Adv. Powder Technol. 2020, 31, 2843–2852. [Google Scholar]
- Chan, S.-L.; Tan, Y.P.; Abdullah, A.H.; Ong, S.-T. Equilibrium, Kinetic and Thermodynamic Studies of a New Potential Biosorbent for the Removal of Basic Blue 3 and Congo Red Dyes: Pineapple (Ananas Comosus) Plant Stem. J. Taiwan Inst. Chem. Eng. 2016, 61, 306–315. [Google Scholar] [CrossRef]
- Mashkoor, F.; Nasar, A.; Asiri, A.M. Exploring the Reusability of Synthetically Contaminated Wastewater Containing Crystal Violet Dye Using Tectona Grandis Sawdust as a Very Low-Cost Adsorbent. Sci. Rep. 2018, 8, 8314. [Google Scholar] [CrossRef] [Green Version]
- Dahri, M.K.; Kooh, M.R.R.; Lim, L.B. Water Remediation Using Low Cost Adsorbent Walnut Shell for Removal of Malachite Green: Equilibrium, Kinetics, Thermodynamic and Regeneration Studies. J. Environ. Chem. Eng. 2014, 2, 1434–1444. [Google Scholar] [CrossRef]
- Çelekli, A.; Birecikligil, S.S.; Geyik, F.; Bozkurt, H. Prediction of Removal Efficiency of Lanaset Red G on Walnut Husk Using Artificial Neural Network Model. Bioresour. Technol. 2012, 103, 64–70. [Google Scholar] [CrossRef]
- Yang, J.; Qiu, K. Preparation of Activated Carbons from Walnut Shells via Vacuum Chemical Activation and Their Application for Methylene Blue Removal. Chem. Eng. J. 2010, 165, 209–217. [Google Scholar] [CrossRef]
- Uddin, M.K.; Nasar, A. Walnut Shell Powder as a Low-Cost Adsorbent for Methylene Blue Dye: Isotherm, Kinetics, Thermodynamic, Desorption and Response Surface Methodology Examinations. Sci. Rep. 2020, 10, 7983. [Google Scholar] [CrossRef]
- Almasi, A.; Rostamkhani, Z.; Mousavi, S.A. Adsorption of Reactive Red 2 Using Activated Carbon Prepared from Walnut Shell: Batch and Fixed Bed Studies. Desalination Water Treat. 2017, 79, 356–367. [Google Scholar] [CrossRef]
- Almasi, A.; Navazeshkhaa, F.; Mousavi, S.A. Biosorption of Lead from Aqueous Solution onto Nasturtium Officinale: Performance and Modeling. Desalination Water Treat. 2017, 65, 443–450. [Google Scholar] [CrossRef]
- Reçber, Z. Adsorption of Methylene Blue onto Spent Alchemilla Vulgaris Leaves: Characterization, Isotherms, Kinetic and Thermodynamic Studies. Int. J. Environ. Sci. Technol. 2022, 19, 4803–4814. [Google Scholar] [CrossRef]
- Gad, H.M.H.; Omar, H.A.; Khalil, M.H.; Hassan, M.R. Factors Affecting Sorption of Pb (II) from Aqueous Solution Using Sawdust Based Activated Carbon. J. Am. Sci. 2013, 9, 95–106. [Google Scholar]
- Miyah, Y.; Lahrichi, A.; Idrissi, M.; Khalil, A.; Zerrouq, F. Adsorption of Methylene Blue Dye from Aqueous Solutions onto Walnut Shells Powder: Equilibrium and Kinetic Studies. Surf. Interfaces 2018, 11, 74–81. [Google Scholar] [CrossRef]
- Khelifi, O.; Mehrez, I. Equilibrium, Kinetics and Thermodynamics Studies of Methylene Blue Adsorption from Aqueous Solutions by Biosorbent Derived from Algerian Date Stones. J. Water Sci. Environ. Technol. 2016, 2, 32–38. [Google Scholar]
- Lansari, F.; Edjekouane, M.; Khelifi, O.; Boukheteche, I.; Laksaci, H. Elimination of Methylene Blue by Low-Cost Biomaterial Prepared from Local Natural Residue. Alger. J. Renew. Energy Sustain. Dev. 2020, 2, 60–66. [Google Scholar] [CrossRef]
- Zeghoud, L.; Gouamid, M.; Ben Mya, O.; Rebiai, A.; Saidi, M. Adsorption of Methylene Blue Dye from Aqueous Solutions Using Two Different Parts of Palm Tree: Palm Frond Base and Palm Leaflets. Water AirSoil Pollut. 2019, 230, 195. [Google Scholar] [CrossRef]
- Dbik, A.; El Messaoudi, N.; Bentahar, S.; El Khomri, M.; Lacherai, A.; Faska, N. Optimization of Methylene Blue Adsorption on Agricultural Solid Waste Using Box–Behnken Design (BBD) Combined with Response Surface Methodology (RSM) Modeling. Biointerface Res. Appl. Chem. 2022, 12, 4567–4583. [Google Scholar]
- Nuhoğlu, Y.; Ekmekyapar Kul, Z.; Kul, S.; Nuhoğlu, Ç.; Ekmekyapar Torun, F. Pb (II) Biosorption from the Aqueous Solutions by Raw and Modified Tea Factory Waste (TFW). Int. J. Environ. Sci. Technol. 2021, 18, 2975–2986. [Google Scholar] [CrossRef]
- Nordine, N.; El Bahri, Z.; Sehil, H.; Fertout, R.I.; Rais, Z.; Bengharez, Z. Lead Removal Kinetics from Synthetic Effluents Using Algerian Pine, Beech and Fir Sawdust’s: Optimization and Adsorption Mechanism. Appl. Water Sci. 2016, 6, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H. Über Die Adsorption in Lösungen. Z. Phys. Chem. 1907, 57, 385–470. [Google Scholar] [CrossRef]
- Giles, C.H.; MacEwan, T.H.; Nakhwa, S.N.; Smith, D. A System of Classification of Solution Adsorption Isotherms, and Its Use in Diagnosis of Adsorption Mechanisms and in Measurement of Specific Surface Areas of Solids. J. Chem. Soc. 1960, 111, 3973–3993. [Google Scholar] [CrossRef]
- Mousavi, S.A.; Mahmoudi, A.; Amiri, S.; Darvishi, P.; Noori, E. Methylene Blue Removal Using Grape Leaves Waste: Optimization and Modeling. Appl. Water Sci. 2022, 12, 112. [Google Scholar] [CrossRef]
- Kocaman, S. Removal of Methylene Blue Dye from Aqueous Solutions by Adsorption on Levulinic Acid-Modified Natural Shells. Int. J. Phytoremediation 2020, 22, 885–895. [Google Scholar] [CrossRef]
- Eltaweil, A.S.; Elgarhy, G.S.; El-Subruiti, G.M.; Omer, A.M. Carboxymethyl Cellulose/Carboxylated Graphene Oxide Composite Microbeads for Efficient Adsorption of Cationic Methylene Blue Dye. Int. J. Biol. Macromol. 2020, 154, 307–318. [Google Scholar] [CrossRef]
- Jawad, A.H.; Abdulhameed, A.S.; Wilson, L.D.; Syed-Hassan, S.S.A.; ALOthman, Z.A.; Khan, M.R. High Surface Area and Mesoporous Activated Carbon from KOH-Activated Dragon Fruit Peels for Methylene Blue Dye Adsorption: Optimization and Mechanism Study. Chin. J. Chem. Eng. 2021, 32, 281–290. [Google Scholar] [CrossRef]
- Jawad, A.H.; Abdulhameed, A.S.; Mastuli, M.S. Acid-Factionalized Biomass Material for Methylene Blue Dye Removal: A Comprehensive Adsorption and Mechanism Study. J. Taibah Univ. Sci. 2020, 14, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Sah, M.K.; Edbey, K.; EL-Hashani, A.; Almshety, S.; Mauro, L.; Alomar, T.S.; AlMasoud, N.; Bhattarai, A. Exploring the Biosorption of Methylene Blue Dye onto Agricultural Products: A Critical Review. Separations 2022, 9, 256. [Google Scholar] [CrossRef]
- Ramutshatsha-Makhwedzha, D.; Mavhungu, A.; Moropeng, M.L.; Mbaya, R. Activated Carbon Derived from Waste Orange and Lemon Peels for the Adsorption of Methyl Orange and Methylene Blue Dyes from Wastewater. Heliyon 2022, 8, e09930. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.S.; Sivaramakrishna, L.; Reddy, A.V. The Use of an Agricultural Waste Material, Jujuba Seeds for the Removal of Anionic Dye (Congo Red) from Aqueous Medium. J. Hazard. Mater. 2012, 203, 118–127. [Google Scholar] [CrossRef]
- Benhachem, F.Z.; Attar, T.; Bouabdallah, F. Kinetic Study of Adsorption Methylene Blue Dye from Aqueous Solutions Using Activated Carbon. Chem. Rev. Lett. 2019, 2, 33–39. [Google Scholar]
- Chakraborty, T.W.; Weber, R.K. Pore and Solid Diffusion Model for Fixed Bed Adsorbents. J. Am. Inst. Chem. Eng. 1974, 20, 228. [Google Scholar]
- Ooi, J.; Lee, L.Y.; Hiew, B.Y.Z.; Thangalazhy-Gopakumar, S.; Lim, S.S.; Gan, S. Assessment of Fish Scales Waste as a Low Cost and Eco-Friendly Adsorbent for Removal of an Azo Dye: Equilibrium, Kinetic and Thermodynamic Studies. Bioresour. Technol. 2017, 245, 656–664. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Margiotoudis, I.; Massas, I. The Use of Olive Tree Pruning Waste Compost to Sequestrate Methylene Blue Dye from Aqueous Solution. Int. J. Phytoremediat. 2018, 20, 831–838. [Google Scholar] [CrossRef]
- Lagergren, S.K. About the Theory of So-Called Adsorption of Soluble Substances. Sven. Vetenskapsakad. Handingarl 1898, 24, 1–39. Available online: https://cir.nii.ac.jp/all?q=Sven.%20Vetenskapsakad.%20Handingarl (accessed on 31 December 2022).
- Ho, Y.S.; Ng, J.C.; McKay, G. Sorption of dye from aqueous solution by peat. Chem. Eng. J. 1998, 70, 115–124. [Google Scholar] [CrossRef]
- Zamouche, M.; Mouni, L.; Ayachi, A.; Merniz, I. Use of Commercial Activated Carbon for the Purification of Synthetic Water Polluted by a Pharmaceutical Product. Desalination Water Treat. 2019, 172, 86–95. [Google Scholar] [CrossRef]
- Sulthana, R.; Taqui, S.N.; Zameer, F.; Syed, U.T.; Syed, A.A. Adsorption of Ethidium Bromide from Aqueous Solution onto Nutraceutical Industrial Fennel Seed Spent: Kinetics and Thermodynamics Modeling Studies. Int. J. Phytoremediation 2018, 20, 1075–1086. [Google Scholar] [CrossRef] [PubMed]
- Munagapati, V.S.; Wen, J.-C.; Pan, C.-L.; Gutha, Y.; Wen, J.-H.; Reddy, G.M. Adsorptive Removal of Anionic Dye (Reactive Black 5) from Aqueous Solution Using Chemically Modified Banana Peel Powder: Kinetic, Isotherm, Thermodynamic, and Reusability Studies. Int. J. Phytoremediat. 2020, 22, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, W.; Zhang, J.; Liu, P.; Wang, A. A Comparative Study about Adsorption of Natural Palygorskite for Methylene Blue. Chem. Eng. J. 2015, 262, 390–398. [Google Scholar] [CrossRef]
- Ammendola, P.; Raganati, F.; Chirone, R. CO2 Adsorption on a Fine Activated Carbon in a Sound Assisted Fluidized Bed: Thermodynamics and Kinetics. Chem. Eng. J. 2017, 322, 302–313. [Google Scholar] [CrossRef]
- Bouhedda, M.; Lefnaoui, S.; Rebouh, S.; Yahoum, M.M. Predictive Model Based on Adaptive Neuro-Fuzzy Inference System for Estimation of Cephalexin Adsorption on the Octenyl Succinic Anhydride Starch. Chemom. Intell. Lab. Syst. 2019, 193, 103843. [Google Scholar] [CrossRef]
- Souidi, R.; Belarbi, L.; Bousalem, S. Methylene Blue Adsorption from Aqueous Solution by Low Cost Vine-Wood Biomass. 2021. Available online: https://assets.researchsquare.com/files/rs-141359/v1_covered.pdf?c=1631851536 (accessed on 31 December 2022).
- Bouchelkia, N.; Tahraoui, H.; Amrane, A.; Belkacemi, H.; Bollinger, J.-C.; Bouzaza, A.; Zoukel, A.; Zhang, J.; Mouni, L. Jujube Stones Based Highly Efficient Activated Carbon for Methylene Blue Adsorption: Kinetics and Isotherms Modeling, Thermodynamics and Mechanism Study, Optimization via Response Surface Methodology and Machine Learning Approaches. Process Saf. Environ. Prot. 2022, 170, 513–535. [Google Scholar] [CrossRef]
Dye | Adsorbent | MB Dye Removal (%) | Reference |
---|---|---|---|
Methylene blue | Walnut shell bio-waste | 80 % | This work |
Methylene blue | levulinic acid-modified natural shells | 98.13% | [59] |
Methylene blue | Carboxymethyl cellulose/carboxylated graphene oxide composite microbeads | 97.97% | [60] |
Methylene blue | Mesoporous activated carbon with high surface area from KOH-activated dragon fruit peels | 92.3% | [61] |
Methylene blue | Acid-factionalized biomass material | 83 % | [62] |
Methylene blue | Agricultural Products | 93.2 % | [63] |
Methylene blue | Waste of orange and lemon peels derived activated carbon | 96 % | [64] |
Langmuir Y= 1.3245 + 0.1274 X | Freundlich Y= 0.2862 + 0.4369 X | ||||||
qmax (mg.g−1) | KL (L.mg−1) | R2 | n | KF (mg1−1/n·L1/n·g−1) | R2 | ||
7.849 | 0.096 | 0.999 | 2.288 | 1.331 | 0.986 | ||
SD | p | SD | p | ||||
0.0626 | <0.0001 | 0.6649 | 0.0018 |
Pseudo-first order Y= 0.9691 + (−0.0357) X | Pseudo-second order Y= 0.0406 + 0.0470 X | ||||||
qe(mg/g) | K1 (1/min) | R2 | qe(mg/g) | K2 (g/mg·min) | R2 | ||
2.635 | 0.0357 | 0.969 | 2.288 | 0.074 | 0.999 | ||
SD | p | SD | p | ||||
0.2345 | <0.0001 | 0.023 | <0.0001 |
ΔH° (kJ/mol) | ΔS° (kJ/mol·K) | ΔG° (kJ/mol) Y= −8.1118 + 2701.0968 X | R2 | SD | p | ||
---|---|---|---|---|---|---|---|
T = 298 K | T = 308 K | T = 328 K | |||||
−22.4569 | −0.0674 | −2.580 | −1.330 | −0.470 | 0.9607 | 0.1717 | 0.1790 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farch, S.; Yahoum, M.M.; Toumi, S.; Tahraoui, H.; Lefnaoui, S.; Kebir, M.; Zamouche, M.; Amrane, A.; Zhang, J.; Hadadi, A.; et al. Application of Walnut Shell Biowaste as an Inexpensive Adsorbent for Methylene Blue Dye: Isotherms, Kinetics, Thermodynamics, and Modeling. Separations 2023, 10, 60. https://doi.org/10.3390/separations10010060
Farch S, Yahoum MM, Toumi S, Tahraoui H, Lefnaoui S, Kebir M, Zamouche M, Amrane A, Zhang J, Hadadi A, et al. Application of Walnut Shell Biowaste as an Inexpensive Adsorbent for Methylene Blue Dye: Isotherms, Kinetics, Thermodynamics, and Modeling. Separations. 2023; 10(1):60. https://doi.org/10.3390/separations10010060
Chicago/Turabian StyleFarch, Sabrina, Madiha Melha Yahoum, Selma Toumi, Hichem Tahraoui, Sonia Lefnaoui, Mohammed Kebir, Meriem Zamouche, Abdeltif Amrane, Jie Zhang, Amina Hadadi, and et al. 2023. "Application of Walnut Shell Biowaste as an Inexpensive Adsorbent for Methylene Blue Dye: Isotherms, Kinetics, Thermodynamics, and Modeling" Separations 10, no. 1: 60. https://doi.org/10.3390/separations10010060
APA StyleFarch, S., Yahoum, M. M., Toumi, S., Tahraoui, H., Lefnaoui, S., Kebir, M., Zamouche, M., Amrane, A., Zhang, J., Hadadi, A., & Mouni, L. (2023). Application of Walnut Shell Biowaste as an Inexpensive Adsorbent for Methylene Blue Dye: Isotherms, Kinetics, Thermodynamics, and Modeling. Separations, 10(1), 60. https://doi.org/10.3390/separations10010060