Design Methodology for a Low-Shear Rotating Swirler
Abstract
:1. Introduction
2. Design Model for the LSRS
2.1. Structure of the TDH
2.2. Low-Shear Rotating Swirler (LSRS)
2.2.1. Inlet Setting Angle of Swirler Blade
2.2.2. Outlet Setting Angle of Swirler Blade
2.2.3. Design Parameters
3. Flow Field Characteristics Analyzed by Numerical Simulation
3.1. Numerical Simulation Model
3.1.1. Model Description
3.1.2. Physical Model and Boundary Conditions
3.1.3. Grid Independence Verification
3.2. Analysis of Numerical Simulation Results
3.2.1. Velocity Analysis
3.2.2. Turbulence Analysis
4. Field-Experiment-Based Verification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ghafoorim, S.; Omar, M.; Koutahzadeh, N.; Zendehboudi, S.; Malhas, R.N.; Mohamed, M.; Al-Zubaidi, S.; Redha, K.; Baraki, F.; Mehrvar, M. New advancements, challenges, and future needs on treatment of oilfield produced water: A state-of-the-art review. Sep. Purif. Technol. 2022, 289, 120652. [Google Scholar] [CrossRef]
- Hou, D.; Liu, P.; Zhao, Q.; Jiang, L.; Cui, B.; Wei, D. Numerical Study on the Separation Performance of Hydrocyclones with Different Secondary Cylindrical Section Diameters. Processes 2023, 11, 2542. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, P.; Zhang, Y.; Yang, X.; Li, X.; Zhang, Y.; Wang, H. Particle Motion Characteristics in W-Shaped Hydrocyclones. Separations 2021, 8, 121. [Google Scholar] [CrossRef]
- Zhou, N.; Gao, Y.; An, W.; Yang, M. Investigation of velocity field and oil distribution in an oil-water hydrocyclone using a droplet dynamics analyzer. Chem. Eng. J. 2010, 157, 73–79. [Google Scholar] [CrossRef]
- Gong, H.; Yang, Y.; Yu, B.; Luo, X.; Peng, Y.; Jiang, Y. Coalescence characteristics of droplets dispersed in oil subjected to electric and centrifugal fields. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129398. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, D.; Yang, L.; Xu, J. Breakup and coalescence regularity of non-dilute oil drops in a swirler-type swirling flow field. Chem. Eng. Res. Des. 2018, 129, 35–54. [Google Scholar] [CrossRef]
- Liu, S.; Yang, L.; Zhang, D.; Xu, J. Separation characteristics of the gas and liquid phases in a swirler-type swirling flow field. Int. J. Multiph. Flow 2018, 107, 131–145. [Google Scholar] [CrossRef]
- Li, F.; Fu, W.; Liu, P. Investigation of optimal design and separation performance of the hydrocyclone with a vorticose involute-line diversion feeding body. Powder Technol. 2022, 405, 117523. [Google Scholar] [CrossRef]
- Al-Kayiem, H.H.; Hamza, J.E.; Lemmu, T.A. Performance enhancement of axial concurrent liquid–liquid hydrocyclone separator through optimization of the swirler vane angle. J. Pet. Explor. Prod. Technol. 2020, 10, 2957–2967. [Google Scholar] [CrossRef]
- Cai, B.; Wang, J.; Sun, L.; Zhang, N.; Yan, C. Experimental study and numerical optimization on a vane-type separator for bubble separation in TMSR. Prog. Nucl. Energy 2014, 74, 1–13. [Google Scholar] [CrossRef]
- Mao, R.; Li, Y.; Liu, Y.; Zhu, H.; Wang, N.; Yang, Q.; Lu, H. Separation characters of an axial-flow hydrocyclone with oil collecting pipe. Sep. Purif. Technol. 2023, 305, 122139. [Google Scholar] [CrossRef]
- Zeng, X.; Xu, Y.; Zhao, L.; Fan, G.; Yan, C. Numerical investigation on axial liquid-liquid separators with different swirl chambers. Chem. Eng. Process. Process Intensif. 2021, 161, 108324. [Google Scholar] [CrossRef]
- Tian, Y.; He, L.; Luo, X. Numerical simulation of the effect on flow field of two different methods of guide swirlers in liquid-liquid cyclones. Sci. Technol. Eng. 2018, 18, 153–158. [Google Scholar] [CrossRef]
- He, M.; Tian, Y.; Luo, X. A new method for the guide swirlers design in double—Cone liquid—Liquid cyclon. Acta Pet. Sin. (Pet. Process. Sect.) 2018, 34, 155–165. [Google Scholar] [CrossRef]
- Xing, L.; Jiang, M.; Zhang, Y. Design of De-oiling separator based on oil droplets migration trajectory. In Proceedings of the International Field Exploration and Development Conference 2018; Springer: Singapore; pp. 1716–1727. [CrossRef]
- Xing, L.; Li, J.; Jiang, M.; Zhao, L.; Han, G. Flow field analysis and performance evaluation of a hydrocyclone coalescer. Sep. Sci. Technol. 2022, 57, 3035–3052. [Google Scholar] [CrossRef]
- Chen, J.; Hou, J.; Li, G.; Xu, C.; Zheng, B. The Effect of Pressure Parameters of a Novel Dynamic Hydrocyclone on the Separation Efficiency and Split Ratio. Sep. Sci. Technol. 2015, 50, 781–787. [Google Scholar] [CrossRef]
- Huang, L.; Deng, S.; Guan, J.; Chen, M.; Hua, W. Development of a novel high-efficiency dynamic hydrocyclone for oil–water separation. Chem. Eng. Res. Des. 2018, 130, 266–273. [Google Scholar] [CrossRef]
- Jiao, J.; Zheng, Y.; Wang, J.; Sun, G. Experimental and numerical investigations of a dynamic cyclone with a rotary impeller. Chem. Eng. Process. Process Intensif. 2008, 47, 1861–1866. [Google Scholar] [CrossRef]
- Zhang, Z.; Shao, M.; Ling, X. Experimental study on the separation performance of a novel gas–liquid separator. Adv. Powder Technol. 2022, 33, 103795. [Google Scholar] [CrossRef]
- Liu, P.; Ren, Y.; Feng, M.; Wang, D.; Hu, D. A performance analysis of inverse two-stage dynamic cyclone separator. Powder Technol. 2019, 351, 28–37. [Google Scholar] [CrossRef]
- Bella, A.D.; Anthony, M.M. Apparatus with Voraxial Separator and Analyzer. U.S. Patent 6248231B1, 19 June 2001. [Google Scholar]
- Richter, H.E. Method and Apparatus for Separating Fluids Having Different Specific Gravities. U.S. Patent 5084189, 21 September 1990. [Google Scholar]
- Bella, A.D.; Anthony, M. Voraxial Filtration System with Self-Cleaning Auxiliary Filtration Apparatus. U.S. Patent 7727386B2, 21 November 2003. [Google Scholar]
- Perissinotto, R.M.; Verde, W.M.; Perles, C.E.; Biazussi, J.L.; Castro, M.S.; Bannwart, A.C. Experimental analysis on the behavior of water drops dispersed in oil within a centrifugal pump impeller. Exp. Therm. Fluid Sci. 2020, 112, 109–124. [Google Scholar] [CrossRef]
- Perissinotto, R.M.; Verde, W.M.; Castro, M.S.; Biazussi, J.L.; Estevam, V.; Bannwart, A.C. Experimental investigation of oil drops behavior in dispersed oil-water two-phase flow within a centrifugal pump impeller. Exp. Therm. Fluid Sci. 2019, 105, 11–26. [Google Scholar] [CrossRef]
- Perissinotto, R.M.; Verde, W.M.; Gallassi, M.; Goncalves, G.F.N.; Castro, M.S.; Carneiro, J.; Biazussi, J.L.; Bannwart, A.C. Experimental and numerical study of oil drop motion within an ESP impeller. J. Pet. Sci. Eng. 2019, 175, 881–895. [Google Scholar] [CrossRef]
- Cerqueira, R.F.L.; Perissinotto, R.M.; Verde, W.M.; Biazussi, J.L.; Castro, M.S.; Bannwart, A.C. Development and assessment of a particle tracking velocimetry (PTV) measurement technique for the experimental investigation of oil drops behaviour in dispersed oil–water two-phase flow within a centrifugal pump impeller. Int. J. Multiph. Flow 2023, 159, 104302. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, H.; Li, Y.; Xu, H.; Yang, Q. A review of treatment technologies for produced water in offshore oil and gas fields. Sci. Total Environ. 2021, 775, 145485. [Google Scholar] [CrossRef]
- Wu, D.; Xia, F.; Lin, S.; Cai, X.; Zhang, H.; Liu, W.; Li, Y.; Zhang, R.; Zhang, Y.; Zhang, X.; et al. Effects of secondary emulsification of ASP flooding produced fluid during surface processes on its oil/water separation performances. J. Pet. Sci. Eng. 2021, 202, 108426. [Google Scholar] [CrossRef]
- Murthy, Y.R.; Bhaskar, K.U. Parametric CFD studies on hydrocyclone. Powder Technol. 2012, 230, 36–47. [Google Scholar] [CrossRef]
- Long, H.; Deng, S.; Chen, M.; Guan, J. Numerical simulation and experimental study on a deoiling rotary hydrocyclone. Chem. Eng. Sci. 2017, 172, 107–116. [Google Scholar] [CrossRef]
- Galletti, C.; Rum, A.; Turchi, V.; Nicolella, C. Numerical analysis of flow field and particle motion in a dynamic cyclonic selector. Adv. Powder Technol. 2020, 31, 1264–1273. [Google Scholar] [CrossRef]
Design Parameters | Value |
---|---|
Design capacity (Qin) | 5.0 m3/h |
Blade height (H) | 15.0 mm |
Angular velocity (ω) | 146.6 rad/s |
Number of blades | 6 |
Swirler radius (R) | 35.0 mm |
Blade length (Lb) | 70.0 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, Z.; Ji, Y.; Chen, J.; Wang, X.; Du, H.; Zhang, J.; Yu, H.; Ren, Q.; Hua, Z. Design Methodology for a Low-Shear Rotating Swirler. Separations 2023, 10, 550. https://doi.org/10.3390/separations10110550
Si Z, Ji Y, Chen J, Wang X, Du H, Zhang J, Yu H, Ren Q, Hua Z. Design Methodology for a Low-Shear Rotating Swirler. Separations. 2023; 10(11):550. https://doi.org/10.3390/separations10110550
Chicago/Turabian StyleSi, Zheng, Yipeng Ji, Jiaqing Chen, Xiujun Wang, Hong Du, Jian Zhang, Hai Yu, Qiang Ren, and Zhao Hua. 2023. "Design Methodology for a Low-Shear Rotating Swirler" Separations 10, no. 11: 550. https://doi.org/10.3390/separations10110550
APA StyleSi, Z., Ji, Y., Chen, J., Wang, X., Du, H., Zhang, J., Yu, H., Ren, Q., & Hua, Z. (2023). Design Methodology for a Low-Shear Rotating Swirler. Separations, 10(11), 550. https://doi.org/10.3390/separations10110550