Research Progress on Extraction, Separation, and Purification Methods of Plant Essential Oils
Abstract
:1. Introduction
2. Extraction
2.1. Hydrodistillation (HD) and Steam Distillation (SD)
2.2. Organic Solvent Extraction (OSE)
2.3. Cold Pressing (CP)
2.4. Supercritical Fluid Extraction (SFE)
2.5. Ultrasound-Assisted Extraction (UAE)
2.6. Microwave-Assisted Extraction (MAE)
2.7. Solid-Phase Microextraction (SPME)
Method | Abbreviation | Principle | Pros | Cons | Sample |
---|---|---|---|---|---|
Hydrodistillation/steam distillation | HD/SD | Heating reflux using water or steam | Low cost, non-poisonous, high reproducibility, harmless, and simple operating | Long heating time and high aroma loss | Chinese Pharmacopoeia [25], Teucrium ramosissimum [27], Alseodaphne perakensis (Gamble) Kosterm [28], Malaysian horsfieldia [29], Boswellia sacra [30], and Lemon thyme [31] |
Organic solvent extraction | OSE | Similar solubility | Higher yield but difficult to completely separate from solutes and fully recycle and reuse, even bringing negative effects on human health | Difficult to completely separate from solutes and fully recycle and reuse, even bringing negative effects on human health | Lantana camara leaf [32] and Pelargonium graveolens L’Hérit. (Geraniaceae) [33] |
Cold pressing | CP | Mechanical pressure | Simpler process, lower energy consumption, less environmental pollution; operating at room temperature retains the original aroma and more benefits of the EOs; turbid and impure | Turbid and impure | Moringa oleifera seed [35], Citrus [36], Rapeseed (Brassica napus) [37], Bergamot [38], and Lemon [39] |
Supercritical fluid extraction | SFE | Special dissolution effect of supercritical fluids | Faster extraction speed, higher extraction yield, less loss of active ingredients, and low critical temperature and pressure; expensive and difficult to control the final concentration; poses a potential safety hazard | Expensive, difficult to control the final concentration; poses a potential safety hazard | Sunflower oil [40], Red radish seeds [41], Origanum vulgare L. [42], Hemp (Cannabis sativa) [43], Chlorella pyrenoidosa [44], and Clove [45] |
Ultrasound-assisted extraction | UAE | Mechanical wave with an effective frequency generally ranging from 20 to 50 kHz | High product yield, low organic solvents, short processing time, and low maintenance costs | High equipment requirements and costs; not suitable for industrial large-scale production | Papaya seed [49], Origanum syriacum [52], Elettaria cardamomum Maton [53], and Pomegranate seed [54] |
Microwave-assisted extraction | MAE | Electromagnetic waves with wavelengths from 0.01 to 1 m and frequencies from 0.3 to 300 GHz | High utilization of energy, high extraction rate, and short extraction time, avoiding the chemical modification of the oil components | High equipment requirements and costs; not suitable for industrial large-scale production | Citrus limon (Lisbon variety) peel [59], Humulus lupulus [60], Thymus vulgaris L. [61], Lavender [62], Peppermint [63], Thymus mastichina [64] |
Solid-phase microextraction (SPME) | SPME | Similar solubility | No solvent; simpler, lower cost, more selective and flexible when paired with appropriate detectors GC, LC, and CE | Perform no detailed extraction | Brazilian virgin oil [70], Mentha pulegium L. (Lamiaceae) [71] |
3. Separation and Purification
3.1. Chromatography
3.2. Macroporous Resin (MR)
3.3. Chemical Reaction (CR) and Chemical Separation (CS)
3.4. Melt Crystallization (MC) and Three-Phase Crystallization (TPC)
3.5. Pervaporation (PV)
3.6. Molecular Distillation (MD)
3.7. Ultrasound-Assisted Purification (UAP)
Method | Abbreviation | Principle | Pros | Cons | Sample |
---|---|---|---|---|---|
Column chromatography | CC | Substances move at different speeds in a certain matrix | High separation efficiency for substances with very similar properties | Long time; require relatively large quantities of solvents | Trachyspermum ammi (L.) Sprague. seeds [74], Lavender [75], Michelia formosana leaf [76] |
Countercurrent chromatography | CCC | Distribution effect of the sample between two immiscible solvents | No irreversible adsorption; high recovery | Lack of mature theoretical guidance; not suitable for industrial large-scale production | Curcumae rhizoma [80], Flaveria bidentis (L.) Kuntze [81], Cuminum cyminum L. [82], Curcuma wenyujin [83], Fruits of Alpinia oxyphylla Miquel [84], Pimenta pseudocaryophyllus leaf [85], Ligusticum chuanxiong Hort. [86] |
Macroporous resin | MR | Organic material with good adsorption performance | Easily regenerated and relatively low-cost | Strict pre-treatment and regeneration requirements | Houttuynia cordata Thunb. [89], Atractylodis macrocephalae rhizoma [90] |
Chemical reaction | CR | Synthesis via chemical reaction | High purity; multiple steps, long time, and high cost | Multiple steps, long time, and high cost | Ginger [91] |
Chemical separation | CS | Treating each component one by one using a series of chemical methods based on the structure or unique functional groups of each component | Simple, fast, and diverse solvent types | Complex; difficult to obtain a single component | Eugenol clove [92] and Eugenol [93] |
Melt crystallization | MC | Crystallization | No solvents; high purity, low cost, and low temperature; simple and safe without high equipment investment, environmentally friendly, and energy-saving | Complex relatively; possible formation of solid solution | Ethylene glycol [95] |
Three-phase crystallization | TPC | Crystallization and vaporization | No solvents; high purity, low cost, and low temperature; simple and safe without high equipment investment, environmentally friendly, and energy-saving; no need for solid/liquid separation and crystal cleaning; no solid solution formation | Complicated process | Menthol [100] and L-menthol [101,102] |
Pervaporation | PV | A membrane with high potential for purifying substances that degrade/decompose at high temperatures | Low energy consumption and high efficiency | Expensive; high demands for membrane and equipment | Strawberry aroma [113,114] |
Molecular distillation | MD | Utilizing the differences in average free path and volatility of molecules from different substances | Short heating time and good separation effect | High demands for equipment, high production costs | Basil [118], Oregano [119], Lavender [120], Rosemary [121], and Ginger [122] |
Ultrasound-assisted purification | UAP | Mechanical wave with an effective frequency generally ranging from 20 to 50 kHz with the comprehensive effects of cavitation, vibration, crushing, and stirring | High product yield, low organic solvents, short processing time, low maintenance costs, and low aroma loss | High demands for equipment; not suitable for industrial large-scale production | Red pepper seed [123] |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential oils: Extraction techniques, pharmaceutical and therapeutic potential—A review. Curr. Drug Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef]
- Pandey, A.K.; Kumar, P.; Singh, P.; Tripathi, N.N.; Bajpai, V.K. Essential oils: Sources of antimicrobials and food preservatives. Front. Microbiol. 2017, 16, 2161. [Google Scholar] [CrossRef]
- Miranda, M.; Cruz, M.T.; Vitorino, C.; Cabral, C. Nanostructuring lipid carriers using Ridolfia segetum (L.) Moris essential oil. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 103, 109804. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.H.; Yin, J.Z.; Xu, Q.L. Supercritical CO2 Extraction of Essential Oils and Concretes from Flowers. Fine Chem. 2004, 21, 103–107. [Google Scholar]
- Della, P.G.; Taddeo, R.; D’Urso, E. Isolation of clove bud and star anise essential oil by supercritical CO2 extraction. Food Sci. Technol. 1998, 31, 454–460. [Google Scholar]
- Wang, Y.; Yi, L.; Liang, Y.; Li, H.; Yuan, D.; Gao, H.; Zeng, M. Comparative analysis of essential oil components in Pericarpium citri reticulatae viride and Pericarpium citri reticulatae by gc-ms combined with chemometric resolution method. J. Pharmaceut. Biomed. 2008, 46, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Ben, H.A.; Ben, H.N.; Smaoui, S.; Hamdi, N. Citrus lemon essential oil: Chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Lipids. Health Dis. 2017, 16, 146. [Google Scholar]
- Romero, M.C.; Valero, A.; Martín, S.J.; Navarro, M.M.C. Activity of Matricaria chamomilla essential oil against anisakiasis. Phytomedicine 2012, 19, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.C.; Wang, H.F.; Yih, K.H.; Chang, L.Z.; Chang, T.M. Dual bioactivities of essential oil extracted from the leaves of Artemisia argyi as an antimelanogenic versus antioxidant agent and chemical composition analysis by gc/ms. Int. J. Mol. Sci. 2012, 13, 79–97. [Google Scholar] [CrossRef]
- Chaieb, K.; Hajlaoui, H.; Zmantar, T.; Kahla, N.A.B.; Rouabhia, M.; Mahdouani, K.; Bakhrouf, A. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. myrtaceae): A short review. Phytother. Res. 2007, 21, 501–506. [Google Scholar] [CrossRef]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential oils as antimicrobial agents-myth or real alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef] [PubMed]
- Cimino, C.; Maurel, O.M.; Musumeci, T.; Bonaccorso, A.; Drago, F.; Souto, E.M.B.; Pignatello, R.; Carbone, C. Essential oils: Pharmaceutical applications and encapsulation strategies into lipid-based delivery systems. Pharmaceutics 2021, 13, 327. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Morris-Natschke, S.; Qian, K.; Dong, Y.; Yang, X.; Zhou, T.; Belding, E.; Wu, S.F.; Wada, K.; Akiyama, T. Recent progress of research on herbal products used in traditional Chinese medicine: The herbs belonging to the Divine Husbandman’s Herbal Foundation Canon (Shén Nóng Běn Cǎo Jīng). J. Tradit. Complement. Med. 2012, 2, 6–26. [Google Scholar] [CrossRef] [PubMed]
- Dosoky, N.S.; Setzer, W.N. Biological activities and safety of Citrus spp. essential oils. Int. J. Mol. Sci. 2018, 19, 1966. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kim, D.S.; Park, S.H.; Park, H. Phytochemistry and applications of Cinnamomum camphora essential oils. Molecules 2022, 27, 2695. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Ren, S.; Yang, H.; Tang, S.; Guo, C.; Liu, M.; Tao, Q.; Ming, T.; Xu, H. Peppermint essential oil: Its phytochemistry, biological activity, pharmacological effect and application. Biomed. Pharmacother. 2022, 154, 113559. [Google Scholar] [CrossRef] [PubMed]
- Haro, G.J.N.; Castillo, H.G.A.; Martínez, V.M.; Espinosa, A.H. Clove essential oil (Syzygium aromaticum L. myrtaceae): Extraction, chemical composition, food applications, and essential bioactivity for human health. Molecules 2021, 26, 6387. [Google Scholar]
- Reis, D.; Jones, T. Aromatherapy: Using essential oils as a supportive therapy. Clin. J. Oncol. Nurs. 2017, 21, 16–19. [Google Scholar] [CrossRef]
- Abiodun, O.A.; Akinoso, R.; Olosunde, O.O.; Adegbite, J.A.; Omolola, O.A. Nutritional quality and essential oil compositions of Thaumatococcus danielli (Benn.) tissue and seed. Food Chem. 2014, 160, 286–291. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Astatkie, T.; Schlegel, V. Hydrodistillation extraction time effect on essential oil yield, composition, and bioactivity of coriander oil. J. Oleo Sci. 2014, 63, 857–865. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Horgan, T.; Astatkie, T.; Schlegel, V. Distillation time modifies essential oil yield, composition, and antioxidant capacity of fennel (Foeniculum vulgare Mill). J. Oleo Sci. 2013, 62, 665–672. [Google Scholar] [CrossRef]
- Chen, F.; Jia, J.; Zhang, Q.; Gu, H.; Yang, L. A modified approach for isolation of essential oil from fruit of Amorpha fruticosa Linn using microwave-assisted hydrodistillation concatenated liquid-liquid extraction. J. Chromatogr. A 2017, 1524, 254–265. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.H.; Liu, T.T.; Yang, L.; Zu, Y.G.; Chen, X.; Zhang, L.; Zhang, Y.; Zhao, C. Ionic liquid-based microwave-assisted extraction of essential oil and biphenyl cyclooctene lignans from Schisandra chinensis baill fruits. J. Chromatogr. A 2011, 1218, 8573–8580. [Google Scholar] [CrossRef] [PubMed]
- Madi, Y.F.; Choucry, M.A.; Meselhy, M.R.; El-Kashoury, E.A. Essential oil of Cymbopogon citratus cultivated in Egypt: Seasonal variation in chemical composition and anticholinesterase activity. Nat. Prod. Res. 2021, 21, 4063–4067. [Google Scholar] [CrossRef]
- National Pharmacopoeia Committee. Pharmacopoeia of People’s Republic of China; Medical Science and Technology Press: Beijing, China, 2020; Volume 233. [Google Scholar]
- El Kharraf, S.; Faleiro, M.L.; Abdellah, F.; El-Guendouz, S.; El Hadrami, E.M.; Miguel, M.G. Simultaneous hydrodistillation-steam distillation of Rosmarinus officinalis, Lavandula angustifolia and Citrus aurantium from Morocco, Major Terpenes: Impact on biological activities. Molecules 2021, 26, 5452. [Google Scholar] [CrossRef]
- Ghazouani, N.; Sifaoui, I.; Bachrouch, O.; Abderrabba, M.; Pinero, J.E.; Lorenzo-Morales, J. Essential oil composition and anti Acanthamoeba studies of Teucrium ramosissimum. Exp. Parasitol. 2017, 183, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Anuar, M.Z.A.; Salleh, W.; Khamis, S.; Nafiah, M.A.; Mat, S.Z. Essential oil composition of Alseodaphne perakensis (Gamble) kosterm from Malaysia. Nat. Prod. Res. 2021, 35, 508–511. [Google Scholar] [CrossRef]
- Salleh, W.; Shakri, N.M.; Khamis, S.; Setzer, W.N.; Nadri, M.H. Chemical composition of three malaysian Horsfieldia essential oils. Nat. Prod. Res. 2022, 36, 1909–1913. [Google Scholar] [CrossRef]
- Suhail, M.M.; Wu, W.; Cao, A.; Mondalek, F.G.; Fung, K.M.; Shih, P.T.; Fang, Y.T.; Woolley, C.; Young, G.; Lin, H.K. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells. BMC Complem. Altern. Med. 2011, 11, 129. [Google Scholar] [CrossRef]
- Jurevičiūtė, R.; Ložienė, K.; Bruno, M.; Maggio, A.; Rosselli, S. Composition of essential oil of lemon thyme (thymus × citriodorus) at different hydrodistillation times. Nat. Prod. Res. 2019, 33, 80–88. [Google Scholar] [CrossRef]
- Ayalew, A.A. Chromatographic and spectroscopic determination of solvent-extracted lantana camara leaf oil. J. Int. Med. Res. 2020, 48, 300060520962344. [Google Scholar] [CrossRef]
- Fekri, N.; El, A.D.; Owis, A.; AbouZid, S. Studies on essential oil from rose-scented geranium, Pelargonium graveolens L’hérit. (Geraniaceae). Nat. Prod. Res. 2021, 35, 2593–2597. [Google Scholar] [CrossRef] [PubMed]
- Filly, A.; Fernandez, X.; Minuti, M.; Visinoni, F.; Cravotto, G.; Chemat, F. Solvent-free microwave extraction of essential oil from aromatic herbs: From laboratory to pilot and industrial scale. Food. Chem. 2014, 150, 193–198. [Google Scholar] [CrossRef]
- Gharsallah, K.; Rezig, L.; B’chir, F.; Bourgou, S.; Achour, N.B.; Jlassi, C.; Soltani, T.; Chalh, A. Composition and characterization of cold pressed Moringa oleifera seed oil. J. Oleo Sci. 2022, 71, 1263–1273. [Google Scholar] [CrossRef] [PubMed]
- Siano, F.; Cautela, D. Assessment of free plant sterols in cold pressed Citrus essential oils. Nat. Prod. Res. 2021, 35, 4078–4083. [Google Scholar] [CrossRef] [PubMed]
- Chew, S.C. Cold-pressed rapeseed (Brassica napus) oil: Chemistry and functionality. Food. Res. Int. 2020, 131, 108997. [Google Scholar] [CrossRef]
- Belsito, E.L.; Carbone, C.; Di Gioia, M.L.; Leggio, A.; Liguori, A.; Perri, F.; Siciliano, C.; Viscomi, M.C. Comparison of the volatile constituents in cold-pressed bergamot oil and a volatile oil isolated by vacuum distillation. J. Agric. Food Chem. 2007, 55, 7847–7851. [Google Scholar] [CrossRef]
- Li, G.; Xiang, S.; Pan, Y.; Long, X.; Cheng, Y.; Han, L.; Zhao, X. Effects of cold-pressing and hydrodistillation on the active non-volatile components in lemon essential oil and the effects of the resulting oils on aging-related oxidative stress in mice. Front. Nutr. 2021, 8, 689–694. [Google Scholar] [CrossRef]
- Rai, A.; Mohanty, B.; Bhargava, R. Supercritical extraction of sunflower oil: A central composite design for extraction variables. Food Chem. 2016, 192, 647–659. [Google Scholar] [CrossRef]
- Wrona, O.; Rafińska, K.; Możeński, C.; Buszewski, B. Supercritical Fluid Extraction of Bioactive Compounds from Plant Materials. J. AOAC Int. 2017, 100, 1624–1635. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, X.; Fu, M. Integrated utilization of red radish seeds for the efficient production of seed oil and sulforaphene. Food Chem. 2016, 192, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Cheng, F.; Aimila, A.; Zhang, J.; Maiwulanjiang, M. Process optimization for supercritical carbon dioxide extraction of Origanum vulgare L. essential oil based on the yield, carvacrol, and thymol contents. J. AOAC Int. 2022, 105, 1719–1729. [Google Scholar] [CrossRef]
- Naz, S.; Hanif, M.A.; Ansari, T.M.; Alsabahi, J.N. A comparative study on hemp (Cannabis sativa) essential oil extraction using traditional and advanced techniques. Spectrosc. Spect. Anal. 2017, 37, 306–311. [Google Scholar]
- Fan, X.D.; Hou, Y.; Huang, X.X.; Qiu, T.Q.; Jiang, J.G. Ultrasound-enhanced subcritical CO2 extraction of lutein from Chlorella pyrenoidosa. J. Agric. Food Chem. 2015, 63, 4597–4605. [Google Scholar] [CrossRef]
- Wei, M.C.; Xiao, J.; Yang, Y.C. Extraction of α-humulene-enriched oil from clove using ultrasound-assisted supercritical carbon dioxide extraction and studies of its fictitious solubility. Food Chem. 2016, 210, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Sivaramakrishnan, R.; Incharoensakdi, A. Microalgae as feedstock for biodiesel production under ultrasound treatment—A review. Bioresour. Technol. 2018, 250, 877–887. [Google Scholar] [CrossRef]
- Wang, M.; Yuan, W. Modeling bubble dynamics and radical kinetics in ultrasound induced microalgal cell disruption. Ultrason. Sonochem. 2016, 28, 7–14. [Google Scholar] [CrossRef]
- Samaram, S.; Mirhosseini, H.; Tan, C.P.; Ghazali, H.M.; Bordbar, S.; Serjouie, A. Optimisation of ultrasound-assisted extraction of oil from papaya seed by response surface methodology: Oil recovery, radical scavenging antioxidant activity, and oxidation stability. Food Chem. 2015, 172, 7–17. [Google Scholar] [CrossRef]
- Vinatoru, M. Ultrasonically assisted extraction (uae) of natural products some guidelines for good practice and reporting. Ultrason. Sonochem. 2015, 25, 94–95. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Zhang, H.; Dzah, C.S.; Zandile, M.; Duan, Y.; Ma, H.; Luo, X. Advances in ultrasound assisted extraction of bioactive compounds from cash crops—A review. Ultrason. Sonochem. 2018, 48, 538–549. [Google Scholar] [CrossRef]
- Shehadeh, M.; Jaradat, N.; Almasri, M.; Zaid, A.N.; Hussein, F.; Khasati, A.; Suaifan, G.; Darwish, R. Rapid, cost-effective and organic solvent-free production of biologically active essential oil from mediterranean wild Origanum syriacum. Saudi Pharm. J. 2019, 27, 612–618. [Google Scholar] [CrossRef]
- Sereshti, H.; Rohanifar, A.; Bakhtiari, S.; Samadi, S. Bifunctional ultrasound assisted extraction and determination of Elettaria cardamomum Maton essential oil. J. Chromatogr. A 2012, 1238, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Goula, A.M. Ultrasound-assisted extraction of pomegranate seed oil–kinetic modeling. J. Food Eng. 2013, 11, 492–498. [Google Scholar] [CrossRef]
- Virot, M.; Tomao, V.; Le Bourvellec, C.; Renard, C.M.; Chemat, F. Towards the industrial production of antioxidants from food processing by-products with ultrasound-assisted extraction. Ultrason. Sonochem. 2010, 17, 1066–1074. [Google Scholar] [CrossRef]
- Delazar, A.; Nahar, L.; Hamedeyazdan, S.; Sarker, S.D. Microwave-assisted extraction in natural products isolation. Methods Mol. Biol. 2012, 864, 89–115. [Google Scholar] [PubMed]
- Kaufmann, B.; Christen, P. Recent extraction techniques for natural products: Microwave-assisted extraction and pressurised solvent extraction. Phytochem. Anal. 2002, 13, 105–113. [Google Scholar] [CrossRef]
- Farzaneh, V.; Carvalho, I.S. Modelling of microwave assisted extraction (mae) of anthocyanins (tma). J. Appl. Res. Med. Aromat. Plants 2017, 6, 92–100. [Google Scholar] [CrossRef]
- Golmakani, M.T.; Moayyedi, M. Comparison of heat and mass transfer of different microwave-assisted extraction methods of essential oil from Citrus limon (Lisbon variety) peel. Food Sci. Nutr. 2015, 3, 506–518. [Google Scholar] [CrossRef]
- Tyśkiewicz, K.; Gieysztor, R.; Konkol, M.; Szałas, J.; Rój, E. Essential oils from Humulus lupulus scCO₂ extract by hydrodistillation and microwave-assisted hydrodistillation. Molecules 2018, 23, 2866. [Google Scholar] [CrossRef]
- Golmakani, M.T.; Rezaei, K. Comparison of microwave-assisted hydrodistillation with the traditional hydrodistillation method in the extraction of essential oils from Thymus vulgaris L. Food Chem. 2008, 109, 925–930. [Google Scholar] [CrossRef]
- Liu, B.; Fu, J.; Zhu, Y.; Chen, P. Optimization of microwave-assisted extraction of essential oil from lavender using response surface methodology. J. Oleo Sci. 2018, 67, 1327–1337. [Google Scholar] [CrossRef]
- Radivojac, A.; Bera, O.; Zeković, Z.; Teslić, N.; Mrkonjić, Ž.; Bursać, K.D.; Putnik, P.; Pavlić, B. Extraction of peppermint essential oils and lipophilic compounds: Assessment of process kinetics and environmental impacts with multiple techniques. Molecules 2021, 26, 2879. [Google Scholar] [CrossRef] [PubMed]
- Araujo, A.R.T.S.; Périno, S.; Fernandez, X.; Cunha, C.; Rodrigues, M.; Ribeiro, M.P.; Jordao, L.; Silva, L.A.; Rodilla, J.; Coutinho, P.; et al. Solvent-free microwave extraction of Thymus mastichina essential oil: Influence on their chemical composition and on the antioxidant and antimicrobial activities. Pharmaceuticals 2021, 14, 709. [Google Scholar] [CrossRef]
- Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. J. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Pawliszyn, J. New directions in sample preparation for analysis of organic compounds. Trac Trends Anal. Chem. 1995, 14, 113–122. [Google Scholar] [CrossRef]
- Lord, H.; Pawliszyn, J. Evolution of solid-phase microextraction technology. J. Chromatogr. A 2000, 885, 153–193. [Google Scholar] [CrossRef]
- Salleh, S.H.; Saito, Y.; Kiso, Y. Solventless sample preparation procedure for organophosphorus pesticides analysis using solid phase microextraction and on-line supercritical fluid extraction/high performance liquid chromatography technique. Anal. Chim. Acta 2001, 433, 207–215. [Google Scholar] [CrossRef]
- Jarmalaviciene, R.; Szumski, M.; Kornysova, O.; Kłodzińska, E.; Westerlund, D.; Krawczyk, S.; Mickevicius, D.; Buszewski, B.; Maruska, A. Coupling of solid-phase microextraction continuous bed (monolithic) capillaries with capillary zone electrophoresis for direct analysis of drugs in biological fluids. Electrophoresis 2008, 29, 1753–1760. [Google Scholar] [CrossRef]
- Lima, A.F.; Oliveira, W.d.S.; Garcia, A.d.O.; Vicente, E.; Godoy, H.T. Identifying markers volatiles in brazilian virgin oil by multiple headspace solid-phase microextraction, and chemometrics tools. Food Res. Int. 2023, 167, 112697. [Google Scholar] [CrossRef]
- Mohammadhosseini, M.; Venditti, A.; Mahdavi, B. Characterization of essential oils and volatiles from the aerial parts of Mentha pulegium L. (Lamiaceae) using microwave-assisted hydrodistillation (mahd) and headspace solid phase microextraction (hs-spme) in combination with gc-ms. Nat. Prod. Res. 2023, 37, 338–342. [Google Scholar] [CrossRef]
- María, T.T.; José, D.C. Multiple solid-phase microextraction: Theory and applications. Trac Trends Anal. Chem. 2007, 26, 206–214. [Google Scholar]
- Caputo, L.; Amato, G.; de Bartolomeis, P.; De Martino, L.; Manna, F.; Nazzaro, F.; De Feo, V.; Barba, A.A. Impact of drying methods on the yield and chemistry of Origanum vulgare L. essential oil. Sci. Rep. 2022, 12, 3845. [Google Scholar] [CrossRef] [PubMed]
- Moein, M.R.; Zomorodian, K.; Pakshir, K.; Yavari, F.; Motamedi, M.; Zarshenas, M.M. Trachyspermum ammi (L.) Sprague: Chemical composition of essential oil and antimicrobial activities of respective fractions. J. Evid.-Based Compl. Alt. Med. 2015, 20, 50–56. [Google Scholar] [CrossRef]
- Dong, G.; Bai, X.; Aimila, A.; Aisa, H.A.; Maiwulanjiang, M. Study on lavender essential oil chemical compositions by gc-ms and improved pgc. Molecules 2020, 25, 3166. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C.; Huang, S.L.; Ko, C.H.; Chang, H.T. Antifungal sesquiterpenoids from Michelia formosana leaf essential oil against wood-rotting fungi. Molecules 2022, 27, 2136. [Google Scholar] [CrossRef]
- Bojczuk, M.; Zyzelewicz, D.; Hodurek, P. Centrifugal partition chromatography—A review of recent applications and some classic references. J. Sep. Sci. 2017, 40, 1597–1609. [Google Scholar] [CrossRef]
- Friesen, J.B.; Mcalpine, J.B.; Chen, S.N.; Pauli, G.F. Countercurrent separation of natural products: An update. J. Nat. Prod. 2015, 78, 1765–1796. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.M.; Wang, J.Y.; Chen, X.M.; Le, Z.X.; Chen, Y.X.; Zheng, W. Application of silver ion in the separation of macrolide antibiotic components by high-speed counter-current chromatography. J. Chromatogr. A 2009, 1216, 4668–4672. [Google Scholar] [CrossRef]
- Lu, M.; Wang, X.; Bu, Z.; Lv, L.; Tong, S. Silver ion coordination countercurrent chromatography: Separation of β-elemene from the volatile oil of Curcumae rhizoma. J. Sep. Sci. 2017, 40, 3740–3747. [Google Scholar] [CrossRef]
- Wei, Y.; Du, J.L.; Lu, Y.Y. Preparative separation of bioactive compounds from essential oil of Flaveria bidentis (L.) kuntze using steam distillation extraction and one step high-speed counter-current chromatography. J. Sep. Sci. 2012, 35, 2608–2614. [Google Scholar] [CrossRef]
- Chen, Q.Q.; Hu, X.F.; Li, J.M.; Liu, P.; Yang, Y.; Ni, Y.Y. Preparative isolation and purification of cuminaldehyde and p-menta-1,4-dien-7-al from the essential oil of Cuminum cyminum L. by high-speed counter-current chromatography. Anal. Chim. Acta 2011, 689, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.Y.; Li, X.C.; Zhang, Q.W.; Li, S.P.; Wang, Y.T. Preparative isolation and purification of six volatile compounds from essential oil of Curcuma wenyujin using high-performance centrifugal partition chromatography. J. Sep. Sci. 2010, 33, 1658–1664. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.C.; Sun, B.G.; Wang, S.B.; Ito, Y. Isolation and purification of nootkatone from the essential oil of fruits of Alpinia oxyphylla miquel by high-speed counter-current chromatography. Food Chem. 2009, 117, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Santos, B.C.B.D.; Silva, J.C.T.D.; Guerrero, J.P.G.; Leitão, G.G.; Barata, L.E.S. Isolation of chavibetol from essential oil of Pimenta pseudocaryophyllus leaf by high-speed counter-current chromatography. J. Chromatogr. A 2009, 1216, 4303–4306. [Google Scholar] [CrossRef]
- Zhang, D.L.; Teng, H.L.; Li, G.S.; Liu, K.; Su, Z.G. Separation and purification of z ligustilide and senkyunolide a from Ligusticum chuanxiong Hort. with supercritical fluid extraction and high-speed counter current chromatography. J. Sep. Sci. 2006, 41, 3397–3408. [Google Scholar] [CrossRef]
- Gao, M.; Huang, W.; Liu, C.Z. Separation of scutellarin from crude extracts of Erigeron breviscapus (Vant.) hand. mazz. by macroporous resins. J. Chromatogr. B 2007, 858, 22–26. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, M.; Lin, L. Adsorption and desorption characteristics of adlay bran free phenolics on macroporous resins. Food Chem. 2016, 194, 900–907. [Google Scholar] [CrossRef]
- Pang, J.; Dong, W.; Li, Y.; Xia, X.; Liu, Z.; Hao, H.; Jiang, L.; Liu, Y. Purification of Houttuynia cordata Thunb. essential oil using macroporous resin followed by microemulsion encapsulation to improve its safety and antiviral activity. Molecules 2017, 22, 293. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Ran, X.; Dou, D.; Li, B.; Yang, B.; Li, W.; Koike, K.; Kuang, H. What caused the changes in the usage of Atractylodis macrocephalae Rhizoma from ancient to current times? Nat. Med. 2016, 70, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Millar, J.G. Rapid and simple isolation of zingiberene from ginger essential oil. J. Nat. Prod. 1998, 61, 1025–1026. [Google Scholar] [CrossRef]
- Elbestawy, M.K.M.; Elsherbiny, G.M.; Moghannem, S.A. Antibacterial, antibiofilm and anti-inflammatory activities of eugenol clove essential oil against resistant Helicobacter pylori. Molecules 2023, 28, 2448. [Google Scholar] [CrossRef] [PubMed]
- Bisergaeva, R.A.; Takaeva, M.A.; Sirieva, Y.N. Extraction of eugenol, a natural product, and the preparation of eugenol benzoate. J. Phys. Conf. Ser. 2021, 1889, 22–85. [Google Scholar] [CrossRef]
- Jiang, X.; Li, M.; He, G. Research progress and model development of crystal layer growth and impurity distribution in layer melt crystallization: A review. Ind. Eng. Chem. Res. 2014, 53, 13211–13227. [Google Scholar] [CrossRef]
- Wang, T.; Li, X.; Dong, J. Ethylene glycol purification by melt crystallization: Removal of short-chain glycol impurities. Ind. Eng. Chem. Res. 2020, 59, 567–580. [Google Scholar] [CrossRef]
- Micovic, J.; Beierling, T.; Lutze, P. Design of hybrid distillation/melt crystallisation processes for separation of close boiling mixtures. Chem. Eng. Process. 2013, 67, 16–24. [Google Scholar] [CrossRef]
- Wellinghoff, G.; Wintermantel, K. Melt crystallization: Theoretical premises and technical limitations. Inter. Chem. Eng. 1994, 2, 899–910. [Google Scholar]
- Jia, S.; Gao, Z.; Tian, N. Review of melt crystallization in the pharmaceutical field, towards crystal engineering and continuous process development. Chem. Eng. Res. Des. 2020, 166, 268–280. [Google Scholar] [CrossRef]
- Shiau, L.D. Purification of p-cresol, o-cresol, m-cresol and 2,6-xylenol from the quaternary mixture by three-phase crystallization. Ind. Eng. Chem. Res. 2023, 62, 8010–8020. [Google Scholar] [CrossRef]
- Eccles, R. Menthol and related cooling compounds. J. Pharm. Pharmacol. 1994, 46, 618–630. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Yang, S.C.; Ku, K.F.; Shiau, L.D. The Influence of the solid solution formation on purification of L-menthol from the enantiomer mixture by three-phase crystallization. Int. J. Mol. Sci. 2023, 24, 14933. [Google Scholar] [CrossRef]
- Hamasaki, K.; Kato, K.; Watanabe, T.; Yoshimura, Y.; Nakazawa, H.; Yamamoto, A.; Matsunaga, A. Determination of L-menthol in pharmaceutical products by high performance liquid chromatography with polarized photometric detection. J. Pharm. Biomed. Anal. 1998, 16, 1275–1280. [Google Scholar] [CrossRef] [PubMed]
- Silvestre, W.P.; Baldasso, C.; Tessaro, I.C. Potential of chitosan-based membranes for the separation of essential oil components by target-organophilic pervaporation. Carbohydr. Polym. 2020, 247, 116676. [Google Scholar] [CrossRef] [PubMed]
- Rajawat, A.; Subramanian, S.; Ramakrishna, S. Progress on silica pervaporation membranes in solvent dehydration and solvent recovery processes. Materials 2020, 15, 3354. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Boczkaj, G. Pervaporation zeolite-based composite membranes for solvent separations. Molecules 2021, 26, 1242. [Google Scholar] [CrossRef] [PubMed]
- Galiano, F.; Castro, M.R.; Figoli, A. Pervaporation, vapour permeation and membrane distillation: From membrane fabrication to application. Membranes 2021, 11, 162. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.H.; Li, S.H.; Mao, H.; Li, Y.; Zhang, A.S.; Wang, S.; Liu, W.M.; Lv, J.; Wang, T.; Cai, W.W.; et al. Highly flexible and superhydrophobic MOF nanosheet membrane for ultrafast alcohol-water separation. Science 2022, 378, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Lakshmy, K.S.; Lal, D.; Nair, A.; Babu, A.; Das, H.; Govind, N.; Dmitrenko, M.; Kuzminova, A.; Korniak, A.; Penkova, A.; et al. Pervaporation as a successful tool in the treatment of industrial liquid mixtures. Polymers 2022, 14, 1604. [Google Scholar] [CrossRef]
- Cheng, X.; Pan, F.; Wang, M.; Li, W.; Song, Y.; Liu, G.; Jiang, Z. Hybrid membranes for pervaporation separations. J. Membr. Sci. 2017, 541, 329–346. [Google Scholar] [CrossRef]
- Jyoti, G.; Keshav, A.; Anandkumar, J. Review on pervaporation: Theory, membrane performance, and application to intensification of esterification reaction. J. Eng. 2015, 2015, 1–24. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Luis, P. Pervaporation as a tool in chemical engineering: A new era? Curr. Opin. Chem. Eng. 2014, 4, 47–53. [Google Scholar] [CrossRef]
- Castro, M.R. Pervaporation: The emerging technique for extracting aroma compounds from food systems. J. Food Eng. 2018, 253, 27–39. [Google Scholar] [CrossRef]
- Isci, A.; Sahin, S.; Sumnu, G. Recovery of strawberry aroma compounds by pervaporation. J. Food Eng. 2005, 75, 36–42. [Google Scholar] [CrossRef]
- Overington, A.; Wong, M.; Harrison, J.; Ferreira, L. Concentration of dairy flavour compounds using pervaporation. Int. Dairy J. 2008, 18, 835–848. [Google Scholar] [CrossRef]
- She, M.; Hwang, S.T. Concentration of dilute flavor compounds by pervaporation: Permeate pressure effect and boundary layer resistance modeling. J. Membr. Sci. 2004, 236, 193–202. [Google Scholar] [CrossRef]
- Sae-Khow, O.; Mitra, S. Pervaporation in chemical analysis. J. Chromatogr. A 2010, 1217, 2736–2746. [Google Scholar] [CrossRef]
- Silvestre, W.P.; Livinalli, N.F.; Baldasso, C.; Tessaro, I.C. Pervaporation in the separation of essential oil components: A review. Trends Food Sci. Technol. 2019, 93, 42–52. [Google Scholar] [CrossRef]
- Martins, P.F.; Carmona, C.; Martines, E.L.; Sbaite, P.; Maciel Filho, R.; Wolf, M.M.R. Short path evaporation for methyl chavicol enrichment from basil essential oil. Sep. Purif. Technol. 2012, 87, 71–78. [Google Scholar] [CrossRef]
- Borgarello, A.V.; Mezza, G.N.; Soltermann, A.T.; Pramparo, M.C. Use of a free radical scavenging method on extracts obtained by molecular distillation from oregano essential oil. Lat. Am. Appl. Res. 2014, 44, 25–30. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, L.; Liu, F.; Yao, L.; Wang, W.; Yang, S.; Han, T. Lavender essential oil fractions alleviate sleep disorders induced by the combination of anxiety and caffeine in mice. J. Ethnopharmacol. 2023, 302, 115868. [Google Scholar] [CrossRef]
- Mezza, G.N.; Borgarello, A.V.; Grosso, N.R.; Fernandez, H.; Pramparo, M.C.; Gayol, M.F. Antioxidant activity of rosemary essential oil fractions obtained by molecular distillation and their effect on oxidative stability of sunflower oil. Food Chem. 2018, 242, 9–15. [Google Scholar] [CrossRef]
- Guo, J.G.; Yang, S.; Wu, Y.H.; Zhu, Q.; Du, J.J.; Jiang, J. Purification of ginger essential oil by supercritical combined with molecular distillation and analysis of its volatile constituents. Food Ferment. Ind. 2023, 1–10. [Google Scholar]
- Liu, H.M.; Yao, Y.G.; Ma, Y.X.; Wang, X.D. Ultrasound-assisted desolventizing of fragrant oil from red pepper seed by subcritical propane extraction. Ultrason. Sonochem. 2020, 63, 104943. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Li, J.; Wang, X.; Liu, L.; Li, Y.; Song, R.; Zhang, M.; Li, X. Research Progress on Extraction, Separation, and Purification Methods of Plant Essential Oils. Separations 2023, 10, 596. https://doi.org/10.3390/separations10120596
Zhou W, Li J, Wang X, Liu L, Li Y, Song R, Zhang M, Li X. Research Progress on Extraction, Separation, and Purification Methods of Plant Essential Oils. Separations. 2023; 10(12):596. https://doi.org/10.3390/separations10120596
Chicago/Turabian StyleZhou, Weiwei, Jun Li, Xuefeng Wang, Ling Liu, Yun Li, Rui Song, Mengxue Zhang, and Xiumei Li. 2023. "Research Progress on Extraction, Separation, and Purification Methods of Plant Essential Oils" Separations 10, no. 12: 596. https://doi.org/10.3390/separations10120596
APA StyleZhou, W., Li, J., Wang, X., Liu, L., Li, Y., Song, R., Zhang, M., & Li, X. (2023). Research Progress on Extraction, Separation, and Purification Methods of Plant Essential Oils. Separations, 10(12), 596. https://doi.org/10.3390/separations10120596