Chemical Influence of Scutellaria baicalensis—Coptis chinensis Pair on the Extraction Efficiencies of Flavonoids and Alkaloids at Different Extraction Times and Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Preparation
2.3. Chromatographic Conditions
2.4. Analytical Method Validation
2.5. Statistical Analysis
3. Results and Discussion
3.1. Differences of the Marker Compound Concentrations by Paired or Single Extraction
3.2. Influence of Extraction Conditions on the Marker Compound Extractions
3.3. Influence of Herbal Pair on the Marker Compound Extractions
4. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Muluye, R.A.; Bian, Y.; Alemu, P.N. Anti-inflammatory and antimicrobial effects of heat-clearing Chinese herbs: A current review. J. Tradit. Complement. Med. 2014, 4, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.Y.; Chang, F.R.; Liou, J.R.; Lo, I.W.; Chung, T.C.; Lee, L.Y.; Chi, C.C.; Du, Y.C.; Wong, M.H.; Juo, S.H.H.; et al. Rapid HPLC quantification approach for detection of active constituents in modern combinatorial formula, San-Huang-Xie-Xin-Tang (SHXXT). Front. Pharmacol. 2016, 20, 374. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zheng, D.; Xu, N.; Zhang, C.; Wang, Y.; Sun, X.; Zhang, Z. Attribution and identification of absorbed components by HPLC-DAD-ESI-MS after oral administration of Erhuang decoction. J. Anal. Sci. Technol. 2020, 11, 38. [Google Scholar] [CrossRef]
- Huang, J.; Guo, W.; Cheung, F.; Tan, H.Y.; Wang, N.; Feng, Y. Integrating network pharmacology and experimental models to investigate the efficacy of Coptidis and Scutellaria containing Huanglian Jiedu decoction on hepatocellular carcinoma. Am. J. Chin. Med. 2020, 48, 161–182. [Google Scholar] [CrossRef]
- Wang, Q.; Kuang, Y.; Song, W.; Qian, Y.; Qiao, X.; Guo, D.A.; Ye, M. Permeability through the Caco-2 cell monolayer of 42 bioactive compounds in the TCM formula Gegen-Qinlian Decoction by liquid chromatography tandem mass spectrometry analysis. J. Pharm. Biomed. Anal. 2017, 146, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Z.; Deng, Y.X.; Chen, B.; Zhang, X.J.; Shi, Q.Z.; Qiu, X.M. Antihyperglycemic effect of the traditional Chinese Scutellaria–Coptis herb couple and its main components in streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2013, 145, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.H.; Sheng, J.Q.; Sarsaiya, S.; Shu, F.X.; Liu, T.T.; Tu, X.Y.; Ma, G.Q.; Xu, G.L.; Zheng, H.X.; Zhou, L.F. The anti-diabetic activities, gut microbiota composition, the anti-inflammatory effects of Scutellaria–Coptis herb couple against insulin resistance-model of diabetes involving the toll-like receptor 4 signaling pathway. J. Ethnopharmacol. 2019, 237, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yue, R.; Chen, Y.; Huang, X.; Yang, M.; Shui, J.; Peng, Y. The herbal medicine Scutellaria-Coptis alleviates intestinal mucosal barrier damage in diabetic rats by inhibiting inflammation and modulating the gut microbiota. Evid.-Based Complement. Altern. Med. 2020, 2020, 4568629. [Google Scholar] [CrossRef]
- Zhang, C.H.; Yu, R.Y.; Liu, Y.H.; Tu, X.Y.; Tu, J.; Wang, Y.S.; Xu, G.-L. Interaction of baicalin with berberine for glucose uptake in 3T3-L1 adipocytes and HepG2 hepatocytes. J. Ethnopharmacol. 2014, 151, 864–872. [Google Scholar] [CrossRef]
- Vergara-Salinas, J.R.; Pérez-Jiménez, J.; Torres, J.L.; Agosin, E.; Pérez-Correa, J.R. Effects of temperature and time on polyphenolic content and antioxidant activity in the pressurized hot water extraction of deodorized thyme (Thymus vulgaris). J. Agric. Food Chem. 2012, 60, 10920–10929. [Google Scholar] [CrossRef]
- Yim, H.S.; Chye, F.Y.; Rao, V.; Low, J.Y.; Matanjun, P.; How, S.E.; Ho, C.W. Optimization of extraction time and temperature on antioxidant activity of Schizophyllum commune aqueous extract using response surface methodology. J. Food Sci. Technol. 2013, 50, 275–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H. Extraction time and temperature affect the extraction efficiencies of coumarin and phenylpropanoids from Cinnamomum cassia bark using a microwave-assisted extraction method. J. Chromatogr. B Biomed. Appl. 2017, 1063, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Teng, H.; Choi, Y.H. Optimization of extraction of bioactive alkaloids and antioxidants from Rhizome Coptidis (Coptis chinensis Franch) by using response surface methodology. Food Sci. Biotechnol. 2012, 21, 799–806. [Google Scholar] [CrossRef]
- Li, L.; Zhang, D.; Wang, Y.; Liu, F.; Xu, Y.; Bao, H. Effective extraction of palmatine and berberine from Coptis chinensis by deep eutectic solvents-based ultrasound-assisted extraction. J. Anal. Methods Chem. 2021, 2021, 9970338. [Google Scholar] [CrossRef]
- Li, H.; Luo, S.L.; Su, J.; Ke, H.; Wang, W.; Yang, B. Optimization of extraction conditions for flavonoid composition and antioxidant activity of Radix Scutellariae. Anal. Lett. 2015, 48, 1234–1244. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, R.; Wu, Y.; Wang, Y.; Yang, R.; Ke, X. Variation in the efficacy of anti-ulcerative colitis treatments reveals the conflict between precipitating compatibility of traditional Chinese medicine and modern technology: A case of Scutellaria-Coptis. Front. Pharmacol. 2022, 20, 819851. [Google Scholar] [CrossRef]
- Li, L.; Cui, H.; Li, T.; Qi, J.; Chen, H.; Gao, F.; Tian, X.; Mu, Y.; He, R.; Lv, S.; et al. Synergistic effect of berberine-based Chinese medicine assembled nanostructures on diarrhea-predominant irritable bowel syndrome in vivo. Front. Pharmacol. 2020, 11, 1210. [Google Scholar] [CrossRef]
- Miao, Q.; Zhao, Y.Y.; Miao, P.P.; Chen, N.; Yan, X.H.; Guo, C.E.; Chen, H.Y.; Zhang, Y.J. Proteomics approach to analyze protein profiling related with ADME/Tox in rat treated with Scutellariae Radix and Coptidis Rhizoma as well as their compatibility. J. Ethnopharmacol. 2015, 173, 241–250. [Google Scholar] [CrossRef]
- Beaufils, N.; Boucher, J.; Peydecastaing, J.; Rigal, L.; Vilarem, G.; Villette, M.J.; Candy, L.; Pontalier, P.Y. The effect of time and temperature on the extraction of xylose and total phenolic compounds with pressurized hot water from hardwood species used for pulp and paper production in the South of France. Bioresour. Technol. Rep. 2021, 16, 100832. [Google Scholar] [CrossRef]
- Li, J.; Wang, R.; Sheng, Z.; Wu, Z.; Chen, C.; Ishfaq, M. Optimization of baicalin, wogonoside, and chlorogenic acid water extraction process from the roots of Scutellariae Radix and Lonicerae japonicae Flos using response surface methodology (RSM). Processes 2019, 7, 854. [Google Scholar] [CrossRef]
- Dalal, D.K.; Zickar, M.J. Some common myths about centering predictor variables in moderated multiple regression and polynomial regression. Organ. Res. Methods 2012, 15, 339–362. [Google Scholar] [CrossRef]
- Shanock, L.R.; Baran, B.E.; Gentry, W.A.; Pattison, S.C.; Heggestad, E.D. Polynomial regression with response surface analysis: A powerful approach for examining moderation and overcoming limitations of difference scores. J. Bus. Psychol. 2010, 25, 543–554. [Google Scholar] [CrossRef]
- Aguinis, H.M.; Gottfredson, R.K. Best-practice recommendations for estimating interaction effects using moderated multiple regression. J. Organ. Behav. 2010, 31, 776–786. [Google Scholar] [CrossRef]
- Taylor, R. Interpretation of the correlation coefficient: A basic review. J. Diagn. Med. Sonogr. 1990, 6, 35–39. [Google Scholar] [CrossRef]
- Zhao, L.C.; He, Y.; Deng, X.; Yang, G.L.; Li, W.; Liang, J.; Tang, Q.L. Response surface modeling and optimization of accelerated solvent extraction of four lignans from Fructus Schisandrae. Molecules 2012, 17, 3618–3629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, X.; Shen, Y.M.; Jiang, S.; Qian, D.W.; Shang, E.X.; Zhu, Z.H.; Duan, J.A. Comparative analysis of the main active components and hypoglycemic effects after the compatibility of Scutellariae Radix and Coptidis Rhizoma. J. Sep. Sci. 2019, 42, 1520–1527. [Google Scholar] [CrossRef]
- Kim, J.H.; Ha, W.R.; Park, J.H.; Lee, G.; Choi, G.; Lee, S.H.; Kim, Y.S. Influence of herbal combinations on the extraction efficiencies of chemical compounds from Cinnamomum cassia, Paeonia lactiflora, and Glycyrrhiza uralensis, the herbal components of Gyeji-tang, evaluated by HPLC method. J. Pharm. Biomed. Anal. 2016, 129, 50–59. [Google Scholar] [CrossRef]
- Qu, H.J.; Lin, K.W.; Li, X.L.; Ou, H.Y.; Tan, Y.F.; Wang, M.; Wei, N. Chemical constituents and anti-gastric ulcer activity of essential oils of Alpinia officinarum (Zingiberaceae), Cyperus rotundus (Cyperaceae), and their herbal pair. Chem. Biodivers. 2021, 18, e2100214. [Google Scholar] [CrossRef]
- Cao, G.; Li, Q.; Cai, H.; Tu, S.; Cai, B. Investigation of the chemical changes from crude and processed Paeoniae Radix Alba-Atractylodis Macrocephalae Rhizoma herbal pair extracts by using Q exactive high-performance benchtop quadrupole-orbitrap LC-MS/MS. Evid.-Based Complement. Altern. Med. 2014, 2014, 170959. [Google Scholar] [CrossRef] [Green Version]
- Yin, G.; Cheng, X.; Tao, W.; Dong, Y.; Bian, Y.; Zang, W.; Tang, D. Comparative analysis of multiple representative components in the herb pair Astragali Radix-Curcumae Rhizoma and its single herbs by UPLC-QQQ-MS. J. Pharm. Biomed. Anal. 2018, 148, 224–229. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, N.S.; Kim, Y.I.; Kim, D.K.; Yang, J.H. Improvement of hydrolysis and bioavailability of coprecipitated product of Coptidis rhizoma and Scutellariae radix by β-glucuronidase. J. Kor. Pharm. Sci. 2003, 33, 91–97. [Google Scholar]
- Zhang, C.; Zhao, R.; Yan, W.; Wang, H.; Jia, M.; Zhu, N.; Zhu, Y.; Zhang, Y.; Wang, P.; Lei, H. Compositions, formation mechanism, and neuroprotective effect of compound precipitation from the traditional Chinese prescription Huang-Lian-Jie-Du-Tang. Molecules 2016, 21, 1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Li, T.; Xiang, H.; Zhang, X.; Fang, K.; Wu, G.; Yan, M.; Xue, N.; Chen, M.; Xie, T.; et al. Origin and formation mechanism investigation of compound precipitation from the traditional Chinese prescription Huang-Lian-Jie-Du-Tang by isothermal titration calorimetry. Molecules 2017, 22, 1456. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.R.; Tanaka, T.; Zhang, H.; Kouno, I.; Jiang, Z.H. Formation and conformation of baicalin–berberine and wogonoside– berberine complexes. Chem. Pharm. Bull. 2012, 60, 706–711. [Google Scholar] [CrossRef]
Compound | Temperature | Time | ||
---|---|---|---|---|
60 Min | 90 Min | 120 Min | ||
Chrysin 6-C-arabinoside 8-C-glucoside | 80 °C | 40.625 ± 3.428 | 46.416 ± 0.736 d | 48.320 ± 1.985 eee |
90 °C | 41.557 ± 1.199 | 47.792 ± 1.189 dd | 43.521 ± 0.878 | |
100 °C | 44.022 ± 1.810 | 46.007 ± 1.460 | 46.731 ± 0.724 | |
Magnoflorine | 80 °C | 52.783 ± 1.552 | 55.370 ± 0.505 | 58.735 ± 1.414 |
90 °C | 51.708 ± 2.354 | 54.190 ± 3.166 | 60.912 ± 3.405 | |
100 °C | 56.648 ± 3.523 | 62.910 ± 4.382 c | 63.877 ± 3.001 | |
Baicalin | 80 °C | 924.320 ± 145.968 | 1088.679 ± 51.385 | 1126.509 ± 36.244 e |
90 °C | 950.606 ± 58.115 | 1143.521 ± 34.794 d | 1033.981 ± 31.679 | |
100 °C | 1077.343 ± 61.543 | 1180.799 ± 30.917 | 1200.941 ± 36.866 | |
Columbamine | 80 °C | 33.294 ± 0.205 | 36.594 ± 1.144 | 38.023 ± 0.905 ee |
90 °C | 33.575 ± 1.501 | 36.617 ± 1.133 | 40.755 ± 2.342 eee | |
100 °C | 38.075 ± 0.228 bb | 39.750 ± 0.634 | 45.431 ± 1.896 bbb,cc,eee,ff | |
Epiberberine | 80 °C | 95.780 ± 0.830 | 103.358 ± 4.597 | 109.247 ± 5.093 e |
90 °C | 95.480 ± 2.699 | 104.958 ± 5.612 | 113.973 ± 1.507 eee | |
100 °C | 109.044 ± 4.300 b,c | 111.594 ± 2.816 | 113.425 ± 6.051 | |
Jatrorrhizine | 80 °C | 21.241 ± 0.615 | 22.939 ± 0.263 | 23.720 ± 1.056 ee |
90 °C | 21.050 ± 0.677 | 23.237 ± 0.700 d | 24.740 ± 0.528 eee | |
100 °C | 23.559 ± 0.216 bb,cc | 24.924 ± 0.348 b | 25.771 ± 0.632 b,ee | |
Coptisine | 80 °C | 105.643 ± 1.240 | 114.155 ± 3.274 | 121.410 ± 2.724 ee |
90 °C | 103.974 ± 3.273 | 118.021 ± 2.872 d | 125.534 ± 3.639 eee | |
100 °C | 118.958 ± 5.247 b,cc | 129.212 ± 8.629 bb | 124.364 ± 1.824 | |
Wogonoside | 80 °C | 204.398 ± 7.265 | 228.672 ± 4.270 d | 236.058 ± 8.624 ee |
90 °C | 214.309 ± 7.757 | 245.387 ± 6.973 dd | 240.145 ± 10.003 | |
100 °C | 245.493 ± 12.946 bbb,cc | 257.508 ± 3.553 bbb | 267.452 ± 10.475 bbb,c | |
Palmatine | 80 °C | 90.987 ± 0.368 | 99.845 ± 1.989 ddd | 105.568 ± 2.727 eee |
90 °C | 91.047 ± 3.611 | 100.356 ± 2.184 ddd | 109.630 ± 0.484 eee | |
100 °C | 101.956 ± 1.603 bbb,ccc | 108.150 ± 0.591 bb,cc | 117.262 ± 0.658 bbb,cc,eee,fff | |
Berberine | 80 °C | 382.550 ± 0.705 | 412.910 ± 9.617 | 438.538 ± 2.199 ee |
90 °C | 380.456 ± 12.640 | 427.644 ± 9.018 dd | 458.198 ± 17.486 eee | |
100 °C | 431.040 ± 19.987 bb,cc | 471.017 ± 23.083 bb,c,d | 471.948 ± 5.875 e | |
Wogonin | 80 °C | 5.422 ± 0.170 | 6.225 ± 0.091 | 6.430 ± 0.035 |
90 °C | 6.347 ± 0.214 | 7.446 ± 0.351 | 7.687 ± 0.331 e | |
100 °C | 8.082 ± 0.283 bbb,cc | 8.450 ± 0.438 bbb | 10.491 ± 1.133 bbb,ccc,eee,fff | |
Oroxylin A | 80 °C | 2.221 ± 0.112 | 2.499 ± 0.088 | 2.575 ± 0.173 |
90 °C | 2.607 ± 0.110 | 2.768 ± 0.226 | 2.941 ± 0.067 | |
100 °C | 3.023 ± 0.124 bb | 3.095 ± 0.107 b | 3.748 ± 0.405 bbb,cc,ee,ff |
Compound | Temperature | Time | ||
---|---|---|---|---|
60 Min | 90 Min | 120 Min | ||
Chrysin 6-C-arabinoside 8-C-glucoside | 80 °C | 42.979 ± 1.721 | 45.801 ± 0.301 d | 46.842 ± 1.089 ee |
90 °C | 43.633 ± 1.219 | 47.437 ± 0.291 dd | 48.270 ± 0.683 eee | |
100 °C | 46.605 ± 0.670 b,cc | 45.272 ± 0.621 | 44.788 ± 1.185 cc | |
Magnoflorine | 80 °C | 47.083 ± 2.607 | 50.738 ± 1.846 | 56.980 ± 2.518 |
90 °C | 53.791 ± 6.382 | 59.867 ± 2.934 | 60.033 ± 3.182 | |
100 °C | 60.148 ± 4.973 b | 67.069 ± 5.333 bb | 70.173 ± 2.892 b | |
Baicalin | 80 °C | 448.536 ± 42.954 | 458.085 ± 42.282 | 449.980 ± 17.525 |
90 °C | 435.675 ± 50.632 | 479.909 ± 44.931 | 479.288 ± 18.777 | |
100 °C | 522.052 ± 46.350 | 462.883 ± 48.275 | 414.866 ± 5.970 | |
Columbamine | 80 °C | 10.097 ± 0.360 | 11.767 ± 0.236 d | 12.470 ± 0.451 eee |
90 °C | 11.169 ± 0.652 | 10.809 ± 0.726 | 11.204 ± 0.376 | |
100 °C | 11.184 ± 0.358 | 11.802 ± 0.559 | 11.846 ± 0.465 | |
Epiberberine | 80 °C | 70.078 ± 6.390 | 80.740 ± 2.475 | 83.819 ± 2.849 |
90 °C | 84.766 ± 3.794 a | 84.357 ± 5.561 | 83.031 ± 6.051 | |
100 °C | 85.078 ± 2.234 b | 93.444 ± 4.014 | 93.419 ± 8.087 | |
Jatrorrhizine | 80 °C | 18.344 ± 0.210 | 19.920 ± 1.948 | 20.984 ± 1.301 |
90 °C | 21.024 ± 1.559 | 22.069 ± 0.937 | 23.042 ± 1.831 | |
100 °C | 20.785 ± 0.476 b | 23.418 ± 0.999 | 25.109 ± 1.191 e | |
Coptisine | 80 °C | 6.115 ± 0.212 | 7.420 ± 0.128 dd,ff | 6.215 ± 0.352 |
90 °C | 6.170 ± 0.265 | 8.075 ± 0.286 ddd,fff | 6.615 ± 0.527 | |
100 °C | 10.155 ± 0.316 bbb,ccc,d,eee | 9.187 ± 0.176 bbb,ccc | 8.483 ± 0.216 bbb,ccc | |
Wogonoside | 80 °C | 156.208 ± 4.720 | 160.761 ± 2.859 | 161.743 ± 3.883 |
90 °C | 162.507 ± 2.888 | 172.477 ± 2.425 | 170.679 ± 3.829 | |
100 °C | 175.403 ± 1.426 bb | 170.966 ± 8.131 | 184.174 ± 8.246 bb | |
Palmatine | 80 °C | 73.373 ± 1.975 | 78.377 ± 4.610 | 81.476 ± 4.359 |
90 °C | 80.246 ± 5.047 | 81.691 ± 2.293 | 87.902 ± 4.467 | |
100 °C | 79.361 ± 1.092 | 90.961 ± 5.473 b,d | 95.889 ± 3.575 bb | |
Berberine | 80 °C | 9.744 ± 0.379 | 11.797 ± 0.222 ddd,ff | 9.937 ± 0.571 |
90 °C | 11.808 ± 0.403 aaa | 13.058 ± 0.556 a,ddd,fff | 11.128 ± 0.549 | |
100 °C | 15.783 ± 0.474 bbb,ccc,ee | 15.157 ± 0.201 bbb,ccc | 13.984 ± 0.170 bbb,ccc | |
Wogonin | 80 °C | 2.659 ± 0.098 | 3.016 ± 0.269 | 2.910 ± 0.120 |
90 °C | 2.953 ± 0.125 | 3.198 ± 0.071 | 3.405 ± 0.376 | |
100 °C | 3.808 ± 0.358 bbb,cc | 3.430 ± 0.240 | 3.550 ± 0.178 | |
Oroxylin A | 80 °C | 1.062 ± 0.045 | 1.185 ± 0.065 | 1.199 ± 0.047 |
90 °C | 1.259 ± 0.111 | 1.219 ± 0.063 | 1.303 ± 0.101 | |
100 °C | 1.489 ± 0.180 bb | 1.301 ± 0.135 | 1.297 ± 0.061 |
Compound | Extraction | Regression Coefficient (Significance at *** p < 0.001, ** p < 0.01, or * p < 0.05) | ||||||
---|---|---|---|---|---|---|---|---|
Intercept | Temp. | Time | Temp.:Time | Temp.:Temp. | Time:Time | Adjusted r2 | ||
Chrysin 6-C-arabinoside 8-C-glucoside | Pair | −88.5300 | 2.3610 * | 0.5933 *** | −0.0047 *** | −0.0107 | −0.0007 | 0.5352 *** |
Single | 66.7608 | −1.5171 | 0.9644 *** | −0.0041 * | 0.0106 | −0.0029 ** | 0.5407 *** | |
Magnoflorine | Pair | 36.7900 | −0.7422 | 0.3738 | 0.0001 | 0.0080 | −0.0013 | 0.7567 *** |
Single | 253.3000 * | −4.8310 * | 0.0377 | 0.0011 | 0.0278 * | −0.0001 | 0.6449 *** | |
Baicalin | Pair | −823.4690 | 18.8697 | 9.5140 | −0.0905 * | −0.0556 | −0.0095 | 0.0723 |
Single | 3738.7794 | −91.4914 | 25.2441 ** | −0.0655 | 0.5706 * | −0.0949 ** | 0.6086 *** | |
Columbamine | Pair | 33.9548 | −0.7038 | 0.1716 * | −0.0014 * | 0.0047 | −0.0001 | 0.4264** |
Single | 151.7000 ** | −2.7230 * | −0.1977 | 0.0022 | 0.0155 * | 0.0006 | 0.8629 *** | |
Epiberberine | Pair | −11.3266 | 0.3454 | 1.0811 | −0.0045 | 0.0038 | −0.0031 | 0.5148 *** |
Single | 166.7000 | −2.978 | 0.9791 | −0.0076 | 0.0227 | −0.0005 | 0.6690 *** | |
Jatrorrhizine | Pair | −38.3800 | 1.1540 | −0.0256 | 0.0014 | −0.0062 | −0.0003 | 0.6899 *** |
Single | 59.8904 * | −1.1041 * | 0.1373 | −0.0002 | 0.0068 * | −0.0004 | 0.8428 *** | |
Coptisine | Pair | 54.6919 ** | −1.4890 ** | 0.3137 *** | −0.0015 * | 0.0098 *** | −0.0010 *** | 0.8442 *** |
Single | 198.0029 | −4.3063 | 1.7775 ** | −0.0086 | 0.0311 | −0.0042 | 0.7167 *** | |
Wogonoside | Pair | 76.6400 | 1.2430 | −0.1946 | 0.0027 | −0.0035 | 0.0004 | 0.6422 *** |
Single | 437.9281 | −9.55309 | 3.0117 ** | −0.0081 | 0.0665 | −0.0102 * | 0.8170 *** | |
Palmatine | Pair | 66.0000 | −0.0102 | −0.3256 | 0.0070 | −0.0004 | −0.0007 | 0.7169 *** |
Single | 327.1000 *** | −6.0480 *** | 0.2234 | 0.0006 | 0.0362 *** | 0.0000 | 0.9400 *** | |
Berberine | Pair | 28.5085 | −0.9508 * | 0.3913 *** | −0.0017 ** | 0.0074** | −0.0014 *** | 0.9322 *** |
Single | 957.1066 | −19.1585 | 4.1149 * | −0.0126 | 0.1257 * | −0.0112 | 0.8258 *** | |
Wogonin | Pair | −0.2535 | −0.0035 | 0.0407 | −0.0004 | 0.0004 | 0.0000 | 0.5820 *** |
Single | 30.0000 | −0.5978 | −0.0859 | 0.0012 * | 0.0036 | 0.0000 | 0.8786 *** | |
Oroxylin A | Pair | −2.048 | 0.0444 | 0.0181 | −0.0003 | 0.0000 | 0.0000 | 0.4874 ** |
Single | 8.4160 | −0.1441 | −0.0330 | 0.0003 | 0.0009 | 0.0001 | 0.8078 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-Y.; Kim, J.-H. Chemical Influence of Scutellaria baicalensis—Coptis chinensis Pair on the Extraction Efficiencies of Flavonoids and Alkaloids at Different Extraction Times and Temperatures. Separations 2023, 10, 131. https://doi.org/10.3390/separations10020131
Kim H-Y, Kim J-H. Chemical Influence of Scutellaria baicalensis—Coptis chinensis Pair on the Extraction Efficiencies of Flavonoids and Alkaloids at Different Extraction Times and Temperatures. Separations. 2023; 10(2):131. https://doi.org/10.3390/separations10020131
Chicago/Turabian StyleKim, Han-Young, and Jung-Hoon Kim. 2023. "Chemical Influence of Scutellaria baicalensis—Coptis chinensis Pair on the Extraction Efficiencies of Flavonoids and Alkaloids at Different Extraction Times and Temperatures" Separations 10, no. 2: 131. https://doi.org/10.3390/separations10020131
APA StyleKim, H. -Y., & Kim, J. -H. (2023). Chemical Influence of Scutellaria baicalensis—Coptis chinensis Pair on the Extraction Efficiencies of Flavonoids and Alkaloids at Different Extraction Times and Temperatures. Separations, 10(2), 131. https://doi.org/10.3390/separations10020131