Application of a Small Protein-Coated Column to Trap, Extract and Enrich Carbamazepine Directly from Human Serum for Direct Chromatographic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instruments
2.3. Mobile Phase
2.4. BF-DSI-BA-HPLC-UV
2.5. Calibration Standards and Quality Control Samples
2.6. Recovery, Precision, and Accuracy
3. Results
3.1. Chromatographic Conditions
3.2. Switching Valve Timing
3.3. Back-Flush Elution Mode
3.4. Breakthrough Study and Loading Capacity of PC-ODS-Pre-Column
3.5. PC-ODS-Pre-Column Lifetime
3.6. Method Validation
3.6.1. Linearity, Detection and Quantification Limits
3.6.2. Recovery, Precision, and Accuracy
3.6.3. Selectivity and Specificity
3.7. Stability Studies
3.8. Robustness
3.9. Features of the PC-ODS-Pre-Column and BF-DSI-BA-HPLC-UV Methodology Regarding Their Performance, Economic Perspective and Green Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olling, M.; Mensinga, T.T.; Barends, D.M.; Groen, C.; Lake, O.A.; Meulenbent, J. Bioavailability of Carbamazepine from Four Different Products and the Occurrence of Side Effects. Biopharm. Drug Dispos. 1999, 20, 19–28. [Google Scholar] [CrossRef]
- Prakash, S.; Rathore, C.; Rana, K.; Patel, H. Antiepileptic Drugs and Serotonin Syndrome- A Systematic Review of Case Series and Case Reports. Seizure 2021, 91, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Datar, P.A. Quantitative Bioanalytical and Analytical Method Development of Dibenzazepine Derivative, Carbamazepine: A Review. J. Pharm. Anal. 2015, 5, 213–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queiroz, M.E.C.; Carrilho, E.; Carvalho, D.; Lanças, F.M. Comparison of High-Resolution Gas Chromatography and High-Performance Liquid Chromatography for Simultaneous Determination of Lamotrigine and Carbamazepine in Plasma. Chromatographia 2001, 53, 485–489. [Google Scholar] [CrossRef]
- Yoshida, T.; Imai, K.; Motohashi, S.; Hamano, S.I.; Sato, M. Simultaneous Determination of Zonisamide, Carbamazepine and Carbamazepine-10,11-Epoxide in Infant Serum by High-Performance Liquid Chromatography. J. Pharm. Biomed. Anal. 2006, 41, 1386–1390. [Google Scholar] [CrossRef]
- Fedorova, G.A.; Baram, G.I.; Grachev, M.A.; Aleksandrov, Y.A.; Tyuleneva, G.N.; Starodubtsev, A.V. Application of Micro-Column HPLC to the Determination of Phenobarbital and Carbamazepine in Human Blood Serum. Chromatographia 2001, 53, 495–497. [Google Scholar] [CrossRef]
- Ezzeldin, E.; Shahat, A.A.; Basudan, O.A. Development and Validation of an HPLC Method for the Determination of Carbamazepine in Human Plasma. Life Sci. J. 2013, 10, 2159–2163. [Google Scholar]
- Levert, H.; Odou, P.; Robert, H. Simultaneous Determination of Four Antiepileptic Drugs in Serum by High-Performance Liquid Chromatography. Biomed. Chromatogr. 2002, 24, 19–24. [Google Scholar] [CrossRef]
- Tuchila, C.; Baconi, D.L.; Pirvu, C.D.; Balalau, D.O.; Vlasceanu, A.M.; Stan, M.; Balalau, C. Therapeutic Drug Monitoring and Methods of Quantitation for Carbamazepine. J. Mind Med. Sci. 2017, 4, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Ateş, Z.; Özden, T.; Özilhan, S.; Toptan, S. Simultaneous Determination of Carbamazepine and its Active Metabolite Carbamazepine-10,11-Epoxide in Human Plasma by UPLC. Chromatographia 2007, 66, 123–127. [Google Scholar] [CrossRef]
- Behbahani, M.; Najafi, F.; Bagheri, S.; Bojdi, M.; Salarian, M.; Bagheri, A. Application of Surfactant Assisted Dispersive Liquid–Liquid Microextraction as an Efficient Sample Treatment Technique for Preconcentration and Trace Detection of Zonisamide and Carbamazepine in Urine and Plasma Samples. J. Chromatogr. A 2013, 1308, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Greiner-sosanko, E.; Lower, D.R.; Virji, M.A.; Krasowski, M.D. Simultaneous Determination of Lamotrigine, Zonisamide, and Carbamazepine in Human Plasma by High-Performance Liquid Chromatography. Biomed. Chromatogr. 2007, 228, 225–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, E.K.; Ban, E.; Woo, J.S.; Kim, C. Analysis of Carbamazepine and its Active Metabolite, Carbamazepine-10, 11-Epoxide, in Human Plasma Using High-Performance Liquid Chromatography. Anal. Bioanal. Chem. 2006, 386, 1931–1936. [Google Scholar] [CrossRef] [PubMed]
- Patil, K.M.; Bodhankar, S.L. Simultaneous Determination of Lamotrigine, Phenobarbitone, Carbamazepine and Phenytoin in Human Serum by High-Performance Liquid Chromatography. J. Pharm. Biomed. Anal. 2005, 39, 181–186. [Google Scholar] [CrossRef]
- Zhou, Z.; Jiang, J.-Q. Simultaneous Detection of Sulfamethoxazole, Diclofenac, Carbamazepine, and Bezafibrate by Solid Phase Extraction and High Performance Liquid Chromatography with Diode Array Detection. J. Appl. Spectrosc. 2014, 81, 273–278. [Google Scholar] [CrossRef]
- Shimoyama, R.; Ohkubo, T.; Sugawara, K. Monitoring of Carbamazepine and Carbamazepine 10, 11-Epoxide in Breast Milk and Plasma by High-Performance Liquid Chromatography. Ann. Clin. Biochem. 2000, 37, 210–215. [Google Scholar] [CrossRef] [Green Version]
- Vermeij, T.A.C.; Edelbroek, P.M. Robust Isocratic High Performance Liquid Chromatographic Method for Simultaneous Determination of Seven Antiepileptic Drugs Including Lamotrigine, Oxcarbazepine and Zonisamide in Serum after Solid-Phase Extraction. J. Chromatogr. B 2007, 857, 40–46. [Google Scholar] [CrossRef]
- Mandrioli, R.; Albani, F.; Casamenti, G.; Sabbioni, C.; Raggi, M.A. Simultaneous High-Performance Liquid Chromatography Determination of Carbamazepine and Five of its Metabolites in Plasma of Epileptic Patients. J. Chromatogr. B 2001, 762, 109–116. [Google Scholar] [CrossRef]
- Subramanian, M.; Birnbaum, A.K.; Remmel, R.P. High-Speed Simultaneous Determination of Nine Antiepileptic Drugs Using Liquid Chromatography–Mass Spectrometry. Ther. Drug Monit. 2008, 30, 347–356. [Google Scholar] [CrossRef]
- Yin, L.; Wang, T.; Zhang, Y.; Zhao, X.; Yang, Y.; Gu, J. Simultaneous Determination of Ten Antiepileptic Drugs in Human Plasma by Liquid Chromatography and Tandem Mass Spectrometry with Positive/Negative Ion-Switching Electrospray Ionization and its Application in Therapeutic Drug Monitoring. J. Sep. Sci. 2016, 39, 964–972. [Google Scholar] [CrossRef]
- Rodina, T.A.; Mel’nikov, E.S.; Sokolov, A.V.; Prokof’ev, A.B.; Arkhipov, V.V.; Aksenov, A.A.; Pozdnyakov, D.L. Rapid HPLC-MS/MS Determination of Carbamazepine and Carbamazepine-10,11-Epoxide. Pharm. Chem. J. 2016, 50, 419–423. [Google Scholar] [CrossRef]
- Breton, H.; Cociglio, M.; Bressolle, F.; Peyriere, H.; Blayac, J.P.; Hillaire-Buys, D. Liquid Chromatography–Electrospray Mass Spectrometry Determination of Carbamazepine, Oxcarbazepine and Eight of Their Metabolites in Human Plasma. J. Chromatogr. B 2005, 828, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Taibon, J.; Schmid, R.; Lucha, S.; Pongratz, S.; Tarasov, K.; Seger, C.; Timm, C.; Thiele, R.; Herlan, J.M.; Kobold, U. An LC-MS/MS Based Candidate Reference Method for the Quantification of Carbamazepine in Human Serum. Clin. Chim. Acta 2017, 472, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Lajeunesse, A.; Vernouillet, G.; Eullaffroy, P.; Gagnon, C.; Sauvé, S. Determination of Carbamazepine in Aquatic Organisms by Liquid–Liquid Extraction and Liquid Chromatography-Tandem Mass Spectrometry. J. Environ. Monit. 2009, 11, 723–725. [Google Scholar] [CrossRef]
- Rooyen, G.F.V.; Badenhorst, D.; Swart, K.J.; Hundt, H.K.L.; Scanes, T.; Hundt, A.F. Determination of Carbamazepine and Carbamazepine 10,11-Epoxide in Human Plasma by Tandem Liquid Chromatography–Mass Spectrometry with Electrospray Ionisation. J. Chromatogr. B 2002, 769, 1–7. [Google Scholar] [CrossRef]
- Qu, L.; Fan, Y.; Wang, W.; Ma, K.; Zheng Yin, Z. Development, Validation and Clinical Application of an Online-SPE-LC-HRMS/MS for Simultaneous Quantification of Phenobarbital, Phenytoin, Carbamazepine, and its Active Metabolite Carbamazepine 10,11-Epoxide. Talanta 2016, 158, 77–88. [Google Scholar] [CrossRef]
- Miao, X.; Metcalfe, C.D. Determination of Carbamazepine and its Metabolites in Aqueous Samples Using Liquid Chromatography-Electrospray Tandem Mass Spectrometry. Anal. Chem. 2003, 75, 3731–3738. [Google Scholar] [CrossRef]
- Martin, P.D.; Jones, G.R.; Stringer, F.; Wilson, I.D. Comparison of Normal and Reversed-Phase Solid Phase Extraction Methods for Extraction of β-Blockers from Plasma Using Molecularly Imprinted Polymers. Analyst 2003, 128, 345–350. [Google Scholar] [CrossRef]
- Liang, Y.; Zhou, I. Recent Advances of Online Coupling of Sample Preparation Techniques with Ultrahigh Performance Liquid Chromatography and Supercritical Fluid Chromatography. J. Sep. Sci. 2019, 42, 226–242. [Google Scholar] [CrossRef]
- Emara, S.; Masujima, T.; Zarad, W.; Kamal, M.; Fouad, M.; El-bagary, R. An Eco-Friendly Direct Injection HPLC Method for Methyldopa Determination in Serum by Mixed-Mode Chromatography Using a Single Protein-Coated Column. J. Chromatogr. Sci. 2015, 53, 1353–1360. [Google Scholar] [CrossRef]
- Emara, S.; Saleh, G.; Fathy, M.; Bakr, M.A. Chromatographic Assay and Pharmacokinetic Studies of Propofol in Human Serum. Biomed. Chromatogr. 1999, 13, 299–303. [Google Scholar] [CrossRef]
- Emara, S.; El-Gindy, A.; Mesbah, M.K.; Hadad, G.M. Direct Injection Liquid Chromatographic Technique for Simultaneous Determination of Two Antihistaminic Drugs and Their Main Metabolites in Serum. J. AOAC Int. 2007, 90, 384–390. [Google Scholar] [CrossRef] [PubMed]
Parameters | Carbamazepine |
---|---|
Calibration range (ng/mL) | 50–10,000 |
LOD (ng/mL) | 12 |
LOQ (ng/mL) | 42 |
Regression equation (Y) a: | |
Slope (b) | 0.2126 |
Intercept (a) | 4.1773 |
Correlation coefficient (r2) | 0.9992 |
Nominal Concentration (ng/mL) | Recovery (%) a ± SD | RSD (%) | Mean RE (%) | |
---|---|---|---|---|
Intra-assay | 50 | 86.14 ± 6.88 | 7.98 | −13.86 |
500 | 92.53 ± 5.34 | 5.77 | −7.47 | |
5000 | 96.71 ± 3.87 | 4.00 | −3.29 | |
8000 | 97.82 ± 3.25 | 3.32 | −2.18 | |
Inter-assay | 50 | 85.55 ± 7.32 | 8.55 | −14.45 |
500 | 91.95 ± 6.04 | 6.56 | −8.05 | |
4000 | 96.16 ± 4.28 | 4.45 | −3.84 | |
8000 | 97.02 ± 3.86 | 3.97 | −2.98 |
Linearity Range | LOQ | Sample Matrix | Sample Preparation | Method | Reference |
---|---|---|---|---|---|
0.25–20 µg/mL | 0.1 µg/mL | plasma | PPE | HPLC/UV | [4] |
0.5–16 µg/mL | 0.5 µg/mL | serum | PPE | HPLC/UV | [5] |
0.1–200 µg/mL | 0.1 µg/mL | serum | LLE | HPLC/UV | [6] |
0.1–8.0 µg/mL | 0.1 µg/mL | plasma | PPE/LLE | HPLC/UV | [7] |
0.5–100 µg/mL | 0.66 µg/mL | serum | PPE | HPLC/UV | [8] |
0.05–5 µg/mL | 0.05 µg/mL | plasma | PPE | UPLC/UV | [10] |
5–200 µg/mL | 5 μg/mL | plasma | LLE | HPLC/UV | [11] |
2–20 μg/mL | 0.25 μg/mL | serum | LLE | HPLC/UV | [12] |
0.01–10 μg/mL | 0.01 µg/mL | plasma | LLE | HPLC/UV | [13] |
0.5–40 μg/ml | 0.1 μg/ml | serum | PPE | HPLC/UV | [14] |
0.01–6.0 µg/mL | 0.1 μg/ml | milk | SPE | HPLC/UV | [16] |
0.37–14.8 µg/mL | 0.37 µg/mL | serum | SPE | HPLC/UV | [17] |
0.5–15.0 µg/mL | 0.5 µg/mL | plasma | SPE | HPLC/UV | [18] |
0.05–50 μg/ml | 0.05 µg/mL | plasma | PPE | HPLC/MS | [20] |
0.05–20 µg/mL | 0.05 µg/mL | serum | PPE | HPLC/MS | [21] |
0.5–20 µg/mL | 0.5 µg/mL | plasma | PPE | HPLC/MS | [22] |
0.1–22 μg/ml | 0.1 μg/mL | serum | PPEs | HPLC/MS | [23] |
0.83–6693 ng/mL | 0.83 ng/mL | plasma | LLE | HPLC/MS | [25] |
0.0016–0.5 µg/mL | 0.0016 µg/mL | plasma | SPE | HPLC/MS | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sonbol, H.; Ebrahim, H.; Malak, M.; Ali, A.; Aboulella, Y.; Hadad, G.; Emara, S.; Shawky, A. Application of a Small Protein-Coated Column to Trap, Extract and Enrich Carbamazepine Directly from Human Serum for Direct Chromatographic Analysis. Separations 2023, 10, 71. https://doi.org/10.3390/separations10020071
Sonbol H, Ebrahim H, Malak M, Ali A, Aboulella Y, Hadad G, Emara S, Shawky A. Application of a Small Protein-Coated Column to Trap, Extract and Enrich Carbamazepine Directly from Human Serum for Direct Chromatographic Analysis. Separations. 2023; 10(2):71. https://doi.org/10.3390/separations10020071
Chicago/Turabian StyleSonbol, Heba, Hager Ebrahim, Monika Malak, Ahmed Ali, Yasmine Aboulella, Ghada Hadad, Samy Emara, and Ahmed Shawky. 2023. "Application of a Small Protein-Coated Column to Trap, Extract and Enrich Carbamazepine Directly from Human Serum for Direct Chromatographic Analysis" Separations 10, no. 2: 71. https://doi.org/10.3390/separations10020071
APA StyleSonbol, H., Ebrahim, H., Malak, M., Ali, A., Aboulella, Y., Hadad, G., Emara, S., & Shawky, A. (2023). Application of a Small Protein-Coated Column to Trap, Extract and Enrich Carbamazepine Directly from Human Serum for Direct Chromatographic Analysis. Separations, 10(2), 71. https://doi.org/10.3390/separations10020071