Photocatalytic Organic Contaminant Degradation of Green Synthesized ZrO2 NPs and Their Antibacterial Activities
Abstract
:1. Introduction
2. Materials and Methods
3. Preparation of the Plant Extract
4. Biosynthesis of ZrO2 NPs
5. Characterization Methods
6. Photocatalytic Dye Degradation
7. Antibacterial Activity
8. Reaction Mechanism of Zirconium Oxide Nanoparticles
9. Result and Discussions
9.1. XRD Analysis
9.2. FTIR Analysis
9.3. UV-DRS Analysis
9.4. FESEM with EDX Analysis
9.5. TEM Analysis
9.6. XPS Analysis
10. Photocatalytic Dye Degradation
11. Antibacterial Activity
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferreira, S.L.; da Silva Junior, J.B.; dos Santos, I.F.; de Oliveira, O.M.; Cerda, V.; Queiroz, A.F. Use of pollution indices and ecological risk in the assessment of contamination from chemical elements in soils and sediments–Practical aspects. Trends Environ. Anal. Chem. 2022, 35, e00169. [Google Scholar] [CrossRef]
- Zerizghi, T.; Guo, Q.; Tian, L.; Wei, R.; Zhao, C. An integrated approach to quantify ecological and human health risks of soil heavy metal contamination around coal mining area. Sci. Total Environ. 2022, 814, 152653. [Google Scholar] [CrossRef]
- Dan, S.F.; Udoh, E.C.; Wang, Q. Contamination and ecological risk assessment of heavy metals, and relationship with organic matter sources in surface sediments of the Cross River Estuary and nearshore areas. J. Hazard. Mater. 2022, 438, 129531. [Google Scholar] [CrossRef]
- Barizon, R.R.M.; Kummrow, F.; de Albuquerque, A.F.; Assalin, M.R.; Rosa, M.A.; de Souza Dutra, D.R.C.; Pazianotto, R.A.A. Surface water contamination from pesticide mixtures and risks to aquatic life in a high-input agricultural region of Brazil. Chemosphere 2022, 308, 136400. [Google Scholar] [CrossRef]
- Moloantoa, K.M.; Khetsha, Z.P.; Van Heerden, E.; Castillo, J.C.; Cason, E.D. Nitrate Water Contamination from Industrial Activities and Complete Denitrification as a Remediation Option. Water 2022, 14, 799. [Google Scholar] [CrossRef]
- Schönenberger, U.T.; Simon, J.; Stamm, C. Are spray drift losses to agricultural roads more important for surface water contamination than direct drift to surface waters? Sci. Total Environ. 2022, 809, 151102. [Google Scholar] [CrossRef]
- Bigot-Clivot, A.; La Carbona, S.; Cazeaux, C.; Durand, L.; Géba, E.; Le Foll, F.; Xuereb, B.; Chalghmi, H.; Dubey, J.P.; Bastien, F.; et al. Blue mussel (Mytilus edulis)—A bioindicator of marine water contamination by protozoa: Laboratory and in situ approaches. J. Appl. Microbiol. 2022, 132, 736–746. [Google Scholar] [CrossRef]
- Lowe, B.; Gardy, J.; Wu, K.; Hassanpour, A. Mixed Metal Oxide Catalysts in Biodiesel Production. Biodiesel Prod. Feedstocks Catal. Technol. 2022, 12, 143–166. [Google Scholar]
- Stoukatch, S.; Fagnard, J.F.; Dupont, F.; Laurent, P.; Debliquy, M.; Redouté, J.M. Low Thermal Conductivity Adhesive as a Key Enabler for Compact, Low-Cost Packaging for Metal-Oxide Gas Sensors. IEEE Access 2022, 10, 19242–19253. [Google Scholar] [CrossRef]
- Wang, H.; Biswas, P.; Zachariah, M.R. Direct Imaging and Simulation of the Interface Reaction of Metal/Metal Oxide Nanoparticle Laminates. J. Phys. Chem. C 2022, 126, 8684–8691. [Google Scholar] [CrossRef]
- Bielsa, D.; Oregui, M.; Arias, P.L. New insights into Mn2O3 based metal oxide granulation technique with enhanced chemical and mechanical stability for thermochemical energy storage in packed bed reactors. Sol. Energy 2022, 241, 248–261. [Google Scholar] [CrossRef]
- Hashemi, S.M.; Mohamedali, M.; Sedghkerdar, M.H.; Mahinpey, N. Stability of CaO-based Sorbents under Realistic Calcination Conditions: Effect of Metal Oxide Supports. ACS Sustain. Chem. Eng. 2022, 10, 9760–9769. [Google Scholar] [CrossRef]
- Fatimah, I.; Fadillah, G.; Yanti, I.; Doong, R.A. Clay-Supported Metal Oxide Nanoparticles in Catalytic Advanced Oxidation Processes: A Review. Nanomaterials 2022, 12, 825. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.V.; Nguyen, D.T.C.; Kumar, P.S.; Din, A.T.M.; Jalil, A.A.; Vo, D.V.N. Green synthesis of ZrO2 NPs and nanocomposites for biomedical and environmental applications: A review. Environ. Chem. Lett. 2022, 20, 1309–1331. [Google Scholar] [CrossRef] [PubMed]
- Chęcińska, K.; Chęciński, M.; Sikora, M.; Nowak, Z.; Karwan, S.; Chlubek, D. The Effect of Zirconium Dioxide (ZrO2) Nanoparticles Addition on the Mechanical Parameters of Polymethyl Methacrylate (PMMA): A Systematic Review and Meta-Analysis of Experimental Studies. Polymers 2022, 14, 1047. [Google Scholar] [CrossRef]
- Aati, S.; Shrestha, B.; Fawzy, A. Cytotoxicity and antimicrobial efficiency of ZrO2 NPs reinforced 3D printed resins. Dent. Mater. 2022, 38, 1432–1442. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, G.; Liu, B.; Kong, H.; Xiong, Z.; Guo, L.; Wei, G. Biomineralization of ZrO2 NPs on graphene oxide-supported peptide/cellulose binary nanofibrous membranes for high-performance removal of fluoride ions. Chem. Eng. J. 2022, 430, 132721. [Google Scholar] [CrossRef]
- Peng, S.; Li, R.; Huang, Y.; Zhang, Y.; Cao, J.J.; Lee, S. Interfacial dependent reactive oxygen species generation over Pt-ZrO2 NPs for catalytic oxidation of formaldehyde at room temperature. Appl. Surf. Sci. 2022, 600, 154056. [Google Scholar] [CrossRef]
- Alagarsamy, A.; Chandrasekaran, S.; Manikandan, A. Green synthesis and characterization studies of biogenic zirconium oxide (ZrO2) nanoparticles for adsorptive removal of methylene blue dye. J. Mol. Struct. 2022, 1247, 131275. [Google Scholar] [CrossRef]
- Xavier, J.R. Electrochemical and dynamic mechanical properties of polyurethane nanocomposite reinforced with functionalized TiO2–ZrO2 NPs in automobile industry. Appl. Nanosci. 2022, 12, 1763–1778. [Google Scholar] [CrossRef]
- Li, N.; Yu, N.; Yi, Z.; An, D.; Xie, Z. CeO2-stabilised ZrO2 NPs with excellent sintering performances synthesized by sol-gel-flux method. J. Eur. Ceram. Soc. 2022, 42, 1645–1655. [Google Scholar] [CrossRef]
- Li, N.; An, D.; Yi, Z.; Yu, N.; Xie, Z. Synthesis of 1Y6Ce–ZrO2 NPs with excellent sintering performance via novel Sol-Gel-Flux method. Ceram. Int. 2022, 48, 2637–2644. [Google Scholar] [CrossRef]
- Chen, X.; Huang, G.; An, C.; Feng, R.; Wu, Y.; Huang, C. Superwetting polyethersulfone membrane functionalized with ZrO2 NPs for polycyclic aromatic hydrocarbon removal. J. Mater. Sci. Technol. 2022, 98, 14–25. [Google Scholar] [CrossRef]
- Sagadevan, S.; Imteyaz, S.; Murugan, B.; Lett, J.A.; Sridewi, N.; Weldegebrieal, G.K.; Fatimah, I.; Oh, W.C. A comprehensive review on green synthesis of titanium dioxide nanoparticles and their diverse biomedical applications. Green Process. Synth. 2022, 11, 44–63. [Google Scholar] [CrossRef]
- Manikandan, V.; Lee, N.Y. Green synthesis of carbon quantum dots and their environmental applications. Environ. Res. 2022, 212, 113283. [Google Scholar] [CrossRef]
- Prakash, M.; Kavitha, H.P.; Abinaya, S.; Vennila, J.P.; Lohita, D. Green synthesis of bismuth based nanoparticles and its applications-A review. Sustain. Chem. Pharm. 2022, 25, 100547. [Google Scholar] [CrossRef]
- Tan, M.A.; Sharma, N.; An, S.S.A. Multi-Target Approach of Murraya koenigii Leaves in Treating Neurodegenerative Diseases. Pharmaceuticals 2022, 15, 188. [Google Scholar] [CrossRef]
- Elamin, N.Y.; Indumathi, T.; Kumar, E.R. Murraya koenigii mediated synthesis of cobalt doped NiO nanoparticles: Evaluation of structural, optical properties and anti-bacterial activity. Phys. E Low-Dimens. Syst. Nanostructures 2022, 142, 115295. [Google Scholar] [CrossRef]
- Bhatt, S.; Dadwal, V.; Padwad, Y.; Gupta, M. Study of physicochemical, nutritional, and anticancer activity of Murraya Koenigii extract for its fermented beverage. J. Food Process. Preserv. 2022, 46, e16137. [Google Scholar] [CrossRef]
- Nur, A.S.; Sultana, M.; Mondal, A.; Islam, S.; Robel, F.N.; Islam, M.A.; Sumi, M.S.A. A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV–vis irradiation. J. Water Process Eng. 2022, 47, 102728. [Google Scholar] [CrossRef]
- Shah, P.; Unnarkat, A.; Patel, F.; Shah, M.; Shah, P. A comprehensive review on spinel based novel catalysts for visible light assisted dye degradation. Process Saf. Environ. Prot. 2022, 161, 703–722. [Google Scholar] [CrossRef]
- Liu, Q.; Zhai, D.; Xiao, Z.; Tang, C.; Sun, Q.; Bowen, C.R.; Luo, H.; Zhang, D. Piezo-photoelectronic coupling effect of BaTiO3@ TiO2 nanowires for highly concentrated dye degradation. Nano Energy 2022, 92, 106702. [Google Scholar] [CrossRef]
- Xie, K.; Wei, S.; Alhadhrami, A.; Liu, J.; Zhang, P.; Elnaggar, A.Y.; Zhang, F.; Mahmoud, M.H.H.; Murugadoss, V.; El-Bahy, S.M.; et al. Synthesis of CsPbBr3/CsPb2Br5@ silica yolk-shell composite microspheres: Precisely controllable structure and improved catalytic activity for dye degradation. Adv. Compos. Hybrid Mater. 2022, 5, 1423–1432. [Google Scholar] [CrossRef]
- Shah, P.; Joshi, K.; Shah, M.; Unnarkat, A.; Patel, F.J. Photocatalytic dye degradation using nickel ferrite spinel and its nanocomposite. Environ. Sci. Pollut. Res. 2022, 29, 78255–78264. [Google Scholar] [CrossRef] [PubMed]
- Mansoorianfar, M.; Shahin, K.; Hojjati–Najafabadi, A.; Pei, R. MXene–laden bacteriophage: A new antibacterial candidate to control bacterial contamination in water. Chemosphere 2022, 290, 133383. [Google Scholar] [CrossRef]
- Fonseca, S.; Cayer, M.P.; Ahmmed, K.T.; Khadem-Mohtaram, N.; Charette, S.J.; Brouard, D. Characterization of the Antibacterial Activity of an SiO2 Nanoparticular Coating to Prevent Bacterial Contamination in Blood Products. Antibiotics 2022, 11, 107. [Google Scholar] [CrossRef]
- Verhorstert, K.W.; Riool, M.; Bulten, T.; Guler, Z.; de Boer, L.; Roovers, J.P.W.; Zaat, S.A. The impact of bacterial contamination on the host response towards fully absorbable poly-4-hydroxybutyrate and nonabsorbable polypropylene pelvic floor implants. Mater. Today Bio 2022, 15, 100268. [Google Scholar] [CrossRef]
- Saadi, S.; Allem, R.; Sebaihia, M.; Merouane, A.; Bakkali, M. Bacterial contamination of neglected hospital surfaces and equipment in an Algerian hospital: An important source of potential infection. Int. J. Environ. Health Res. 2022, 32, 1373–1381. [Google Scholar] [CrossRef]
- Bermond, C.; Cherrad, S.; Trainoy, A.; Ngari, C.; Poulet, V. Real-time qPCR to evaluate bacterial contamination of cosmetic cream and the efficiency of protective ingredients. J. Appl. Microbiol. 2022, 132, 2106–2120. [Google Scholar] [CrossRef]
- Thaler, M.; Khosravi, I.; Lechner, R.; Ladner, B.; Coraça-Huber, D.C.; Nogler, M. An intraoperative assessment of bacterial contamination on surgical helmets and gloves during arthroplasty surgeries. HIP Int. 2022, 32, 426–430. [Google Scholar] [CrossRef]
- Sharmila, M.; Mani, R.J.; Parvathiraja, C.; Kader, S.M.A.; Siddiqui, M.R.; Wabaidur, S.M.; Islam, M.A.; Lai, W.-C. Photocatalytic Dye Degradation and Bio-Insights of Honey-Produced α-Fe2O3 Nanoparticles. Water 2022, 14, 2301. [Google Scholar] [CrossRef]
- Parvathiraja, C.; Katheria, S.; Siddiqui, M.R.; Wabaidur, S.M.; Islam, M.A.; Lai, W.C. Activated Carbon-Loaded Titanium Dioxide Nanoparticles and Their Photocatalytic and Antibacterial Investigations. Catalysts 2022, 12, 834. [Google Scholar] [CrossRef]
- Balakrishnan, R.; Vijayraja, D.; Jo, S.H.; Ganesan, P.; Su-Kim, I.; Choi, D.K. Medicinal profile, phytochemistry, and pharmacological activities of Murraya koenigii and its primary bioactive compounds. Antioxidants 2020, 9, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abuga, I.; Sulaiman, S.F.; Wahab, R.A.; Ooi, K.L.; Rasad, M.S.B.A. In vitro antibacterial effect of the leaf extract of Murraya koenigii on cell membrane destruction against pathogenic bacteria and phenolic compounds identification. Eur. J. Integr. Med. 2020, 33, 101010. [Google Scholar] [CrossRef]
- Alam, M.N.; Das, S.; Batuta, S.; Roy, N.; Chatterjee, A.; Mandal, D.; Begum, N.A. Murraya koenegii Spreng. leaf extract: An efficient green multifunctional agent for the controlled synthesis of Au nanoparticles. ACS Sustain. Chem. Eng. 2014, 2, 652–664. [Google Scholar] [CrossRef]
- Reddy, C.V.; Reddy, K.R.; Shim, J.; Aminabhavi, T.M. Synthesis of transition metal ions doped-ZrO2 NPs supported g-C3N4 hybrids for solar light-induced photocatalytic removal of methyl orange and tetracycline pollutants. Chemosphere 2022, 308, 136414. [Google Scholar] [CrossRef]
- Diao, F.; Wang, C.; Qiu, L.; Yin, Y.; Zhao, F.; Chang, H. Interaction between Nickel Oxide and Support Promotes Selective Catalytic Reduction of NOx with C3H6. Chem. Asian J. 2022, 17, e202200520. [Google Scholar] [CrossRef]
- Singh, A.; Goyal, V.; Singh, J.; Kaur, H.; Kumar, S.; Batoo, K.M.; Gaur, J.; Pal, M.; Rawat, M.; Hussain, S. Structurally and morphologically engineered single-pot biogenic synthesis of NiO nanoparticles with enhanced photocatalytic and antimicrobial activities. J. Clean. Prod. 2022, 343, 131026. [Google Scholar] [CrossRef]
- Das, R.S.; Warkhade, S.K.; Kumar, A.; Wankhade, A.V. Graphene oxide-based zirconium oxide nanocomposite for enhanced visible light-driven photocatalytic activity. Res. Chem. Intermed. 2019, 45, 1689–1705. [Google Scholar] [CrossRef]
- Zhou, S.; Garnweitner, G.; Niederberger, M.; Antonietti, M. Dispersion behavior of zirconia nanocrystals and their surface functionalization with vinyl group-containing ligands. Langmuir 2007, 23, 9178–9187. [Google Scholar] [CrossRef]
- Sidhu, G.K.; Kaushik, A.K.; Rana, S.; Bhansali, S.; Kumar, R. Photoluminescence quenching of Zirconia nanoparticle by surface modification. Appl. Surf. Sci. 2015, 334, 216–221. [Google Scholar] [CrossRef]
- Waris, A.; Din, M.; Ali, A.; Ali, M.; Afridi, S.; Baset, A.; Khan, A.U. A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications. Inorg. Chem. Commun. 2021, 123, 108369. [Google Scholar] [CrossRef]
- Ahmad, W.; Kumar Jaiswal, K.; Amjad, M. Euphorbia herita leaf extract as a reducing agent in a facile green synthesis of iron oxide nanoparticles and antimicrobial activity evaluation. Inorg. Nano-Met. Chem. 2021, 51, 1147–1154. [Google Scholar] [CrossRef]
- Lakshminarayanan, S.; Shereen, M.F.; Niraimathi, K.L.; Brindha, P.; Arumugam, A. One-pot green synthesis of iron oxide nanoparticles from Bauhinia tomentosa: Characterization and application towards synthesis of 1, 3 diolein. Sci. Rep. 2021, 11, 8643. [Google Scholar] [CrossRef] [PubMed]
- Howell, I.R.; Einck, V.J.; Nees, D.; Stadlober, B.; Watkins, J.J. Solvent-free, transparent, high-refractive index ZrO2 nanoparticle composite resin for scalable roll to roll UV-nanoimprint lithography. Opt. Laser Technol. 2021, 141, 107101. [Google Scholar] [CrossRef]
- Higashino, M.; Murai, S.; Lo, T.Y.; Tomita, S.; Tanaka, K. Photoluminescence coupled to electric and magnetic surface lattice resonance in periodic arrays of zirconia nanoparticles. J. Mater. Chem. C 2022, 10, 9730–9739. [Google Scholar] [CrossRef]
- Renuka, L.; Anantharaju, K.S.; Sharma, S.C.; Nagaswarupa, H.P.; Prashantha, S.C.; Nagabhushana, H.; Vidya, Y.S. Self-assembled hierarchical microporous ZrO2 NPs and Mg-doped ZrO2 nanodiscs synthesized by non-aqueous sol–gel route. J. Mater. Sci. Mater. Electron. 2022, 672, 609–622. [Google Scholar]
- Kianfar, A.H.; Arayesh, M.A.; Momeni, M.M. Degradation of MB and RhB by modified ZrO2 NPs via sunlight. Appl. Phys. A 2021, 127, 158. [Google Scholar] [CrossRef]
- Goyal, P.; Bhardwaj, A.; Mehta, B.K.; Mehta, D. Research article green synthesis of zirconium oxide nanoparticles (ZrO2NPs) using Helianthus annuus seed and their antimicrobial effects. J. Indian Chem. Soc. 2021, 98, 100089. [Google Scholar] [CrossRef]
- Sikdar, S.; Banu, A.; Ali, S.; Barman, S.; Kalar, P.L.; Das, R. Micro-structural Analysis and Photocatalytic Properties of Green Synthesized t-ZrO2 NPs. ChemistrySelect 2022, 7, e202103953. [Google Scholar] [CrossRef]
- Ahmed, T.; Ren, H.; Noman, M.; Shahid, M.; Liu, M.; Ali, M.A.; Zhang, J.; Tian, Y.; Qi, X. Green synthesis and characterization of zirconium oxide nanoparticles by using a native Enterobacter sp. and its antifungal activity against bayberry twig blight disease pathogen Pestalotiopsis versicolor. NanoImpact 2021, 21, 100281. [Google Scholar] [CrossRef] [PubMed]
- Gurav, R.P.; Nalawade, R.D.; Sawant, S.D.; Satyanarayan, N.D.; Sankpal, S.A.; Hangirgekar, S.P. Biosynthesis of ZrO2 for ZrO2@ Ag-S-CH2COOH as the retrievable catalyst for the one-pot green synthesis of pyrazoline derivatives and their anticancer evaluation. Appl. Organomet. Chem. 2022, 36, e6666. [Google Scholar] [CrossRef]
- Hao, W.; Jia, Y.; Wang, C.; Wang, X. Preparation, chemical characterization and determination of the antioxidant, cytotoxicity and therapeutic effects of gold nanoparticles green-synthesized by Calendula officinalis flower extract in diabetes-induced cardiac dysfunction in rat. Inorg. Chem. Commun. 2022, 144, 109931. [Google Scholar] [CrossRef]
- Govindasamy, R.; Govindarasu, M.; Alharthi, S.S.; Mani, P.; Bernaurdshaw, N.; Gomathi, T.; Ansari, M.A.; Alomary, M.N.; Atwah, B.; Malik, M.S.; et al. Sustainable green synthesis of yttrium oxide (Y2O3) nanoparticles using Lantana camara leaf extracts: Physicochemical characterization, photocatalytic degradation, antibacterial, and anticancer potency. Nanomaterials 2022, 12, 2393. [Google Scholar] [CrossRef]
- Gonçalves, J.P.Z.; Seraglio, J.; Macuvele, D.L.P.; Padoin, N.; Soares, C.; Riella, H.G. Green synthesis of manganese based nanoparticles mediated by Eucalyptus robusta and Corymbia citriodora for agricultural applications. Colloids Surf. A Physicochem. Eng. Asp. 2022, 636, 128180. [Google Scholar] [CrossRef]
- Vinayagam, R.; Singhania, B.; Murugesan, G.; Kumar, P.S.; Bhole, R.; Narasimhan, M.K.; Varadavenkatesan, T.; Selvaraj, R. Photocatalytic degradation of methylene blue dye using newly synthesized zirconia nanoparticles. Environ. Res. 2022, 214, 113785. [Google Scholar] [CrossRef]
- Amirabad, T.N.; Ensafi, A.A.; Rezaei, B. Boosting supercapacitor performance by in-situ modification of binder-free electrodes with green synthesized Zn-doped Fe2O3 nanoparticles on 2D-MoS2@ rGO nanosheets. Fuel 2022, 330, 125645. [Google Scholar] [CrossRef]
- Guo, P.P.; He, Z.H.; Yang, S.Y.; Wang, W.; Wang, K.; Li, C.C.; Wei, Y.-Y.; Liu, Z.-T.; Han, B. Electrocatalytic CO2 reduction to ethylene over ZrO2/Cu-Cu2O catalysts in aqueous electrolytes. Green Chem. 2022, 24, 1527–1533. [Google Scholar] [CrossRef]
- Zhang, L.; Han, J.; Wang, Y.; Yang, W.; Tao, S. Pd/Mg (OH)2/MgO–ZrO2 Nanocomposite Systems for Highly Efficient Suzuki–Miyaura Coupling Reaction at Room Temperature: Implications for Low-Carbon Green Organic Synthesis. ACS Appl. Nano Mater. 2022, 5, 8059–8069. [Google Scholar] [CrossRef]
- Tsegay, M.G.; Gebretinsae, H.G.; Welegergs, G.G.; Maaza, M.; Nuru, Z.Y. Novel green synthesized Cr2O3 for selective solar absorber: Investigation of structural, morphological, chemical, and optical properties. Sol. Energy 2022, 236, 308–319. [Google Scholar] [CrossRef]
- Lin, Y.; Jin, X.; Khan, N.I.; Owens, G.; Chen, Z. Bimetallic Fe/Ni nanoparticles derived from green synthesis for the removal of arsenic (V) in mine wastewater. J. Environ. Manag. 2022, 301, 113838. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Xu, L.; Shang, S.; Zhou, X.; Meng, L. Visible light induced methylene blue dye degradation photo-catalyzed by WO3/graphene nanocomposites and the mechanism. Ceram. Int. 2016, 42, 15235–15241. [Google Scholar] [CrossRef]
- RajKumar, M.; Arunpandian, M.; Leeladevi, K.; Veemaraj, T.; Arunachalam, S. Construction of novel Bi2MoO6@ V2O5 nanocomposite as visible-light-driven catalyst for degradation of methylene blue dye. J. Mater. Sci. Mater. Electron. 2022, 33, 5816–5830. [Google Scholar] [CrossRef]
- Perumal, V.; Inmozhi, C.; Uthrakumar, R.; Robert, R.; Chandrasekar, M.; Mohamed, S.B.; Honey, S.; Raja, A.; Al-Mekhlafi, F.A.; Kaviyarasu, K. Enhancing the photocatalytic performance of surface-Treated SnO2 hierarchical nanorods against methylene blue dye under solar irradiation and biological degradation. Environ. Res. 2022, 209, 112821. [Google Scholar] [CrossRef]
- Belousov, A.S.; Suleimanov, E.V.; Parkhacheva, A.A.; Fukina, D.G.; Koryagin, A.V.; Koroleva, A.V.; Zhizhin, E.V.; Gorshkov, A.P. Regulating of MnO2 photocatalytic activity in degradation of organic dyes by polymorphic engineering. Solid State Sci. 2022, 132, 106997. [Google Scholar] [CrossRef]
- Kumar, S.A.; Jarvin, M.; Inbanathan, S.S.R.; Umar, A.; Lalla, N.P.; Dzade, N.Y.; Algadi, H.; Rahman, Q.I.; Baskoutas, S. Facile green synthesis of magnesium oxide nanoparticles using tea (Camellia sinensis) extract for efficient photocatalytic degradation of methylene blue dye. Environ. Technol. Innov. 2022, 28, 102746. [Google Scholar] [CrossRef]
- Koyyada, G.; Goud, B.S.; Devarayapalli, K.C.; Shim, J.; Vattikuti, S.P.; Kim, J.H. BiFeO3/Fe2O3 electrode for photoelectrochemical water oxidation and photocatalytic dye degradation: A single step synthetic approach. Chemosphere 2022, 303, 135071. [Google Scholar] [CrossRef]
- Sugashini, S.; Gomathi, T.; Devi, R.A.; Sudha, P.N.; Rambabu, K.; Banat, F. Nanochitosan/carboxymethyl cellulose/TiO2 biocomposite for visible-light-induced photocatalytic degradation of crystal violet dye. Environ. Res. 2022, 204, 112047. [Google Scholar] [CrossRef]
- Aravinthkumar, K.; Peter, I.J.; Babu, G.A.; Navaneethan, M.; Karazhanov, S.; Mohan, C.R. Enhancing the short circuit current of a Dye-Sensitized Solar cell and photocatalytic dye degradation using Cr doped SrTiO3 interconnected spheres. Mater. Lett. 2022, 319, 132284. [Google Scholar] [CrossRef]
- Noor, M.; Sharmin, F.; Al Mamun, M.A.; Hasan, S.; Hakim, M.A.; Basith, M.A. Effect of Gd and Y co-doping in BiVO4 photocatalyst for enhanced degradation of methylene blue dye. J. Alloy. Compd. 2022, 895, 162639. [Google Scholar] [CrossRef]
- George, A.; Magimai Antoni Raj, D.; Venci, X.; Dhayal Raj, A.; Albert Irudayaraj, A.; Josephine, R.L.; John Sundaram, S.; Al-Mohaimeed, A.M.; Al Farraj, D.A.; Chen, T.W.; et al. Photocatalytic effect of CuO nanoparticles flower-like 3D nanostructures under visible light irradiation with the degradation of methylene blue (MB) dye for environmental application. Environ. Res. 2022, 203, 111880. [Google Scholar] [CrossRef] [PubMed]
- Qutub, N.; Singh, P.; Sabir, S.; Sagadevan, S.; Oh, W.C. Enhanced photocatalytic degradation of Acid Blue dye using CdS/TiO2 nanocomposite. Sci. Rep. 2022, 12, 5759. [Google Scholar] [CrossRef] [PubMed]
- Agorku, E.S.; Kuvarega, A.T.; Mamba, B.B.; Pandey, A.C.; Mishra, A.K. Enhanced visible-light photocatalytic activity of multi-elements-doped ZrO2 for degradation of indigo carmine. J. Rare Earths 2015, 33, 498–506. [Google Scholar] [CrossRef]
- Hanafi, M.F.; Sapawe, N. The potential of ZrO2 catalyst toward degradation of dyes and phenolic compound. Mater. Today Proc. 2019, 19, 1524–1528. [Google Scholar] [CrossRef]
- Khataee, A.; Kayan, B.; Gholami, P.; Kalderis, D.; Akay, S.; Dinpazhoh, L. Sonocatalytic degradation of Reactive Yellow 39 using synthesized ZrO2 NPs on biochar. Ultrason. Sonochemistry 2017, 39, 540–549. [Google Scholar] [CrossRef]
- Reddy, C.V.; Babu, B.; Reddy, I.N.; Shim, J. Synthesis and characterization of pure tetragonal ZrO2 NPs with enhanced photocatalytic activity. Ceram. Int. 2018, 44, 6940–6948. [Google Scholar] [CrossRef]
- Renuka, L.; Anantharaju, K.S.; Sharma, S.C.; Nagabhushana, H.; Vidya, Y.S.; Nagaswarupa, H.P.; Prashantha, S.C. A comparative study on the structural, optical, electrochemical and photocatalytic properties of ZrO2 nanooxide synthesized by different routes. J. Alloy. Compd. 2017, 695, 382–395. [Google Scholar] [CrossRef]
- Dharr, A.; Arjun, A.; Raguram, T.; Rajni, K.S. Influence of pH on the structural, spectral, optical, morphological and photocatalytic properties of ZrO2 NPs synthesized by sol–gel technique. J. Mater. Sci. Mater. Electron. 2020, 31, 15718–15730. [Google Scholar] [CrossRef]
- Karthik, K.; Madhukara Naik, M.; Shashank, M.; Vinuth, M.; Revathi, V. Microwave-assisted ZrO2 NPs and its photocatalytic and antibacterial studies. J. Clust. Sci. 2019, 30, 311–318. [Google Scholar] [CrossRef]
- Basahel, S.N.; Ali, T.T.; Mokhtar, M.; Narasimharao, K. Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Res. Lett. 2015, 10, 73. [Google Scholar] [CrossRef] [Green Version]
- Sreethawong, T.; Ngamsinlapasathian, S.; Yoshikawa, S. Synthesis of crystalline mesoporous-assembled ZrO2 NPs via a facile surfactant-aided sol–gel process and their photocatalytic dye degradation activity. Chem. Eng. J. 2013, 228, 256–262. [Google Scholar] [CrossRef]
- Rizwana, H.; Alwhibi, M.S.; Al-Judaie, R.A.; Aldehaish, H.A.; Alsaggabi, N.S. Sunlight-mediated green synthesis of silver nanoparticles using the berries of Ribes rubrum (Red currants): Characterisation and evaluation of their antifungal and antibacterial activities. Molecules 2022, 27, 2186. [Google Scholar] [CrossRef] [PubMed]
- Prema, P.; Ranjani, S.S.; Kumar, K.R.; Veeramanikandan, V.; Mathiyazhagan, N.; Nguyen, V.H.; Balaji, P. Microbial synthesis of silver nanoparticles using Lactobacillus plantarum for antioxidant, antibacterial activities. Inorg. Chem. Commun. 2022, 136, 109139. [Google Scholar] [CrossRef]
- Nieto-Maldonado, A.; Bustos-Guadarrama, S.; Espinoza-Gomez, H.; Flores-López, L.Z.; Ramirez-Acosta, K.; Alonso-Nuñez, G.; Cadena-Nava, R.D. Green synthesis of copper nanoparticles using different plant extracts and their antibacterial activity. J. Environ. Chem. Eng. 2022, 10, 107130. [Google Scholar] [CrossRef]
- Dai, X.; Li, S.; Li, S.; Ke, K.; Pang, J.; Wu, C.; Yan, Z. High antibacterial activity of chitosan films with covalent organic frameworks immobilized silver nanoparticles. Int. J. Biol. Macromol. 2022, 202, 407–417. [Google Scholar] [CrossRef]
- Gevorgyan, S.; Schubert, R.; Falke, S.; Lorenzen, K.; Trchounian, K.; Betzel, C. Structural characterization and antibacterial activity of silver nanoparticles synthesized using a low-molecular-weight Royal Jelly extract. Sci. Rep. 2022, 12, 14077. [Google Scholar] [CrossRef]
- Al Hagbani, T.; Rizvi, S.M.D.; Hussain, T.; Mehmood, K.; Rafi, Z.; Moin, A.; Abu Lila, A.S.; Alshammari, F.; Khafagy, E.S.; Rahamathulla, M.; et al. Cefotaxime Mediated Synthesis of Gold Nanoparticles: Characterization and Antibacterial Activity. Polymers 2022, 14, 771. [Google Scholar] [CrossRef]
- Nazaripour, E.; Mosazadeh, F.; Rahimi, S.S.; Alijani, H.Q.; Isaei, E.; Borhani, F.; Iravani, S.; Ghasemi, M.; Akbarizadeh, M.R.; Khatami, M.; et al. Ferromagnetic nickel (II) oxide (NiO) nanoparticles: Biosynthesis, characterization and their antibacterial activities. Rend. Lincei. Sci. Fis. E Nat. 2022, 33, 127–134. [Google Scholar] [CrossRef]
- Guo, C.; Cheng, F.; Liang, G.; Zhang, S.; Jia, Q.; He, L.; Duan, S.; Fu, Y.; Zhang, Z.; Du, M. Copper-based polymer-metal–organic framework embedded with Ag nanoparticles: Long-acting and intelligent antibacterial activity and accelerated wound healing. Chem. Eng. J. 2022, 435, 134915. [Google Scholar] [CrossRef]
- Naveen, K.V.; Kim, H.Y.; Saravanakumar, K.; Mariadoss, A.V.A.; Wang, M.H. Phyto-fabrication of biocompatible silver nanoparticles using Potentilla chinensis Ser leaves: Characterization and evaluation of its antibacterial activity. J. Nanostructure Chem. 2022, 12, 655–667. [Google Scholar] [CrossRef]
- Rao, S.Q.; Zhang, R.Y.; Chen, R.; Gao, Y.J.; Gao, L.; Yang, Z.Q. Nanoarchitectonics for enhanced antibacterial activity with Lactobacillus buchneri S-layer proteins-coated silver nanoparticles. J. Hazard. Mater. 2022, 426, 128029. [Google Scholar] [CrossRef] [PubMed]
S.No | Sample | Dye | Dye Conc. | Dosage | Degradation | Ref |
---|---|---|---|---|---|---|
1. | Eu,C,N,S-doped ZrO2 | Indigo Carmine | 20 mg/L | 100 mg | 100% | [83] |
2. | ZrO2 | (MO), (MB), (CR), (MG) | 10 mg/L | 10 mg L−1 | 80%, 92%, 87% and 100% | [84] |
3. | ZrO2 | RY | 96.8% | [85] | ||
4. | ZrO2 | MO | 50 ppm | 50 mg | 99% | [86] |
5. | ZrO2 | MB | 20 ppm | 60 mg | 97 | [87] |
6. | ZrO2 | AY | 10 mg/L | 0.1 g | 84.04% | [88] |
7. | ZrO2 | MB and RB | 1 mg/L | 30 mg | 99% and 90% | [89] |
8. | ZrO2 | MO | 10 mg/L | 100 mg | 95% | [90] |
9. | ZrO2 | MO | 10 mg | 59.4 | [91] | |
10. | ZrO2 | MB | 10 ppm | 10 mg | 94 | Present work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chelliah, P.; Wabaidur, S.M.; Sharma, H.P.; Majdi, H.S.; Smait, D.A.; Najm, M.A.; Iqbal, A.; Lai, W.-C. Photocatalytic Organic Contaminant Degradation of Green Synthesized ZrO2 NPs and Their Antibacterial Activities. Separations 2023, 10, 156. https://doi.org/10.3390/separations10030156
Chelliah P, Wabaidur SM, Sharma HP, Majdi HS, Smait DA, Najm MA, Iqbal A, Lai W-C. Photocatalytic Organic Contaminant Degradation of Green Synthesized ZrO2 NPs and Their Antibacterial Activities. Separations. 2023; 10(3):156. https://doi.org/10.3390/separations10030156
Chicago/Turabian StyleChelliah, Parvathiraja, Saikh Mohammad Wabaidur, Hari Prapan Sharma, Hasan Sh. Majdi, Drai Ahmed Smait, Mohammed Ayyed Najm, Amjad Iqbal, and Wen-Cheng Lai. 2023. "Photocatalytic Organic Contaminant Degradation of Green Synthesized ZrO2 NPs and Their Antibacterial Activities" Separations 10, no. 3: 156. https://doi.org/10.3390/separations10030156
APA StyleChelliah, P., Wabaidur, S. M., Sharma, H. P., Majdi, H. S., Smait, D. A., Najm, M. A., Iqbal, A., & Lai, W. -C. (2023). Photocatalytic Organic Contaminant Degradation of Green Synthesized ZrO2 NPs and Their Antibacterial Activities. Separations, 10(3), 156. https://doi.org/10.3390/separations10030156