Traditional Importance, Phytochemistry, Pharmacology, and Toxicological Attributes of the Promising Medicinal Herb Carissa spinarum L.
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Botanical Description and Growth Conditions
3.2. Traditional and Ethnomedicinal Importance
3.3. Phytochemical Composition
3.4. Pharmacological Properties
3.4.1. Anthelmintic Activity
3.4.2. Anticonvulsant Activity
3.4.3. Anti-Arthritic Activity
3.4.4. Anti-Inflammatory Activity
3.4.5. Antimicrobial Activity
3.4.6. Antidiabetic Activity
3.4.7. Hepatoprotective Activity
3.4.8. Anticancer Activity
3.4.9. Antioxidant Activity
3.4.10. Antiviral Activity
3.4.11. Other Pharmacological Properties
3.5. Biotechnological Applications of CS
3.5.1. Wine Production
3.5.2. Anti-Quorum Sensing Activity
3.5.3. Natural Dye
3.6. Toxicity and Safety Aspects
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. WHO Guidelines on Safety Monitoring of Herbal Medicines in Pharmacovigilance Systems; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dey, Y.N.; Ota, S.; Srikanth, N.; Jamal, M.; Wanjari, M. A phytopharmacological review on an important medicinal plant-Amorphophallus paeoniifolius. Ayu 2012, 33, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, P.K. Quality Control of Herbal Drugs: An Approach to Evaluation of Botanicals; Business Horizons Pharmaceutical Publishers: New Delhi, India, 2002. [Google Scholar]
- Bodeker, G.; Ong, C.K. WHO Global Atlas of Traditional, Complementary and Alternative Medicine; World Health Organization: Geneva, Switzerland, 2005; Volume 1. [Google Scholar]
- Bandaranayake, W.M. Quality control, screening, toxicity, and regulation of herbal drugs. Mod. Phytomed. Turn. Med. Plants Into Drugs 2006, 1, 25–57. [Google Scholar]
- Saini, R.; Sharma, N.; Oladeji, O.S.; Sourirajan, A.; Dev, K.; Zengi, G.; El-Shazley, M.; Kumar, V. Traditional uses, bioactive composition, pharmacology, and toxicology of Phyllanthus emblica fruits: A comprehensive review. J. Ethnopharmacol. 2022, 282, 114570. [Google Scholar] [CrossRef] [PubMed]
- Dev, S. Ethno therapeutics and modern drug development: The potential of Ayurveda. Curr. Sci. 1997, 73, 909–928. [Google Scholar]
- Sharma, N.; Kumar, V.; Chopra, M.P.; Sourirajan, A.; Dev, K.; El-Shazly, M. Thalictrum foliolosum: A lesser unexplored medicinal herb from the Himalayan region as a source of valuable benzyl isoquinoline alkaloids. J. Ethnopharmacol. 2020, 255, 112736. [Google Scholar] [CrossRef]
- Samant Pant, S.; Singh, M.; Lal, M.; Singh, A.; Sharma, A.; Bhandari, S. Medicinal plants in Himachal Pradesh, north western Himalaya, India. Int. J. Biodivers. Sci. Manag. 2007, 3, 234–251. [Google Scholar] [CrossRef]
- Sharma, R.N.; Bala, J.; Singh, A.; Prabhjot, K. Antibacterial Potential of Achyranthus aspera Linn procured from Himachal Pradesh, Punjab and Haryana, India. Res. J. Chem. Sci. 2011, 8, 80–82. [Google Scholar]
- Ansari, I.M.; Patil, D.T. A brief review on phytochemical and pharmacological profile of Carissa spinarum L. Asian J. Pharm. Clin. Res. 2018, 11, 12–18. [Google Scholar] [CrossRef]
- Fatima, A.; Singh, P.P.; Irchhaiya, R.; Agarwal, P. Effect of Leaves of Carissa spinarum Linn. on blood glucose and lipid profile in alloxan induced diabetic rats. Am. J. Phytomed. Clin. Therap. 2013, 1, 385–394. [Google Scholar]
- Hegde, K.; Satyanarayana, D.; Joshi, A.B. Evaluation of anticonvulsant activity of Carissa spinarum root extract. Rajiv Gandhi Univ. Health Sci. J. Pharm. Sci. 2011, 1, 64–68. [Google Scholar]
- Hegde, K.; Issac, C.; Joshi, A.B. Antiarthritic activity of Carissa spinarum root extract in Freund’s adjuvant induced polyarthritis in rats. Pharmacologyonline 2010, 2, 713–718. [Google Scholar]
- Feyissa, D.; Melaku, Y. Phytochemical, antibacterial and antioxidant studies of the leaves of Carissa spinarum. Int. J. Chem. Pharma. Sci. 2016, 7, 25–30. [Google Scholar]
- Kumar, V.; Joshi, V.; Singh, R. Antibacterial activity of Root and Leaf Extracts of Carissa spinarum against Methicillin- resistant Staphylococcus aureus (MRSA) and other Clinically Pathogenic bacterial strains. Octa. J. Biosci. 2017, 5, 61–64. [Google Scholar]
- Berhanu, G.; Atalel, D.; Kandi, V. A review of the medicinal and antimicrobial properties of Carissa spinarum L. Am. J. Biomed. Res. 2020, 8, 54–58. [Google Scholar]
- Harwansh, R.K.; Garabadu, D.; Rahman, M.A.; Garabadu, P.S. In vitro anthelmintic activity of different extracts of root of Carissa spinarum. Int. J. Pharma. Sci. Res. 2010, 1, 84. [Google Scholar]
- Jan, O.Q.; Kamili, N.; Ashraf, A.; Iqbal, A.; Sharma, R.K.; Rastogi, A. Haematobiochemical parameters of goats fed tannin rich Psidium guajava and Carissa spinarum against Haemonchus contortus infection in India. J. Parasitic. Dis. 2015, 39, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Sanwal, R.; Chaudhary, A.K. Wound healing and antimicrobial potential of Carissa spinarum Linn. in albino mice. J. Ethnopharmacol. 2011, 135, 792–796. [Google Scholar] [CrossRef]
- Hegde, K.; Joshi, A.B. Hepatoprotective and antioxidant effect of Carissa spinarum root extract against CCI4-and paracetamol-induced hepatic damage in rats. Bang. J. Pharmacol. 2010, 5, 73–76. [Google Scholar]
- Liu, Y.; Muema, F.W.; Zhang, Y.L.; Guo, M.Q. Acyl quinic acid derivatives screened out from Carissa spinarum by SOD-Affinity Ultrafiltration LC–MS and their antioxidative and hepatoprotective activities. Antioxidants 2021, 10, 1302. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Muema, F.W.; Kimutai, F.; Chen, G.; Guo, M. Phenolic Compounds from Carissa spinarum are characterized by their antioxidant, anti-inflammatory and hepatoprotective activities. Antioxidants 2021, 10, 652. [Google Scholar] [CrossRef] [PubMed]
- Fatiany, P.R.; Baholy, R.; Raharisololalao, A.; Mpiana, P.T.; Mudogo, V.; Ngbolua, K.N. Ethno-botany survey and assessment of vasorelaxant activity of some extract obtained from the leaves of Carissa spinarum L. Apocynaceae originated from Madagascar on isolated rat thoracic aorta. Ethnopharmacologia 2015, 6, 88–96. [Google Scholar]
- Rao, J.R.; Sampath Kumar, U.; Venkat Reddy, S.; Tiwari, A.K.; Madhusudana Rao, J. Antioxidants and a new germacrane sesquiterpene from Carissa spinarum. Nat. Prod. Res. 2005, 19, 763–769. [Google Scholar] [PubMed]
- Wangteeraprasert, R.; Lipipun, V.; Gunaratnam, M.; Neidle, S.; Gibbons, S.; Likhitwitayawuid, K. Bioactive compounds from Carissa spinarum. Phytother. Res. 2012, 26, 1496–1499. [Google Scholar] [CrossRef] [PubMed]
- Afanyibo, Y.; Esseh, K.; Idoh, K.; Koudouvo, K.; Agbonon, A.; Gbeassor, M. Toxicity and antioxidant activity of Syzygium aromaticum, Mondia whitei, Carissa spinarum and Caesalpinia bonduc. J. Phytopharm. 2019, 8, 124–128. [Google Scholar] [CrossRef]
- Beck, N.R.; Namdeo, K.P. Evaluation of in vivo anti-inflammatory activity of leaves extract of Carissa spinarum on formalin induced paw edema in albino rats. Pharma. Biosci. J. 2016, 4, 36–40. [Google Scholar]
- Sehar, I.; Pal, H.C.; Shukla, S.; Bhushan, S.; Hamid, A.; Gupta, B.D.; Saxena, A.K. Cytotoxic evaluation and induction of mitochondria-mediated apoptosis in human leukaemia HL-60 cells by Carissa spinarum stem isolate. J. Pharma. Pharmacol. 2011, 63, 1078–1090. [Google Scholar] [CrossRef]
- Alqathama, A.; Bader, A.; Khondkar, P.; Gibbons, S.; Prieto, J. Bioguided isolation of cytotoxic compounds against melanoma cells from Carissa spinarum L. Planta Med. 2015, 81, 51. [Google Scholar] [CrossRef]
- Oliver, B.E.P. Medicinal Plants in Nigeria; Nigerian College of Arts, Science and Technology: Zaria, Nigeria, 1960; Volume 21, pp. 52–53. [Google Scholar]
- Sofowora, A. The present status of knowledge of the plants used in traditional medicine in Western Africa: A medical approach and a chemical evaluation. J. Ethnopharmacol. 1980, 2, 109–118. [Google Scholar] [CrossRef]
- Burkill, H.M. The Useful Plants of West Tropical Africa; Families, A.D., Ed.; Royal Botanic Gardens: Kew, UK, 1985; Volume 1. [Google Scholar]
- Dhatwalia, J.; Kumari, A.; Verma, R.; Upadhyay, N.; Guleria, I.; Lal, S.; Thakur, S.; Gudeta, K.; Kumar, V.; Chao, J.C.; et al. Phytochemistry, pharmacology, and nutraceutical profile of Carissa species: An updated review. Molecules 2021, 26, 7010. [Google Scholar] [CrossRef]
- Maobe, M.A.; Gitu, L.; Gatebe, E.; Rotich, H.; Box, P.O. Phytochemical analysis of phenol and flavonoid in eight selected medicinal herbs used for the treatment of diabetes, malaria and pneumonia in Kisii, Kenya. Acad. J. Cancer Res. 2012, 5, 31–39. [Google Scholar]
- Wambugu, S.N.; Mathiu, P.M.; Gakuya, D.W.; Kanui, T.I.; Kabasa, J.D.; Kiama, S.G. Medicinal plants used in the management of chronic joint pains in Machakos and Makueni counties, Kenya. J. Ethnopharmacol. 2011, 137, 945–955. [Google Scholar] [CrossRef] [PubMed]
- Sharma, I.P.; Kanta, C.; Semwal, S.C.; Goswami, N. Wild fruits of Uttarakhand (India): Ethnobotanical and medicinal uses. Inter. J. Complement. Alter. Med. 2017, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kelemu, T.; Wolde, W. Ethnobotanical study of indigenous knowledge on medicinal plants used to treat diseases in selected districts of Amhara regional state, Ethiopia. J. Med. Plants Res. 2018, 12, 528–536. [Google Scholar]
- Bhadane, B.S.; Patil, M.P.; Maheshwari, V.L.; Patil, R.H. Ethnopharmacology, phytochemistry, and biotechnological advances of family Apocynaceae: A review. Phytother. Res. 2018, 32, 1181–1210. [Google Scholar] [CrossRef]
- Gradé, J.T.; Tabuti, J.R.; Van Damme, P. Ethnoveterinary knowledge in pastoral Karamoja, Uganda. J. Ethnopharmacol. 2009, 122, 273–293. [Google Scholar] [CrossRef]
- Chopra, R.N.; Nayar, S.L.; Chopra, I.C. Glossary of Indian Medicinal Plants; CSIR: New Delhi, India, 1956. [Google Scholar]
- Rose, B.N.; Prasad, N.K. Preliminary phytochemical and pharmacognostical evaluation of Carissa spinarum leaves. Asian J. Pharma. Technol. 2013, 3, 30–33. [Google Scholar]
- Rubaka, C.; Ndakidemi, P.; Malebo, H.M.; Shahada, F. Individual and combined antibacterial activity of crude extracts from medicinal plants Carissa spinarum Linn and Carica papaya Linn. Eur. J. Med. Plants 2014, 4, 1513–1523. [Google Scholar] [CrossRef]
- Rao, M.R.; Anisha, G. Preliminary phytochemical and GC MS study of one medicinal plant Carissa spinarum Indo. Am. J. Pharma. Res. 2018, 8, 414–421. [Google Scholar]
- Chauhan, A.M.; Tanwar, B.E.; Arneja, I.N. Influence of processing on physiochemical, nutritional and phytochemical composition of Carissa spinarum (karonda) fruit. Asian. J. Pharm. Clin. Res. 2015, 8, 254–259. [Google Scholar]
- Chanda, J.; Mukherjee, P.K.; Harwansh, R.; Bhadra, S.; Chaudhary, S.K.; Choudhury, S. RP-HPLC simultaneous estimation of betulinic acid and ursolic acid in Carissa spinarum. Nat. Prod. Res. 2014, 28, 1926–1928. [Google Scholar] [PubMed]
- Sisay, M.A.; Yaya, E.E.; Mammo, W. Essential oil and smoke components of Carissa spinarum. Bull. Chem. Soc. Ethiop. 2022, 36, 641–649. [Google Scholar] [CrossRef]
- Mohammed, A.; Wossene, A.; Giday, M.; Tilahun, G.; Kebede, N. In vitro anthelminthic activities of four medicinal plants against Haemonchus contortus. Afr. J. Plant Sci. 2013, 7, 369–373. [Google Scholar] [CrossRef] [Green Version]
- Doshi, G.; Chaskar, P.K.; View, M. Antiinflammatory and antibacterial potential of Carissa carandas and Carissa spinarum nanoemulsions. Int. J. Pharma Sci. Res. 2017, 8, 5137–5145. [Google Scholar]
- Tiruneh, A.T.; Ayalew Tiruneh, G.; Chekol Abebe, E.; Mengie Ayele, T. Phytochemical Investigation and Determination of Antibacterial Activity of Solvent Leave Extracts of Carissa spinarum. Infect. Drug. Res. 2022, 15, 807–819. [Google Scholar] [CrossRef]
- Saka, A.; Tesfaye, J.L.; Gudata, L.; Shanmugam, R.; Dwarampudi, L.P.; Nagaprasad, N.; Rajeshkumar, S. Synthesis, characterization, and antibacterial activity of ZnO nanoparticles from fresh leaf extracts of Apocynaceae, Carissa spinarum L. (Hagamsa). J. Nanomater. 2022, 2022, 6230298. [Google Scholar] [CrossRef]
- Nkhabindze, B.Z.; Wanyika, H.N.; Earnshaw, D.M.; Ateka, E.M. Synthesis of silver nanoparticles using crude leaf extracts of Acacia nilotica, Azadirachta indica, Carissa spinarum, Melia azedarach, Senna didymobotrya and Warburgia ugandensis, and their antifungal activity against Sporisorium scitamineum. Afr. J. Biotech. 2022, 21, 305–313. [Google Scholar] [CrossRef]
- Nayak, J.; Basak, U.C. Antioxidant potential of some lesser-known wild edible fruits of Odisha. Eur. J. Exper. Biol. 2015, 5, 60–70. [Google Scholar]
- Nazareth, M.S.; Shreelakshmi, S.V.; Shetty, N.P. Identification and characterization of polyphenols from Carissa spinarum fruit and evaluation of their antioxidant and anti-quorum sensing activity. Curr. Micro. 2021, 78, 1277–1285. [Google Scholar] [CrossRef]
- Tolo, F.M.; Rukunga, G.M.; Muli, F.W.; Njagi, E.N.; Njue, W.; Kumon, K.; Kofi-Tsekpo, M.W. Anti-viral activity of the extracts of a Kenyan medicinal plant Carissa edulis against herpes simplex virus. J. ethnopharmacol. 2006, 104, 92–99. [Google Scholar] [CrossRef]
- Mworia, J.K.; Gitahi, S.M.; Juma, K.K.; Njagi, J.M.; Mwangi, B.M.; Aliyu, U.; Njoroge, W.A.; Mwonjoria, K.J.; Mawia, A.M.; Nyamai, D.W.; et al. Antinociceptive activities of acetone leaves extracts of Carissa spinarum in Mice. J. Med. Arom. Plants 2015, 1, 6. [Google Scholar]
- Mworia, J.K. Antinociceptive Activities of Acetone Leaves Extracts of Carissa Spinarum and Caesalpinia volkensii in Mice. Ph.D. Thesis, Kenyatta University, Nairobi, Kenya, 2016; p. 20. [Google Scholar]
- Janardhan, B.; Shrikanth, V.M.; Mirajkar, K.K.; More, S.S. In vitro anti-snake venom properties of Carisssa spinarum Linn leaf extracts. J. Herbs. Spices Med. Plants 2015, 21, 283–293. [Google Scholar] [CrossRef]
- Koffuor, G.A.; Sam, G.H.; Dadzeasah, P.E.; Owiafe, E.O.; Gyapong, A.A. Erythropoietic effect of the ethanolic root bark extract of Carissa edulis in phenylhydrazine-induced anemic Sprague-Dawley rats. Res. J. Pharmacol. 2012, 6, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.S.; Engidawork, E. Antidepressant-Like Activity of Solvent Fractions of the Root Bark of Carissa spinarum Linn. (Apocynaceae) in Rodents Involves Multiple Signaling Pathways. J. Experiment. Pharmacol. 2022, 14, 379–394. [Google Scholar] [CrossRef] [PubMed]
- Njau, V.N.; Maina, E.N.; Anjili, C.O.; Ingonga, J.M.; Koech, J.C.; Kariuki, H.W.; Ngure, P.K. In vitro antileishmanial activity and phytochemical analysis of Carissa edulis against Leishmania major. Afr. J. Pharmacol. Ther. 2017, 5, 252–262. [Google Scholar]
- Mundaragi, A.; Thangadurai, D. Process optimization, physicochemical characterization and antioxidant potential of novel wine from an underutilized fruit Carissa spinarum L. (Apocynaceae). J. Food Sci. Technol. 2017, 38, 428–433. [Google Scholar] [CrossRef] [Green Version]
- Nazareth, M.S.; Shreelakshmi, S.V.; Rao, P.J.; Shetty, N.P. Micro and nanoemulsions of Carissa spinarum fruit polyphenols, enhances anthocyanin stability and anti-quorum sensing activity: Comparison of degradation kinetics. Food Chem. 2021, 359, 129876. [Google Scholar] [CrossRef]
- Aliño, M.F.A. Carissa carandas fruit extract as a natural fabric dye. J. Nat. Stud. 2014, 13, 1–12. [Google Scholar]
- Gebrehiwot, S. In vivo acute and sub-acute toxicity study of root extract of Carissa spinarum Linn. in swiss albino mice. Int. J. Pharma. Pharmaceut. Sci. 2019, 11, 62–65. [Google Scholar] [CrossRef] [Green Version]
- Dossou-Yovo, K.M.; Diallo, A.; Lawson-Evi, P.; Kantati, Y.T.; Darré, T.; Bakoma, B.; Eklu-Gadégbéku, K. A 90-Day Oral Toxicity of Hydroethanolic Root Extract of Carissa spinarum in Wistar Rats. J. Toxicol. 2021, 2021, 5570206. [Google Scholar] [CrossRef]
- Dossou-Yovo, K.M.; Diallo, A.; Lawson-Evi, P.; Darré, T.; Bakoma, B.; Eklu-Gadégbéku, K. Cytotoxicity, acute, and subacute study of hydroalcoholic root extract of Carissa spinarum L. on wistar rats. J. Med. Food 2021, 24, 756–761. [Google Scholar] [CrossRef] [PubMed]
Plant Part | Name of the Phytocompounds | Method of Identification | References |
---|---|---|---|
Stems | Carenone (1), 3′-(4″-methoxy phenyl)-3′-oxo-propionyl hexadecanoate (2), germacrenone (3), coniferaldehyde (4), (+)-pinoresinol (5), (-)-nortrachelogenin (6), (-)-carissanol (7), (-)-secoisolariciresinol (8), (-)-carinol (9), (-)-olivil (10), ethyl-3-hydroxy-3-(4′-methoxy-phenyl)-propionate (11), 1-(4′-methoxy-phenyl)-propane-1,3-diol (12), 3-hydroxy-1-(4′-methoxy-phenyl)-propane-1-one (13) | Mass spectrometry, 1H and 13C NMR | Rao et al. [26] |
Stems | Scopoletin (14), nortrachelogenin (15), (-)-carissanol (7), (-)-carinol (9), (+)-cycloolivil (16), (+)-8-hydroxypinoresinol (17), (-)-olivil (10), (-)-secoisolariciresinol (8), (+)-pinoresinol (5), carissone (18), digitoxigenin, 3-o-β-D-digitalopyranoside (19), evomonoside (20) | UV–Vis spectroscopy, Micromass Q-TOF global tandem mass spectrometry, 1H and 13C NMR | Wangteeraprasert et al. [27] |
Leaves | Ursolic acid (21) and betulic acid (22) | TLC, RP-HPLC, column chromatography, 1H and 13C NMR | Feyissa and Melaku [16]; Chanda et al. [47] |
Leaves | Hexadecanal (23), 2-(1-cyclohexenyl) cyclohexanone (24), phytol (25), squalene (26), vitamin E (27), hexadecamethyloctasiloxane (28), 1-monolinoleoylglycerol trimethylsilyl ether (29), β-sitosterol (30), α-amyrin (31), lupeol (32), catechol (33), resorcinol (34), lup-20(29)-en-3-ol (35), n-benzyl-2-phenethylamine (36), 2-methyl-9-β-D-ribofuranosyl hypoxanthine (37), paromomycin (38), 3-O-methyl-D-glucose (39) | GC-MS | Rao, and Anisha [45] |
Root bark | 3-O-vanilloylquinic acid (40), 3-O-syringoylquinic acid (41), 3,4-di-O-syringoylquinic acid (42), neochlorogenic acid (43), cryptochlorogenic acid (44), 3,4-dicaffeoylquinic acid (45), 3,5-dicaffeoylquinic acid (46), 4,5-dicaffeoylquinic acid (47), methyl 3,5-dicaffeoylquinate (48), methyl 4,5-dicaffeoylquinate (49), 4-O-caffeoyl-3-O-syringoylquinic acid (50), 4-O-caffeoyl-3-O-vanilloylquinic acid (51) | (+)-HR-ESI-MS spectrum, 1H and 13C NMR | Liu et al. [23] |
Root bark | (6R,7S,8S)-7a-[(β-D-Glucopyranosyl)-oxy]-1-methoxyisolariciresinol (52), (+)-isolariciresinol 3α-O-β-D-glucopyranoside (53), (-)-lyoniresinol 3α-O-β-D-glucopyranoside (54), acetophenone-2-O-β-xylopyranosyl-(1-6)-O-β-glucopyranoside (55), erythro-1-(3-methoxy-4-hydroxy-phenyl)-propan-1,2-diol (56), threo-1-(3-methoxy-4-hydroxy-phenyl)-propan-1,2-diol (57), 3-carboxymethyl-benzoic acid (58), protocatechuic acid (59), vanillic acid (60) | HPLC–UV, HPLC–ESI–MS/MS, UV–Vis spectra, 1D NMR, 2D NMR spectra, LC-MS | Liu et al. [24] |
Plant Part Used | Extract Used | Microorganisms | Key Findings | Reference |
---|---|---|---|---|
Roots | Methanolic extract | E. coli, | MIC—125 ± 10 µg/mL | Sanwal and Choudhary [21] |
B. subtilis, | MIC—512 ± 43 µg/mL | |||
S. aureus, | MIC—110 ± 28 µg/mL | |||
Streptococcus spp. | MIC—165 ± 20 µg/mL | |||
A. niger | MIC—256 ± 30 µg/mL | |||
Roots, leaves, and bark | 95% Ethanol, methanol, and petroleum ether | E. coli DSM 1103, S. aureus ATCC 25923 | ZOI—2.33 ± 0.58–13.33 ± 1.53 mm MIC—312–5000 µg/mL | Rubaka et al. [44] |
Leaves | n-Hexane, ethyl acetate, and methanol | S. aureus ATCC 25923, E. coli ATCC 25922, Proteus mirabilis, P. aeruginosa ATCC 35032 | ZOI—15 mm at 0.5 mg/mL in ethyl acetate extract. | Feyissa and Melaku [16] |
Fruit | Nanoemulsions | Escherichia coli, Staphylococcus aureus, Salmonella typhi, B. subtilis | MIC—30–50 µg/mL | Doshi et al. [50] |
Root and Leaves | Petroleum ether, hexane, ethyl acetate, and chloroform | MRSA, E. coli, Proteus, P. fluorescens | ZOI—20–30 mm | Kumar et al. [17] |
Leaves | Methanol and its solvent fractions | S. aureus and S. pneumoniae, E. coli, K. pneumoniae | ZOI—7–13 mm | Tiruneh et al. [51] |
Part Used/Extracts | Used Methods | Key Results | References |
---|---|---|---|
Chloroform extract of stems | DPPH | IC50—47.03 µg/mL | Rao et al. [26] |
Fruit extract | DPPH FRAP Peroxidase (POX) Catalase (CAT) Superoxide dismutase (SOD) | IC50—1013 ± 2.00 µM AEAC/100 g dry wt. IC50—2118 ± 1.00 µM AEAC/g dry wt. POX—0.001 ± 0.0003 ∆ OD/min/g fwt) CAT—1.1119 ± 0.004 U/mL SOD—0.151 ± 0.001 ∆ O.D/min/g tissue wt. | Nayak and Basak [54] |
Hydroalcoholic and aqueous extract of root bark | DPPH | IC50—75.65 ± 5.02 μg/mL (aqueous extract) IC50—96.10 ± 1.11 μg/mL (hydroalcoholic extract) | Afanyibo et al. [28] |
Methanolic root bark extract and its sub-fractions | DPPH FRAP | Ethyl acetate fractions showed strong DPPH and FRAP activity as compared to that of other fractions | Liu et al. [23] |
Ripe fruit extract | DPPH | IC50—4.69 mg/mL | Nazareth et al. [55] |
Sr. No. | Activity | Extract | Control | Model System Used | Findings | References |
---|---|---|---|---|---|---|
1 | Antipyretic | Ethanolic root extract | Aspirin | Albino mice | Oral administration of 100 mg/kg, 200 mg/kg, and 400 mg/kg of CS resulted in reduction in body temperature by 0.15–2.55% as compared to aspirin (1.08–2.53%). | Hegde et al. [15] |
2. | Wound healing | Methanolic root extract | Silver sulfadiazine | Albino mice | CS root extract showed significant wound-healing activity, as evident from the rate of wound contraction and epithelization. Hydroxyproline expression and histological parameters were also well correlated with the observed healing pattern. | Sanwal and Chaudhary [21] |
3 | Vasorelaxant activity | Methanolic leaf extract and its fractions (hexane, dichloromethane, and ethyl acetate). | - | Wistar rats | All tested extracts caused concentration-dependent relaxation in pre-contracted aortic rings. Among all extracts, the dichloromethane-soluble extract from the leaves of C. spinarum (EC50—0.17 ± 0.01 mg mL−1; Emax—85.72%) was found to be highly active. | Fatiany et al. [25] |
4 | Anti-nociceptive activity | Acetone leaf extract | Diclofenac sodium | Swiss albino mice | High concentrations (100 mg/kg body weight) of the acetone leaf extracts of CS showed reduction in the writhing caused by formalin-induced pain. However, acetone leaf extract of CS at concentrations of 50 and 100 mg/kg of body weight showed similar reductions in acetic-acid-induced pain. | Mworia et al. [57]; Mworia [58] |
5 | Anti-venom activity | Methanolic leaf extract | - | In vitro enzyme assays | The methanolic extract was found to inhibit acetylcholinesterase, phosphomonoesterase, phosphodiesterase, and 5′-nucleotidase of viper venom, as well as the hyaluronidase, and phospholipase A2 of krait venom. Phospholipase A2 of V. russelli venom, hyaluronidase of B. caeruleus venom, and protease and L-amino acid oxidase enzymes in both venoms were not inhibited by the extracts. | Janardhan et al. [59] |
6 | Anti-herpetic activity | Methanolic stem extract | Acyclovir | Plaque reduction assay | Evomonoside extracted from stems of CS was found to show more than 50% inhibition at 100 mg/mL against the Vero cell line, with no toxicity. In the inactivation method, the evomonoside showed IC50 values of 120.2 and 168.3 mM against HSV-1 and HSV-2, respectively, and the IC50 value for acyclovir against HSV-1 was 2.8 mM. | Wangteeraprasert et al. [27] |
7 | Erythropoietic effect | Ethanolic root extract | Bioferon | Sprague Dawley rat | C. spinarum at doses of 300 and 100 mg/kg was able to very significantly reverse anemia caused by phenylhydrazine after 45 days of treatment without anisocytosis. | Koffuor et al. [60] |
8 | Antidepressant-like activity | Solvent fractions of the root bark | TW80 | Rodents | Both the aqueous and ethyl acetate fractions significantly (p < 0.001) decreased the duration of immobility. The locomotor test revealed that the activity was not due to non-specific psychostimulant effects. Serum corticosterone levels were reduced by both fractions, with the ethyl acetate fraction again being the most effective. Mechanistic studies showed the involvement of multiple neurotransmission systems, including the adrenergic, dopaminergic, and cholinergic systems, as well as the L-arginine-NO-cGMP pathway. | Ali, and Engidawork [61] |
9 | Antileishmanial activity | Polar and non-polar extracts of stems | Pentostam® and Amphotericin B® | Leishmania major | All of the polar and non-polar extracts of CS showed less activity against promastigotes as compared to that of Pentostam® and Amphotericin B® at all concentrations (50–200 µg/mL). The activity of these extracts against the amastigote form of L. major was seen to be dose-dependent. | Njau et al. [62]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, N.; Kumar, V.; Gupta, N.; Shekhar, P.; Kaur, P.S. Traditional Importance, Phytochemistry, Pharmacology, and Toxicological Attributes of the Promising Medicinal Herb Carissa spinarum L. Separations 2023, 10, 158. https://doi.org/10.3390/separations10030158
Sharma N, Kumar V, Gupta N, Shekhar P, Kaur PS. Traditional Importance, Phytochemistry, Pharmacology, and Toxicological Attributes of the Promising Medicinal Herb Carissa spinarum L. Separations. 2023; 10(3):158. https://doi.org/10.3390/separations10030158
Chicago/Turabian StyleSharma, Nitin, Vikas Kumar, Nidhi Gupta, Pratyush Shekhar, and Palki Sahib Kaur. 2023. "Traditional Importance, Phytochemistry, Pharmacology, and Toxicological Attributes of the Promising Medicinal Herb Carissa spinarum L." Separations 10, no. 3: 158. https://doi.org/10.3390/separations10030158
APA StyleSharma, N., Kumar, V., Gupta, N., Shekhar, P., & Kaur, P. S. (2023). Traditional Importance, Phytochemistry, Pharmacology, and Toxicological Attributes of the Promising Medicinal Herb Carissa spinarum L. Separations, 10(3), 158. https://doi.org/10.3390/separations10030158