Aesculus hippocastanum L.: A Simple Ornamental Plant or a Source of Compelling Molecules for Industry?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling of Aesculus hippocastanum L. Fruits
2.2. Bioactive Compounds of Aesculus hippocastanum L. Fruits
2.3. Bioactivity Evaluation of Aesculus hippocastanum L. Fruits
2.3.1. Extract Preparation
2.3.2. Antioxidant Properties
2.3.3. Antibacterial Properties
2.3.4. Cytotoxic and Anti-Inflammatory Properties
2.4. Statistical Analysis
3. Results
3.1. Bioactive Compounds of Aesculus hippocastanum L. Fruits
3.2. Phenolic Profile of Aesculus hippocastanum L. Fruits
3.3. Bioactivity of Aesculus hippocastanum L. Fruits
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rates, S.M.K. Plants as source of drugs. Toxicon 2001, 39, 603–613. [Google Scholar] [CrossRef]
- Raynor, D.K.; Dickinson, R.; Knapp, P.; Long, A.F.; Nicolson, D.J. Buyer beware? Does the information provided with herbal products available over the counter enable safe use? BMC Med. 2011, 9, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williamson, E.M.; Liu, X.; Izzo, A.A. Trends in use, pharmacology, and clinical applications of emerging herbal nutraceuticals. Br. J. Pharmacol. 2020, 177, 1227–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudek-Makuch, M.; Matławska, I. Flavonoids from the flowers of Aesculus hippocastanum. Acta Pol. Pharm. 2011, 68, 403–408. [Google Scholar] [PubMed]
- Wilczyński, S.; Podlaski, R. The effect of climate on radial growth of horse chestnut (Aesculus hippocastanum L.) in the Świętokrzyski National Park in central Poland. J. For. Res. 2007, 12, 24–33. [Google Scholar] [CrossRef]
- Busia, K. Fundamentals of Herbal Medicine: Major Plant Families, Analytical Methods, Materia Medica; Xlibris Publishing: Bloomington, UK, 2016; Volume 2. [Google Scholar]
- Wichtl, M. Herbal Drugs and Phytopharmaceuticals: A handbook for Practice on a Scientific Basis, 3rd ed.; Medpharm GmbH Scientific Publishers: Stuttgart, Germany, 2004. [Google Scholar]
- de Farias, M.F.A.M.S.; Patriota, L.L.S.; Lira, C.B.S.; Aguiar, L.M.S.; Barros, B.R.S.; Paiva, P.M.G.; de Melo, C.M.L.; Santos, N.D.L.; Napoleão, T.H. Purification, characterization, and immunomodulatory activity of a lectin from the seeds of horse chestnut (Aesculus hippocastanum L.). Curr. Res. Biotechnol. 2022, 4, 203–210. [Google Scholar] [CrossRef]
- Barros, L.; Pereira, C.; Ferreira, I.C.F.R. Optimized analysis of organic acids in edible mushrooms from Portugal by ultra fast liquid chromatography and photodiode array detection. Food Anal. Methods 2013, 6, 309–316. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Calhelha, R.C.; Alves, M.J.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Edible flowers as sources of phenolic compounds with bioactive potential. Food Res. Int. 2018, 105, 580–588. [Google Scholar] [CrossRef] [Green Version]
- Barreira, J.C.M.; Rodrigues, S.; Carvalho, A.M.; Ferreira, I.C.F.R. Development of hydrosoluble gels with Crataegus monogyna extracts for topical application: Evaluation of antioxidant activity of the final formulations. Ind. Crop. Prod. 2013, 42, 175–180. [Google Scholar] [CrossRef]
- Lockowandt, L.; Pinela, J.; Roriz, C.L.; Pereira, C.; Abreu, R.M.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Bredol, M.; Ferreira, I.C.F.R. Chemical features and bioactivities of cornflower (Centaurea cyanus L.) capitula: The blue flowers and the unexplored non-edible part. Ind. Crop. Prod. 2019, 128, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Takebayashi, J.; Iwahashi, N.; Ishimi, Y.; Tai, A. Development of a simple 96-well plate method for evaluation of antioxidant activity based on the oxidative haemolysis inhibition assay (OxHLIA). Food Chem. 2012, 134, 606–610. [Google Scholar] [CrossRef]
- Kuete, V.; Ango, P.Y.; Fotso, G.W.; Kapche, G.D.; Dzoyem, J.P.; Wouking, A.G.; Ngadjui, B.T.; Abegaz, B.M. Antimicrobial activities of the methanol extract and compounds from Artocarpus communis (Moraceae). BMC Complement. Altern. Med. 2011, 11, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuete, V.; Kamga, J.; Sandjo, L.P.; Ngameni, B.; Poumale, H.M.; Ambassa, P.; Ngadjui, B.T. Antimicrobial activities of the methanol extract, fractions and compounds from Ficus polita Vahl. (Moraceae). BMC Complement. Altern. Med. 2011, 11, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, M.I.; Barros, L.; Morales, P.; Cámara, M.; Alves, M.J.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Wild Fragaria vesca L. fruits: A rich source of bioactive phytochemicals. Food Funct. 2016, 7, 4523–4532. [Google Scholar] [CrossRef]
- Reis, F.S.; Barreira, J.C.M.; Calhelha, R.C.; van Griensven, L.J.; Ćirić, A.; Glamočlija, J.; Soković, M.; Ferreira, I.C.F.R. Chemical characterization of the medicinal mushroom Phellinus linteus (Berkeley & Curtis) Teng and contribution of different fractions to its bioactivity. LWT Food Sci. Technol. 2014, 58, 478–485. [Google Scholar]
- Abreu, R.M.V.; Ferreira, I.C.F.R.; Calhelha, R.C.; Lima, R.T.; Vasconcelos, M.H.; Adega, F.; Chaves, R.; Queiroz, M.J.R.P. Anti-hepatocellular carcinoma activity using human HepG2 cells and hepatotoxicity of 6-substituted methyl 3-aminothieno [3,2-b]pyridine-2-carboxylate derivatives: In vitro evaluation, cell cycle analysis and QSAR studies. Eur. J. Med. Chem. 2011, 46, 5800–5806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moro, C.; Palacios, I.; Lozano, M.; D’Arrigo, M.; Guillamón, E.; Villares, A.; Martínez, J.A.; García-Lafuente, A. Anti-inflammatory activity of methanolic extracts from edible mushrooms in LPS activated RAW 264.7 macrophages. Food Chem. 2012, 130, 350–355. [Google Scholar] [CrossRef]
- García-Lafuente, A.; Moro, C.; Manchón, N.; Gonzalo-Ruiz, A.; Villares, A.; Guillamón, E.; Rostagno, M.; Mateo-Vivaracho, L. In vitro anti-inflammatory activity of phenolic rich extracts from white and red common beans. Food Chem. 2014, 161, 216–223. [Google Scholar] [CrossRef]
- Taofiq, O.; Calhelha, R.C.; Heleno, S.; Barros, L.; Martins, A.; Santos-Buelga, C.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. The contribution of phenolic acids to the anti-inflammatory activity of mushrooms: Screening in phenolic extracts, individual parent molecules and synthesized glucuronated and methylated derivatives. Food Res. Int. 2015, 76, 821–827. [Google Scholar] [CrossRef] [Green Version]
- Mouskeftara, T.; Virgiliou, C.; Theodoridis, G.; Gika, H. Analysis of urinary organic acids by gas chromatography tandem mass spectrometry method for metabolic profiling applications. J. Chromatogr. A 2021, 1658, 462590. [Google Scholar] [CrossRef]
- Benali, T.; Bakrim, S.; Ghchime, R.; Benkhaira, N.; El Omari, N.; Balahbib, A.; Taha, D.; Zengin, G.; Hasan, M.M.; Bibi, S.; et al. Pharmacological insights into the multifaceted biological properties of quinic acid. Biotechnol. Genet. Eng. Rev. 2022, 1–30. [Google Scholar]
- Hübner, G.; Wray, V.; Nahrstedt, A. Flavonol oligosaccharides from the seeds of Aesculus hippocastanum. Planta Med. 1999, 65, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Kapusta, I.; Janda, B.; Szajwaj, B.; Stochmal, A.; Piacente, S.; Pizza, C.; Franceschi, F.; Franz, C.; Oleszek, W. Flavonoids in horse chestnut (Aesculus hippocastanum) seeds and powdered wastewater byproducts. J. Agric. Food Chem. 2007, 55, 8485–8490. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.I.; Albiston, C.; Añibarro-Ortega, M.; Ferreira, I.C.F.R.; Pinela, J.; Barros, L. Sonoextraction of phenolic compounds and saponins from Aesculus hippocastanum seed kernels: Modeling and optimization. Ind. Crop. Prod. 2022, 185, 115142. [Google Scholar] [CrossRef]
- Coruh, N. and Özdoğan, N. Fluorescent coumarin components of the husk of Aesculus hippocastanum. J. Liq. Chromatogr. Relat. Technol. 2014, 37, 1334–1350. [Google Scholar] [CrossRef]
- Owczarek, A.; Olszewska, M.A. Development and validation of UHPLC-PDA method for simultaneous determination of bioactive polyphenols of horse-chestnut bark using numerical optimization with MS Excel Solver. J. Pharm. Biomed. Anal. 2020, 190, 113544. [Google Scholar] [CrossRef]
- Barros, L.; Duenas, M.; Dias, M.I.; Sousa, M.J.; Santos-Buelga, C.; Ferreira, I.C.F.R. Phenolic profiles of cultivated, in vitro cutured and commercial samples of Melissa officinalis L. infusions. Food Chem. 2013, 136, 1–8. [Google Scholar] [CrossRef]
- Barros, L.; Calhelha, R.C.; Queiroz, M.J.R.P.; Santos-Buelga, C.; Santos, E.A.; Regis, W.C.B.; Ferreira, I.C.F.R. The powerful in vitro bioactivity of Euterpe oleracea Mart. seeds and related phenolic compounds. Ind. Crop. Prod. 2015, 76, 318–322. [Google Scholar] [CrossRef] [Green Version]
- Melgar, B.; Pereira, E.; Oliveira, M.B.P.P.; Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Soković, M.; Barros, L.; Ferreira, I.C.F.R. Extensive profiling of three varieties of Opuntia spp. fruit for innovative food ingredients. Food Res. Int. 2017, 101, 259–265. [Google Scholar] [CrossRef] [Green Version]
- Ieri, F.; Pinelli, P.; Romani, A. Simultaneous determination of anthocyanins, coumarins and phenolic acids in fruits, kernels and liqueur of Prunus mahaleb L. Food Chem. 2012, 135, 2157–2162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berardini, N.; Carle, R.; Schieber, A. Characterization of gallotannins and benzophenone derivatives from mango (Mangifera indica L. cv. ’Tommy Atkins’) peels, pulp and kernels by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 2208–2216. [Google Scholar] [CrossRef] [PubMed]
- Negri, G.; Barreto, L.M.R.C.; Sper, F.L.; Carvalho, C.D.; Campos, M.D.G.R. Phytochemical analysis and botanical origin of Apis mellifera bee pollen from the municipality of Canavieiras, Bahia State, Brazil. Braz. J. Food Technol. 2018, 21, e2016176. [Google Scholar] [CrossRef] [Green Version]
- Riedelsberger, J.; Blatt, M.R. Roots—The hidden provider. Front. Plant Sci. 2017, 8, 1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez-López, J.; Ruiz-Medina, A.; Ortega-Barrales, P.; Llorent-Martínez, E.J. Rosa rubiginosa and Fraxinus oxycarpa herbal teas: Characterization of phytochemical profiles by liquid chromatography-mass spectrometry, and evaluation of the antioxidant activity. New J. Chem. 2017, 41, 7681–7688. [Google Scholar] [CrossRef]
- Kang, J.; Price, W.E.; Ashton, J.; Tapsell, L.C.; Johnson, S. Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MS(n). Food Chem. 2016, 211, 215–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.Z.; Chen, P.; Ozcan, M.; Harnly, J.M. Chromatographic profiles and identification of new phenolic components of Ginkgo biloba leaves and selected products. J. Agric. Food Chem. 2008, 56, 6671–6679. [Google Scholar] [CrossRef] [Green Version]
- Oszmiański, J.; Kalisz, S.; Aneta, W. The content of phenolic compounds in leaf tissues of white (Aesculus hippocastanum L.) and red horse chestnut (Aesculus carea H.) colonized by the horse chestnut leaf miner (Cameraria ohridella Deschka & Dimić). Molecules 2014, 19, 14625–14636. [Google Scholar]
- Paterska, M.; Bandurska, H.; Wysłouch, J.; Molińska-Glura, M.; Moliński, K. Chemical composition of horse-chestnut (Aesculus) leaves and their susceptibility to chestnut leaf miner Cameraria ohridella Deschka & Dimić. Acta Physiol. Plant. 2017, 39, 105. [Google Scholar]
- Martin-Tanguy, J.; Cabanne, F.; Perdrizet, E.; Martin, C. The distribution of hydroxycinnamic acid amides in flowering plants. Phytochem. 1978, 17, 1927–1928. [Google Scholar] [CrossRef]
- Oszmiański, J.; Kolniak-Ostek, J.; Biernat, A. The content of phenolic compounds in leaf tissues of Aesculus glabra and Aesculus parviflora Walt. Molecules 2015, 20, 2176–2189. [Google Scholar] [CrossRef] [Green Version]
- Hur, H.; Paik, M.J.; Xuan, Y.; Nguyen, D.T.; Ham, I.H.; Yun, J.; Cho, Y.K.; Lee, G.; Han, S.U. Quantitative measurement of organic acids in tissues from gastric cancer patients indicates increased glucose metabolism in gastric cancer. PLoS ONE 2014, 9, e98581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kędzierski, B.; Kukula-Koch, W.; Widelski, J.; Głowniak, K. Impact of harvest time of Aesculus hippocastanum seeds on the composition, antioxidant capacity and total phenolic content. Ind. Crop. Prod. 2016, 86, 68–72. [Google Scholar] [CrossRef]
- Čukanović, J.; Tešević, V.; Jadranin, M.; Ljubojević, M.; Mladenović, E.; Kostić, S. Horse chestnut (Aesculus hippocastanum L.) seed fatty acids, flavonoids and heavy metals plasticity to different urban environments. Biochem. Syst. Ecol. 2020, 89, 103980. [Google Scholar] [CrossRef]
- Küçükkurt, I.; Ince, S.; Keleş, H.; Akkol, E.K.; Avcı, G.; Yeşilada, E.; Bacak, E. Beneficial effects of Aesculus hippocastanum L. seed extract on the body’s own antioxidant defense system on subacute administration. J. Ethnopharmacol. 2010, 129, 18–22. [Google Scholar] [CrossRef]
- Makino, M.; Katsube, T.; Ohta, Y.; Schmidt, W.; Yoshino, K. Preliminary study on antioxidant properties, phenolic contents, and effects of Aesculus hippocastanum (horse chestnut) seed shell extract on in vitro cyclobutane pyrimidine dimer repair. J. Intercult. Ethnopharmacol. 2017, 6, 414–419. [Google Scholar] [CrossRef]
- Khar’kov, Y.K.; Arsene, M.M.; Aliya, M.V.; Viktorovna, P.I.; Elena, V.G.; Azova, M.M.; Amira, A.A. Assessment of Antimicrobial activity of ethanolic and aqueous extracts of Aesculus hippocastanum L. (horse chestnut) bark against bacteria isolated from urine of patients diagnosed positive to urinary tract infections. Front. Biosci. 2022, 14, 11. [Google Scholar]
- Fedotcheva, T.A.; Sheichenko, O.P.; Sheichenko, V.I.; Fedotcheva, N.I.; Shimanovskii, N.L. Preparation of a horse chestnut extract with a 50% content of escin and its actions on tumor cell proliferation and isolated mitochondria. Pharm. Chem. J. 2019, 53, 57–64. [Google Scholar] [CrossRef]
- Mojžišová, G.; Mojžiš, J.; Pilátová, M.; Varinská, L.; Ivanová, L.; Strojný, L.; Richnavský, J. Antiproliferative and antiangiogenic properties of horse chestnut extract. Phytother. Res. 2013, 27, 159–165. [Google Scholar] [CrossRef]
- Owczarek-Januszkiewicz, A.; Kicel, A.; Olszewska, M.A. Aesculus hippocastanum in the pharmaceutical industry and beyond–Phytochemistry, bioactivity, present application, and future perspectives. Ind. Crop. Prod. 2023, 193, 116187. [Google Scholar] [CrossRef]
Oxalic Acid | Quinic Acid | Malic Acid | Citric Acid | Ascorbic Acid | Shikimic Acid | |
---|---|---|---|---|---|---|
Pulp | 0.017 ± 0.002 | nd | 1.0 ± 0.2 B | 1.3 ± 0.1 | 0.054 ± 0.001 | nd |
Skin | nd | nd | 0.48 ± 0.0.5 C | nd | nd | nd |
Husk | 0.20 ± 0.03 | 7.6 ± 0.5 | 2.0 ± 0.1 A | nd | nd | 1.06 ± 0.01 |
Homoscedasticity a (p-value) (n = 27) | 0.175 | - | 0.026 | - | - | - |
ANOVA or t-Student b (p-value) (n = 54) | <0.001 | - | <0.001 | - | - | - |
Peak | Rt (min) | λmax (nm) | [M-H]− (m/z) | MS2 (m/z) | Tentative Identification | Pulp | Skin | Husk | p-Value a | References |
---|---|---|---|---|---|---|---|---|---|---|
1 | 4.69 | 324 | 341 | 179(100), 161(18), 143(13), 113(11) | Caffeic acid hexoside | 0.118 ± 0.001 | Nd b | nd | - | [30] |
2 | 5.7 | 283 | 1153 | 865(68),713(20),695(2),577(22),575(40),425(5),407(5),289(5),287(10) | β-type (Epi)catechin tetramer | nd | 0.55 ± 0.01 | 0.47 ± 0.02 | <0.001 | [31] |
3 | 6.44 | 283 | 863 | 739(92),713(59),695(100),577(69),575(49),425(14),407(10),289(6),287(12) | β-type (Epi)catechin trimer | nd | 0.442 ± 0.01 | nd | - | [32] |
4 | 6.45 | 262 | 327 | 303 (11), 165 (100), 161 (25), 147 (15), 143 (21), 125 (18) | Dihydro-coumaric acid-O-hexoside | 0.046 ± 0.002 | nd | nd | - | [33] |
5 | 6.84 | 271 | 879 | 753(6),727(100),589(25),575(5),547(12),451(26),427(21) | Maclurin tri-O-galloyl-glucoside | nd | nq c | nd | - | [34] |
6 | 7.71 | 296 | 630 | 468(100), 306(100), 289(54), 262(1), 174(20), 112(100) | Tris-caffeoyl-spermidine | 0.186 ± 0.001 | nd | nd | - | [35] |
7 | 7.72 | 280 | 577 | 451(100), 575(40),425(5),407(5),289(5),287(10) | β-type (Epi)catechin dimer | nd | 5.0 ± 0.1 | nd | - | [31] |
8 | 7.77 | 315 | 471 | 163(100) | p-Coumaric acid deoxyhexosyl-hexoside | nd | nd | 0.67 ± 0.01 | - | [36] |
9 | 8.56 | 338 | 369 | 207(100), 192(10), 163(2) | 7,8-Dihydroxycoumarin-8-glucoside | nd | nd | 0.6 ± 0.01 | - | [37] |
10 | 8.95 | 271 | 336 | 292(100) | Unknown | nq | nd | nd | - | |
11 | 9.53 | 280 | 289 | 325(20), 289 (100), 245(100), 205(41) | (-)-Epicatechin | nd | 3.3 ± 0.1 | 2.7 ± 0.1 | <0.001 | [32] |
12 | 10.65 | 283 | 863 | 739(92),713(59),695(100),577(69),575(49),425(14),407(10),289(6),287(12) | β-type (Epi)catechin trimer | nd | 1.43 ± 0.04 | 0.84 ± 0.02 | <0.001 | [32] |
13 | 10.78 | 270 | 468 | 306(100), 289(2), 262(33), 174(12), 130(2) | Dicaffeoyl-spermidine | 0.225 ± 0.005 | nd | nd | - | [38]] |
14 | 11.60 | 270 | 468 | 306(100), 289(2), 262(33), 174(12), 130(2) | Dicaffeoyl-spermidine | 0.18 ± 0.01 | nd | nd | - | [38] |
15 | 10.95 | 280 | 865 | 739(92),713(59),695(100),577(69),575(49),425(14),407(10),289(6),287(12) | β-type (Epi)catechin trimer | nd | nd | 1.33 ± 0.02 | - | [32] |
16 | 12.1 | 283 | 1153 | 865(68),713(20),695(2),577(22),575(40),425(5),407(5),289(5),287(10) | β-type (Epi)catechin tetramer | nd | 0.65 ± 0.02 | nd | - | [31] |
17 | 12.79 | 283 | 1153 | 865(68),713(20),695(2),577(22),575(40),425(5),407(5),289(5),287(10) | β-type (Epi)catechin tetramer | nd | 0.62 ± 0.01 | 0.144 ± 0.004 | <0.001 | [31] |
18 | 13.08 | 350 | 757 | 595(100), 463(29), 301 (100) | Quercetin-O-dihexoside-pentoside | 0.597 ± 0.001 | nd | nd | - | [26] |
19 | 13.35 | 283 | 1153 | 865(68),713(20),695(2),577(22),575(40),425(5),407(5),289(5),287(10) | β-type (Epi)catechin tetramer | nd | 0.84 ± 0.03 | nd | - | [31] |
20 | 13.86 | 350 | 757 | 595(100), 463(31), 301(100) | Quercetin-O-dihexoside pentoside | 0.541 ± 0.002 | nd | nd | - | [26] |
21 | 14.41 | 283 | 863 | 739(92),713(59),695(100),577(69),575(49),425(14),407(10),289(6),287(12) | β-type (Epi)catechin trimer | nd | 1.08 ± 0.04 | 0.73 ± 0.01 | <0.001 | [32] |
22 | 14.84 | 280 | 865 | 739(92),713(59),695(100),577(69),575(49),425(14),407(10),289(6),287(12) | β-type (Epi)catechin trimer | nd | nd | 0.86 ± 0.04 | - | [32] |
23 | 15.33 | 350 | 757 | 595(100), 463(29), 301(100) | Quercetin-O-dihexoside pentoside | 0.536 ± 0.002 | nd | nd | - | [26] |
24 | 15.37 | 280 | 1153 | 865(68),713(20),695(2),577(22),575(40),425(5),407(5),289(5),287(10) | β-type (Epi)catechin tetramer | nd | 0.73 ± 0.01 | 2.41 ± 0.08 | <0.001 | [31] |
25 | 17.07 | 280 | 1153 | 865(68),713(20),695(2),577(22),575(40),425(5),407(5),289(5),287(10) | β-type (Epi)catechin tetramer | nd | 0.32 ± 0.01 | nd | - | [31] |
26 | 17.23 | 280 | 577 | 451(100), 575(40),425(5),407(5),289(5),287(10) | β-type (Epi)catechin dimer | nd | 1.23 ± 0.02 | nd | - | [31] |
27 | 17.28 | 352 | 946 | 799(100), 595(20), 475(22), 463(32), 445(43) 301(50), 300(100), 271(10) | Quercetin-6-O-[indolin-2-on-3-hydroxy-3-acetyl]glucose | 0.518 ± 0.001 | nd | 1.02 ± 0.01 | <0.001 | [26] |
28 | 17.58 | 353 | 862 | 595(100), 445(47), 463(32), 475(18), 301(54) | Quercetin-3-O-xylosyl-glucoside-3′-O-(6-O-nicotinoyl)-glucoside | 0.62 ± 0.02 | nd | nd | - | [26] |
29 | 17.84 | 280 | 577 | 451(100), 575(40),425(5),407(5),289(5),287(10) | β-type (Epi)catechin dimer | nd | 0.244 ± 0.003 | nd | - | [31] |
30 | 17.88 | 280 | 1441 | 1153(27),865(92),577(47),289(25),287(10) | β-type (Epi)catechin pentamer | nd | nd | 1.17 ± 0.02 | - | [31] |
31 | 18.07 | 349 | 741 | 609(100), 447(46), 285(77) | Kaempferol-O-pentoside-O-hexoside-O-hexoside | 1.01 ± 0.01 | nd | nd | - | [26] |
32 | 18.39 | 351 | 593 | 447(100), 301(16) | Quercetin-O-deoxyhexoside-O-deoxyhexoside | nd | nd | 0.637 ± 0.004 | - | [26] |
33 | 19.29 | 352 | 771 | 639(100), 315(100) | Isorhamnetin-O-pentoside-O-di-hexosie | 0.689 ± 0.002 | nd | nd | - | [39] |
34 | 20.35 | 349 | 739 | 593(100), 285(9) | Kaempferol-O-deoxyhexoside-O-rutinoside | 0.546 ± 0.001 | nd | nd | - | [26] |
35 | 20.46 | 312 | 633 | 573(100), 367(100), 163(66), 119(4) | Coumaric acid derivative | nd | nd | 0.53 ± 0.02 | - | [36] |
36 | 21.11 | 353 | 979 | 595(100), 445(47), 463(32), 475(18), 301(54) | Quercetin-3-O-xylosyl-glucoside- 3′-O-(6-O-indolin-2-one-3-hydroxy-3-acetyl)-glucoside | 0.522 ± 0.001 | nd | nd | - | [25] |
37 | 21.46 | 353 | 930 | 595(100), 445(47), 463(32), 475(18), 301(54) | Quercetin-3-O-xyloside-glucoside- 3′-O-(6-O-indolin-3-acetyl)-glucoside | 0.521 ± 0.002 | nd | nd | - | [25] |
38 | 21.71 | 311 | 633 | 573(100), 367(100), 163(66), 119(4) | Coumaric acid derivative | nd | nd | 0.277 ± 0.004 | - | [36] |
39 | 25.6 | 353 | 921 | 595(100), 445(47), 463(32), 475(18), 301(54) | Quercetin-3-O-rhamnosyl-glucosyl-glucuronide | 0.5208 ± 0.0003 | nd | nd | - | [26] |
40 | 26.4 | 354 | 623 | 315(100), 313(16), 300(21) | Isorhamnetin-3-O-rutinoside | 0.5 ± 0.1 | nd | nd | - | [39] |
TPA d | 0.70 ± 0.01 | nd | 1.46 ± 0.03 | <0.001 | ||||||
TC e | 0.046 ± 0.002 | nd | 0.60 ± 0.01 | <0.001 | ||||||
TF f | 6.9999 ± 0.01 C | 16.42 ± 0.01 A | 9.6 ± 0.1 B | <0.001 | ||||||
TPCg | 7.75 ± 0.01 C | 16.42 ± 0.01 A | 14.4 ± 0.2 B | <0.001 |
TBARS Formation Inhibition | OxHLIA (Δt = 60 min) | |
---|---|---|
Pulp | 865 ± 279 A | na |
Skin | 1.4 ± 0.3 B | 2.4 ± 0.4 |
Husk | 0.7 ± 0.1 B | 0.24 ± 0.05 |
Homoscedasticity a (p-value) (n = 54) | <0.001 | 0.071 |
ANOVA or t-Student b(p-value) (n = 54) | <0.001 | <0.001 |
Pulp | Skin | Husk | Ampicillin (20 mg/mL) | Imipenem (1 mg/mL) | Vancomycin (1 mg/mL) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
Gram-negative bacteria | ||||||||||||
Escherichia coli | >20 | >20 | 2.5 | >20 | 10 | >20 | <0.15 | <0.15 | <0.0078 | <0.0078 | n.t. a | n.t. |
Klebsiella pneumoniae | >20 | >20 | 5 | >20 | 10 | >20 | 10 | 20 | <0.0078 | <0.0078 | n.t. | n.t. |
Morganella morganii | >20 | >20 | 5 | >20 | 10 | >20 | 20 | >20 | <0.0078 | <0.0078 | n.t. | n.t. |
Proteus mirabilis | >20 | >20 | 10 | >20 | >20 | >20 | <015 | <0.15 | <0.0078 | <0.0078 | n.t. | n.t. |
Pseudomonas aeruginosa | 10 | >20 | 20 | >20 | >20 | >20 | 0.5 | 1 | n.t. | n.t. | ||
Gram-positive bacteria | ||||||||||||
Enterococcus faecalis | 10 | >20 | 2.5 | >20 | 5 | >20 | <0.15 | <0.15 | n.t. | n.t. | <0.0078 | <0.0078 |
Listeria monocytogenes | 20 | >20 | 10 | >20 | 20 | >20 | <0.15 | <0.15 | <0.0078 | <0.0078 | n.t. | n.t. |
MRSA | 5 | >20 | 1.25 | >20 | 5 | >20 | <0.15 | <0.15 | n.t. | n.t. | 0.25 | 0.5 |
NCI H460 | HeLa | MCF-7 | HepG2 | PLP2 | |
---|---|---|---|---|---|
Pulp | >400 | 398 ± 2 A | 337 ± 6 | 238 ± 8 | >400 |
Skin | 100 ± 1 | 83 ± 4 B | 93 ± 5 | 57 ± 1 | 232 ± 3 |
Husk | 80 ± 1 | 75 ± 10 B | 62 ± 2 | 52 ± 2 | 200 ± 7 |
Homoscedasticity a (p-value) (n = 54) | 0.081 | <0.001 | <0.001 | 0.067 | <0.001 |
ANOVA or t-Student b (p-value) (n = 54) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dridi, A.; Reis, F.S.; Pires, T.C.S.P.; Calhelha, R.C.; Pereira, C.; Zaghdoudi, K.; Ferreira, I.C.F.R.; Barros, L.; Barreira, J.C.M. Aesculus hippocastanum L.: A Simple Ornamental Plant or a Source of Compelling Molecules for Industry? Separations 2023, 10, 160. https://doi.org/10.3390/separations10030160
Dridi A, Reis FS, Pires TCSP, Calhelha RC, Pereira C, Zaghdoudi K, Ferreira ICFR, Barros L, Barreira JCM. Aesculus hippocastanum L.: A Simple Ornamental Plant or a Source of Compelling Molecules for Industry? Separations. 2023; 10(3):160. https://doi.org/10.3390/separations10030160
Chicago/Turabian StyleDridi, Asma, Filipa S. Reis, Tânia C. S. P. Pires, Ricardo C. Calhelha, Carla Pereira, Khalil Zaghdoudi, Isabel C. F. R. Ferreira, Lillian Barros, and João C. M. Barreira. 2023. "Aesculus hippocastanum L.: A Simple Ornamental Plant or a Source of Compelling Molecules for Industry?" Separations 10, no. 3: 160. https://doi.org/10.3390/separations10030160
APA StyleDridi, A., Reis, F. S., Pires, T. C. S. P., Calhelha, R. C., Pereira, C., Zaghdoudi, K., Ferreira, I. C. F. R., Barros, L., & Barreira, J. C. M. (2023). Aesculus hippocastanum L.: A Simple Ornamental Plant or a Source of Compelling Molecules for Industry? Separations, 10(3), 160. https://doi.org/10.3390/separations10030160