Further Evaluation of the Base Stability of Hydrophilic Interaction Chromatography Columns Packed with Silica or Ethylene-Bridged Hybrid Particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Instrumentation and Columns
2.3. Sample and Mobile Phase Preparation
2.4. Method Details
3. Results
3.1. Effect of Mobile Phase Aqueous Content on the Stability of Unbonded 130 Å BEH Columns
3.2. Dependence of Base Stability and Retention of Unbonded BEH Columns on Surface Area
3.3. Dependence of Base Stability and Retention of Sulfobetaine-Modified BEH Columns on Surface Area
3.4. Comparison of the Stability of Commercially Available HILIC Columns Recommended for Use at High-pH
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alpert, A.J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J. Chromatogr. 1990, 499, 177–196. [Google Scholar] [CrossRef] [PubMed]
- Hemström, P.; Irgum, K. Hydrophilic interaction chromatography. J. Sep. Sci. 2006, 29, 1784–1821. [Google Scholar] [CrossRef] [PubMed]
- Jandera, P. Stationary and mobile phases in hydrophilic interaction chromatography: A review. Anal. Chim. Acta 2011, 692, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Gaiki, S. Retention and selectivity of stationary phases for hydrophilic interaction chromatography. J. Chromatogr. A 2011, 1218, 5920–5938. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y. A survey of polar stationary phases for hydrophilic interaction chromatography and recent progress in understanding retention and selectivity. Biomed. Chromatogr. 2022, 36, e5332. [Google Scholar] [CrossRef]
- Guarducci, M.A.; Fochetti, A.; Ciogli, A.; Mazzoccanti, G. A compendium of the principal stationary phases used in hydrophilic interaction chromatography: Where have we arrived? Separations 2023, 10, 22. [Google Scholar] [CrossRef]
- Wahab, M.F.; Ibrahim, M.E.A.; Lucy, C.A. Carboxylate modified porous graphitic carbon: A new class of hydrophilic interaction liquid chromatography phases. Anal. Chem. 2013, 85, 5684–5691. [Google Scholar] [CrossRef]
- Ibrahim, M.E.A.; Wahab, M.F.; Lucy, C.A. Hybrid carbon nanoparticles modified core-shell silica: A high efficiency carbon-based phase for hydrophilic interaction liquid chromatography. Anal. Chim. Acta 2014, 820, 187–194. [Google Scholar] [CrossRef]
- Hou, Y.; Zhang, F.; Liang, X.; Yang, B.; Liu, X.; Dasgupta, P.K. Poly(vinyl alcohol) modified porous graphitic carbon stationary phase for hydrophilic interaction liquid chromatography. Anal. Chem. 2016, 88, 4676–4681. [Google Scholar] [CrossRef]
- Kučera, R.; Kovaříková, P.; Klivický, M.; Klimeš, J. The retention behavior of polar compounds on zirconia based stationary phases under hydrophilic interaction liquid chromatography conditions. J. Chromatogr. A 2011, 1218, 6981–6986. [Google Scholar] [CrossRef]
- Wang, Q.; Li, J.; Yang, X.; Xu, L.; Shi, Z.-G.; Xu, L.-Y. Investigation on performance of zirconia and magnesia-zirconia stationary phases in hydrophilic interaction chromatography. Talanta 2014, 129, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Lucy, C.A. Separation of carboxylates by hydrophilic interaction liquid chromatography on titania. J. Chromatogr. A 2010, 1217, 82–88. [Google Scholar] [CrossRef]
- Wimalasinghe, R.M.; Weatherly, C.A.; Wahab, M.F.; Thakur, N.; Armstrong, D.W. Geopolymers as a new class of high pH stable supports with different chromatographic selectivity. Anal. Chem. 2018, 90, 8139–8146. [Google Scholar] [CrossRef] [PubMed]
- Kartsova, L.A.; Bessonova, E.A.; Somova, V.D. Hydrophilic interaction chromatography. J. Anal. Chem. 2019, 74, 415–424. [Google Scholar] [CrossRef]
- Iler, R.K. The Chemistry of Silica; Wiley: New York, NY, USA, 1979; pp. 3–104. [Google Scholar]
- Law, B.; Chan, P.F. Stability of silica packing materials towards a mixed aqueous-organic eluent at alkaline pH. J. Chromatogr. 1989, 467, 267–271. [Google Scholar] [CrossRef]
- Huang, Z.; Richards, M.A.; Zha, Y.; Francis, R.; Lozano, R.; Ruan, J. Determination of inorganic pharmaceutical counterions using hydrophilic interaction chromatography coupled with a Corona CAD detector. J. Pharm. Biomed. Anal. 2009, 50, 809–814. [Google Scholar] [CrossRef]
- Kotoni, D.; D’Acquarica, I.; Ciogli, A.; Villani, C.; Capitani, D.; Gasparrini, F. Design and evaluation of hydrolytically stable bidentate urea-type stationary phases for hydrophilic interaction chromatography. J. Chromatogr. A 2012, 1232, 196–211. [Google Scholar] [CrossRef]
- Qian, K.; Peng, Y.; Zhang, F.; Yang, B.; Liang, X. Preparation of a low bleeding polar stationary phase for hydrophilic interaction liquid chromatography. Talanta 2018, 182, 500–504. [Google Scholar] [CrossRef] [PubMed]
- Qian, K.; Yang, Z.; Zhang, F.; Yang, B.; Dasgupta, P.K. Low-bleed silica-based stationary phase for hydrophilic interaction liquid chromatography. Anal. Chem. 2018, 90, 8750–8755. [Google Scholar] [CrossRef]
- Wang, Y.; Wahab, M.F.; Breitbach, Z.S.; Armstrong, D.W. Carboxylated cyclofructan 6 as a hydrolytically stable high efficiency stationary phase for hydrophilic interaction liquid chromatography and mixed mode separations. Anal. Methods 2016, 8, 6038–6045. [Google Scholar] [CrossRef]
- Li, C.; Di, B.; Hao, W.; Yan, F.; Su, M. Aminopropyl-functionalized ethane-bridged periodic mesoporous organosilica spheres: Preparation and application in liquid chromatography. J. Chromatogr. A 2011, 1218, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Fountain, K.J.; Xu, J.; Diehl, D.M.; Morrison, D. Influence of stationary phase chemistry and mobile-phase composition on retention, selectivity, and MS response in hydrophilic interaction chromatography. J. Sep. Sci. 2010, 33, 740–751. [Google Scholar] [CrossRef] [PubMed]
- Bajad, S.U.; Lu, W.; Kimball, E.H.; Yuan, J.; Peterson, C.; Rabinowitz, J.D. Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J. Chromatogr. A 2006, 1125, 76–88. [Google Scholar] [CrossRef]
- Teleki, A.; Sánchez-Kopper, A.; Takors, R. Alkaline conditions in hydrophilic interaction liquid chromatography for intracellular metabolite quantification using tandem mass spectrometry. Anal. Biochem. 2015, 475, 4–13. [Google Scholar] [CrossRef]
- Zhang, T.; Creek, D.J.; Barrett, M.P.; Blackburn, G.; Watson, D.G. Evaluation of coupling reversed phase, aqueous normal phase, and hydrophilic interaction liquid chromatography with Orbitrap mass spectrometry for metabolomic studies of human urine. Anal. Chem. 2012, 84, 1994–2001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Watson, D.G.; Wang, L.; Westrop, G.D.; Coombs, G.H.; Zhang, T. Evaluation of mobile phase characteristics on three zwitterionic columns in hydrophilic interaction liquid chromatography mode for liquid chromatography-high resolution mass spectrometry based untargeted metabolite profiling of Leishmania parasites. J. Chromatogr. A 2014, 1362, 168–179. [Google Scholar] [CrossRef] [Green Version]
- DeLano, M.; Walter, T.H.; Lauber, M.A.; Gilar, M.; Jung, M.C.; Nguyen, J.M.; Boissel, C.; Patel, A.V.; Bates-Harrison, A.; Wyndham, K.D. Using hybrid organic-inorganic surface technology to mitigate analyte interactions with metal surfaces in UHPLC. Anal. Chem. 2021, 93, 5773–5781. [Google Scholar] [CrossRef]
- Walter, T.H.; Alden, B.A.; Berthelette, K. Evaluation of the base stability of hydrophilic interaction chromatography columns packed with silica or ethylene-bridged hybrid particles. Separations 2022, 9, 146–158. [Google Scholar] [CrossRef]
- Wyndham, K.D.; O’Gara, J.E.; Walter, T.H.; Glose, K.H.; Lawrence, N.L.; Alden, B.A.; Izzo, G.S.; Hudalla, C.J.; Iraneta, P.C. Characterization and evaluation of C18 HPLC stationary phases based on ethyl-bridged hybrid organic/inorganic particles. Anal. Chem. 2003, 75, 6781–6788. [Google Scholar] [CrossRef]
- Grumbach, E.S.; Diehl, D.M.; Neue, U.D. The application of novel 1.7 μm ethylene bridged hybrid particles for hydrophilic interaction chromatography. J. Sep. Sci. 2008, 31, 1511–1518. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Walter, T.H.; Alden, B.A.; Berthelette, K.; Field, J.A.; Lawrence, N.L.; McLaughlin, J.; Patel, A.V. Characterization of a highly stable zwitterionic hydrophilic interaction chromatography stationary phase based on hybrid organic-inorganic particles. J. Sep. Sci. 2022, 45, 1389–1399. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, J.J.; Kennedy, A.P.; Van de Bittner, G.C.; Wei, T.-C. The use of HILIC zwitterionic phase superficially porous particles for metabolomics analysis. LC-GC N. Am. 2018, 36, 30–35. [Google Scholar]
- Kozlov, O.; Kadlecová, Z.; Gilar, M.; Gondová, T.; Kalíková, K.; Tesařová, E. Systematic evaluation of selected supercritical fluid chromatography diol- and diethylamine-based columns for application in hydrophilic interaction liquid chromatography. Sep. Sci. Plus 2019, 2, 81–88. [Google Scholar] [CrossRef]
- Gilar, M.; Berthelette, K.D.; Walter, T.H. Contribution of ionic interactions to stationary phase selectivity in hydrophilic interaction chromatography. J. Sep. Sci. 2022, 45, 3264–3275. [Google Scholar] [CrossRef]
- Wehrli, A.; Hildenbrand, J.C.; Keller, H.P.; Stampfli, R.; Frei, R.W. Influence of organic bases on the stability and separation properties of reversed-phase chemically bonded silica gels. J. Chromatogr. 1978, 149, 199–210. [Google Scholar] [CrossRef]
- Kirkland, J.J.; van Straten, M.A.; Claessens, H.A. High pH mobile phase effects on silica-based reversed-phase high-performance liquid chromatographic columns. J. Chromatogr. A 1995, 691, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Kirkland, J.J.; Henderson, J.W.; DeStefano, J.J.; van Straten, M.A.; Claessens, H.A. Stability of silica-based, endcapped columns with pH 7 and 11 mobile phases for reversed-phase high-performance liquid chromatography. J. Chromatogr. A 1997, 762, 97–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogelsberger, W.; Seidel, A.; Rudakoff, G. Solubility of silica gel in water. J. Chem. Soc. Faraday Trans. 1992, 88, 473–476. [Google Scholar] [CrossRef]
- Unger, K.K.; Becker, N.; Roumeliotis, P. Recent developments in the evaluation of chemically bonded silica packings for liquid chromatography. J. Chrom. 1976, 125, 115–127. [Google Scholar] [CrossRef]
- Yuan, M.; Breitkopf, S.B.; Yang, X.; Asara, J.M. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 2012, 7, 872–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Time (min) | Flow Rate (mL/min) | %A—Water | %B—Acetonitrile | %C—200 mM Ammonium Formate pH 3 (aq) | %D–Challenge Solution | Curve 1 |
---|---|---|---|---|---|---|
Initial | 0.400 | 0.0 | 95.0 | 5.0 | 0.0 | Initial |
x | 0.400 | 0.0 | 0.0 | 0.0 | 100.0 | 11 |
20.57 + x | 0.400 | 0.0 | 0.0 | 0.0 | 100.0 | 11 |
22.24 + x | 0.400 | 50.0 | 50.0 | 0.0 | 0.0 | 6 |
25.54 + x | 0.400 | 50.0 | 50.0 | 0.0 | 0.0 | 6 |
27.20 + x | 0.400 | 10.0 | 90.0 | 0.0 | 0.0 | 6 |
30.50 + x | 0.400 | 10.0 | 90.0 | 0.0 | 0.0 | 6 |
42.90 + x | 0.400 | 0.0 | 95.0 | 5.0 | 0.0 | 6 |
Stationary Phase | Particle Chemistry | Morphology | Surface Chemistry | Surface Concentration (μmol/m2) | Average Particle Diameter (μm) 1 | Average Pore Diameter (Å) | Surface Area (m2/g) | Recommended pH Range |
---|---|---|---|---|---|---|---|---|
BEH65 | BEH | Fully porous | Unbonded | 1.7 | 66 | 399 | ||
BEH80 | BEH | Fully porous | Unbonded | 1.7 | 79 | 362 | ||
BEH95 | BEH | Fully porous | Unbonded | 1.7 | 99 | 273 | ||
BEH130 | BEH | Fully porous | Unbonded | 1.7 | 138 | 181 | 1–9 | |
BEH300 | BEH | Fully porous | Unbonded | 1.7 | 311 | 92 | ||
BEH95 S | BEH | Fully porous | Sulfobetaine | 2.96 | 1.7 | 71 2 | 172 2 | 2–10 |
BEH130 S | BEH | Fully porous | Sulfobetaine | 4.16 | 1.7 | 108 2 | 133 2 | |
BEH300 S | BEH | Fully porous | Sulfobetaine | 3.40 | 1.7 | 239 2 | 85 2 | |
Torus Diol | BEH | Fully porous | Diol | 4.86 | 1.7 | 123 2 | 129 2 | |
Luna NH2 | silica | Fully porous | Amino | 5.80 3 | 3 3 | 100 3 | 400 3 | 1.5–11.0 3 |
Poroshell 120 HILIC-Z | hybrid-coated silica | superficially porous | Sulfobetaine | NA | 1.9 3 | 100 3 | 95 3 | 2–12 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walter, T.H.; Boissel, C.; Field, J.A.; Lawrence, N.L. Further Evaluation of the Base Stability of Hydrophilic Interaction Chromatography Columns Packed with Silica or Ethylene-Bridged Hybrid Particles. Separations 2023, 10, 175. https://doi.org/10.3390/separations10030175
Walter TH, Boissel C, Field JA, Lawrence NL. Further Evaluation of the Base Stability of Hydrophilic Interaction Chromatography Columns Packed with Silica or Ethylene-Bridged Hybrid Particles. Separations. 2023; 10(3):175. https://doi.org/10.3390/separations10030175
Chicago/Turabian StyleWalter, Thomas H., Cheryl Boissel, Jessica A. Field, and Nicole L. Lawrence. 2023. "Further Evaluation of the Base Stability of Hydrophilic Interaction Chromatography Columns Packed with Silica or Ethylene-Bridged Hybrid Particles" Separations 10, no. 3: 175. https://doi.org/10.3390/separations10030175
APA StyleWalter, T. H., Boissel, C., Field, J. A., & Lawrence, N. L. (2023). Further Evaluation of the Base Stability of Hydrophilic Interaction Chromatography Columns Packed with Silica or Ethylene-Bridged Hybrid Particles. Separations, 10(3), 175. https://doi.org/10.3390/separations10030175