Comparative GC Analysis, Bronchodilator Effect and the Detailed Mechanism of Their Main Component—Cinnamaldehyde of Three Cinnamon Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. Chemicals
2.3. Plant Materials
2.4. Essential Oils Preparation
2.5. GC/MS Analysis
2.6. GC/FID Analysis
2.7. Purification of Compounds 1
2.8. Synthesis of Compound 2
2.9. Animals
2.10. Guinea Pig Trachea
2.11. Statistical Analysis
3. Results
3.1. Essential Oils Preparation
3.2. GC/MS and GC/FID Analysis
3.3. Effect on Trachea
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iqbal, M. International Trade in Non-Wood Forest Products: An Overview; FO: Misc/93/11—Working Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1993. [Google Scholar]
- Toussaint-Samat, M. A History of Food, New expanded Ed.; Anthea, Translator; Wiley-Blackwell: Chichester, UK, 2009. [Google Scholar]
- Hariri, M.; Ghiasvand, R. Cinnamon and Chronic Diseases. In Drug Discovery from Mother Nature; Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2016; Volume 929, pp. 1–24. [Google Scholar]
- UN Food and Agriculture Organization Corporate Statistical Database (FAOSTAT). Global Cinnamon Production in 2017; Crops/Regions/World Regions/Production Quantity (Pick Lists); UN Food and Agriculture Organization Corporate Statistical Database (FAOSTAT): Rome, Italy, 2018. [Google Scholar]
- Kawatra, P.; Rajagopalan, R. Cinnamon: Mystic powers of a minute ingredient. Pharmacogn. Res. 2015, 7 (Suppl. S1), S1–S6. [Google Scholar] [CrossRef] [Green Version]
- Jakhetia, V.; Patel, R.; Khatri, P.; Pahuja, N.; Pandey, A.; Gyan, S. Cinnamon: A pharmacological review. J. Adv. Sci. Res. 2010, 1, 19–23. [Google Scholar]
- Wondrak, G.T.; Villeneuve, N.F.; Lamore, S.D.; Bause, A.S.; Jiang, T.; Zhang, D.D. The Cinnamon-Derived Dietary Factor Cinnamic Aldehyde Activates the Nrf2-Dependent Antioxidant Response in Human Epithelial Colon Cells. Molecules 2010, 15, 3338–3355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossein, N.; Zahra, Z.; Abolfazl, M.; Mahdi, S.; Ali, K. Effect of Cinnamon zeylanicum essence and distillate on the clotting time. J. Med. Plant. Res. 2013, 7, 1339–1343. [Google Scholar]
- Allen, R.W.; Schwartzman, E.; Baker, W.; Coleman, C.; Phung, O.J. Cinnamon Use in Type 2 Diabetes: An Updated Systematic Review and Meta-Analysis. Ann. Fam. Med. 2013, 11, 452–459. [Google Scholar] [CrossRef] [Green Version]
- Matan, N.; Rimkeeree, H.; Mawson, A.; Chompreeda, P.; Haruthaithanasan, V.; Parker, M. Antimicrobial activity of cinnamon and clove oils under modified atmosphere conditions. Int. J. Food Microbiol. 2006, 107, 180–185. [Google Scholar] [CrossRef]
- Mancini-Filho, J.; Van-Koiij, A.; Mancini, D.A.; Cozzolino, F.F.; Torres, R.P. Antioxidant activity of cinnamon (Cinnamomum Zeylanicum, Breyne) extracts. Boll. Chim. Farm. 1998, 137, 443–447. [Google Scholar]
- Chao, L.K.; Hua, K.-F.; Hsu, H.-Y.; Cheng, S.-S.; Liu, J.-Y.; Chang, S.-T. Study on the Antiinflammatory Activity of Essential Oil from Leaves of Cinnamomum osmophloeum. J. Agric. Food Chem. 2005, 53, 7274–7278. [Google Scholar] [CrossRef]
- Tung, Y.-T.; Yen, P.-L.; Lin, C.-Y.; Chang, S.-T. Anti-inflammatory activities of essential oils and their constituents from different provenances of indigenous cinnamon (Cinnamomum osmophloeum) leaves. Pharm. Biol. 2010, 48, 1130–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, J.-O.; Lee, S.-M.; Moon, Y.-S.; Lee, S.-G.; Ahn, Y.-J. Nematicidal Activity of Cassia and Cinnamon Oil Compounds and Related Compounds toward Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae). J. Nematol. 2007, 39, 31–36. [Google Scholar]
- Cheng, S.-S.; Liu, J.-Y.; Tsai, K.-H.; Chen, W.-J.; Chang, S.-T. Chemical Composition and Mosquito Larvicidal Activity of Essential Oils from Leaves of Different Cinnamomum osmophloeum Provenances. J. Agric. Food Chem. 2004, 52, 4395–4400. [Google Scholar] [CrossRef]
- Cheng, S.-S.; Liu, J.-Y.; Huang, C.-G.; Hsui, Y.-R.; Chen, W.-J.; Chang, S.-T. Insecticidal activities of leaf essential oils from Cinnamomum osmophloeum against three mosquito species. Bioresour. Technol. 2009, 100, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Bandara, T.; Uluwaduge, I.; Jansz, E.R. Bioactivity of cinnamon with special emphasis on diabetes mellitus: A review. Int. J. Food Sci. Nutr. 2012, 63, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Koppikar, S.J.; Choudhari, A.S.; Suryavanshi, S.A.; Kumari, S.; Chattopadhyay, S.; Kaul-Ghanekar, R. Aqueous Cinnamon Extract (ACE-c) from the bark of Cinnamomum cassia causes apoptosis in human cervical cancer cell line (SiHa) through loss of mitochondrial membrane potential. BMC Cancer 2010, 10, 210. [Google Scholar] [CrossRef] [Green Version]
- Marongiu, B.; Piras, A.; Porcedda, S.; Tuveri, E.; Sanjust, E.; Meli, M.; Sollai, F.; Zucca, P.; Rescigno, A. Supercritical CO2 Extract of Cinnamomum zeylanicum: Chemical Characterization and Antityrosinase Activity. J. Agric. Food Chem. 2007, 55, 10022–10027. [Google Scholar] [CrossRef]
- Chou, S.-T.; Chang, W.-L.; Chang, C.-T.; Hsu, S.-L.; Lin, Y.-C.; Shih, Y. Cinnamomum cassia Essential Oil Inhibits α-MSH-Induced Melanin Production and Oxidative Stress in Murine B16 Melanoma Cells. Int. J. Mol. Sci. 2013, 14, 19186–19201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ESCOP. ESCOP Monographs: The Scientific Foundation for Herbal Medicinal Products, 2nd ed.; Thieme: Stuttgart, Germany; New York, NY, USA, 2003. [Google Scholar]
- Tisserand, R.; Young, R. Essential Oils Safety, 2nd ed.; Churchill Living-Stone Elsevier: London, UK, 2014. [Google Scholar]
- Rehman, N.U.; Salkini, M.A.A.; Alanizi, H.M.K.; Alharbi, A.G.; Alqarni, M.H.; Abdel-Kader, M.S. Achillea fragrantissima Essential Oil: Composition and Detailed Pharmacodynamics Study of the Bronchodilator Activity. Separations 2022, 9, 334. [Google Scholar] [CrossRef]
- Horváth, G.; Ács, K. Essential oils in the treatment of respiratory tract diseases highlighting the irrolein bacterial infections and their anti-inflammatory action: A review. Flavour Fragr. J. 2015, 30, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Damtie, D.; Braunberger, C.; Conrad, J.; Mekonnen, Y.; Beifuss, U. Composition and hepatoprotective activity of essential oils from Ethiopian thyme species (Thymus serrulatus and Thymus schimperi). J. Essent. Oil Res. 2018, 31, 120–128. [Google Scholar] [CrossRef]
- Rehman, N.U.; Ansari, M.N.; Hailea, T.; Karim, A.; Abujheisha, K.Y.; Ahamad, S.R.; Imam, F. Possible tracheal relaxant and antimicrobial effects of the essential oil of Ethiopian thyme specie (Thymus serrulatus Hoschst. Ex Benth.): A multiple mechanistic approach. Front. Pharmacol. 2021, 12, 615228. [Google Scholar] [CrossRef]
- National Research Council (NRC). Guide for the Care and Use of Laboratory Animals; National Academy Press: Washington, DC, USA, 1996; pp. 1–7.
- Moghadam, Z.A.; Hosseini, H.; Hadian, Z.; Asgari, B.; Mirmoghtadaie, L.; Mohammadi, A.; Shamloo, E.; Javadi, N.H.S. Evaluation of the Antifungal Activity of Cinnamon, Clove, Thymes, Zataria Multiflora, Cumin and Caraway Essential Oils against Ochratoxigenic Aspergillus ochraceus. J. Pharm. Res. Int. 2019, 26, 1–16. [Google Scholar] [CrossRef]
- Gotmare, S.; Tambe, E. Identification of Chemical Constituents of Cinnamon Bark Oil by GCMS and Comparative Study Garnered from Five Different Countries. Glob. J. Sci. Front. Res. C Biol. Sci. 2019, 19, 35–42. [Google Scholar]
- Zhang, G.; Han, X.; Luan, Y.; Wang, Y.; Wen, X.; Ding, C. L-Proline: An Efficient N,O-Bidentate Ligand for Copper-Catalyzed Aerobic Oxidation of Primary and Secondary Benzylic Alcohols at Room Temperature. Chem. Comm. 2013, 49, 7908–7910. [Google Scholar] [CrossRef]
- Abdel-Kader, M.S.; Omar, A.A.; Abdel-Salam, N.A.; Stermitz, F.R. Erythroxan diterpenes from Fagonia species. Phytochemistry 1994, 36, 1431–1433. [Google Scholar] [CrossRef]
- Mahata, S.; Sahu, A.; Shukla, P.; Rai, A.; Singh, M.; Rai, V. The novel and efficient reduction of graphene oxide using Ocimum sanctum L. leaf extract as an alternative renewable bio-resource. New J. Chem. 2018, 42, 19945–19952. [Google Scholar] [CrossRef]
- Abdel-Kader, M.; Hoch, J.; Berger, J.M.; Evans, R.; Miller, J.S.; Wisse, J.H.; Mamber, S.W.; Dalton, J.M.; Kingston, D.G. Two bioactive saponins from Albizia subdimidiata from the Suriname rainforest. J. Nat. Prod. 2001, 64, 536–539. [Google Scholar] [CrossRef]
- Seo, D.J.; Nguyen, D.M.C.; Kim, T.H.; Kim, K.Y.; Jung, W.J. Nematode-antagonistic effects of Cinnamomum aromaticum extracts and a purified compound against Meloidogyne incognita. Nematology 2012, 14, 913–924. [Google Scholar]
- Abdel-Kader, M.S.; Rehman, N.U.; Alghafis, M.A.; Al-Matri, M.A. Brochodilator Phenylpropanoid Glycosides from the Seeds of Prunus mahaleb L. Rec. Nat. Prod. 2022, 5, 443–453. [Google Scholar] [CrossRef]
- Rehman, N.U.; Khan, A.U.; Alkharfy, K.M.; Gilani, A.H. Pharmacological basis for the medicinal use of Lepidium sativum in airways disorders. Evid.-Based Complement. Altern. Med. 2012, 2021, 596524. [Google Scholar]
- Hamilton, T.C.; Weir, S.W.; Weston, T.H. Comparison of the effects of BRL34915 and verapamil on electrical and mechanical activity in rat portal vein. Br. J. Pharmacol. 1986, 88, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Kishii, K.; Morimoto, T.; Nakajima, N.; Yamazaki, K.; Tsujitani, M.; Takayanagi, I. Effect of LP-805, a novel vasorelaxant agent, a potassium channel opener on rat thoracic aorta. Gen. Pharmacol. 1992, 23, 347–353. [Google Scholar] [CrossRef]
- Gopalakrishnan, M.; Buckner, S.A.; Shieh, C.C.; Fey, T.; Fabiyi, A.; Whiteaker, K.L.; Taber, R.D.; Milicic, I.; Daza, A.V.; Scott, V.E.S.; et al. In-vitro and in-vivo characterization of a novel naphthylamide ATP-sensitive K+ channel opener, A-151892. Br. J. Pharmacol. 2004, 143, 81–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, H.; Puschmann, A.; Schusdziarra, V.; Allescher, H.D. Functional evidence for a glibenclamide-sensitive K+ channel in rat ileal smooth muscle. Eur. J. Pharmacol. 1994, 271, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.P.; McCurrie, J.R.; Wood, D. Comparative effects of K+ channel modulating agents on contractions of rat intestinal smooth muscle. Eur. J. Pharmacol. 1996, 297, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.J.; Raeburn, D. RP 49356 and cromakalim relax airway smooth muscle in-vitro by opening a sulphonylurea-sensitive K+ channel: A comparison with nifedipine. J. Pharmacol. Exp. Therap. 1991, 256, 480–485. [Google Scholar]
- Deitmer, P.; Golenhofen, K.; Noack, T. Comparison of the relaxing effects of cicletanine and cromakalim on vascular smooth muscle. J. Cardiovasc. Pharmacol. 1992, 20, 35–42. [Google Scholar]
- Moura, R.S.D.; Mello, R.F.D.; Daguinaga, S. Inhibitory effect of cromakalim in human detrusor muscle is mediated by glibenclamide-sensitive potassium channels. J. Urol. 1993, 149, 1174–1177. [Google Scholar] [CrossRef]
- Empfield, J.R.; Russell, K.; Trainor, D.A. Potassium channel openers: Therapeutic possibilities. Pharm. News 1995, 6, 23–27. [Google Scholar]
- Poggioli, R.; Benelli, A.; Arletti, R.; Cavazzuti, E.; Bertolini, A. K+ channel openers delay intestinal transit and have antidiarrheal activity. Eur. J. Pharmacol. 1995, 287, 207–209. [Google Scholar] [CrossRef]
- Shieh, C.C.; Coghlan, M.; Sullivan, J.P.; Gopalakrishnan, M. Potassium channels: Molecular defects, diseases and therapeutic opportunities. Pharmacol. Rev. 2000, 52, 557–593. [Google Scholar]
- Cook, N.S. The pharmacology of potassium channels and their therapeutic potential. Trends Pharmacol. Sci. 1988, 9, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.agri.ruh.ac.lk/Departments/Engineering/cinnamon/Agronomy.htm (accessed on 8 March 2023).
- Available online: https://k-agriculture.com/vietnam-cinnamon-production-the-most-complete-information/#Main_growing_areas_of_Vietnam_cinnamon_production (accessed on 8 March 2023).
C. verum | C. cassia | C. loureiroi | |
---|---|---|---|
Sample weight (g) | 100 | 100 | 100 |
Oil weight (g) | 2.72 ± 0.079 | 2.2 ± 0.094 | 2.5 ± 0.082 |
Total % Yield (W/W) | 2.72% | 2.2% | 2.5% |
Components | RT (min) | Estimated RI | Literature RI | Area % | ||
---|---|---|---|---|---|---|
Ceylon Cin | China Cin | Vietnam Cin | ||||
(E)-Cinnamaldehyde (1) | 17.9662 | 1266 | 1266 | 94.70 | 99.99 | 97.52 |
Cinnamyl acetate (2) | 20.7994 | 1415 | 1418 | 1.668 | - | - |
2-Methoxycinnamaldehyde (3) | 24.4865 | 1509 | 1512 | 0.493 | - | - |
Total % Yield | 96.864 | 99.99 | 97.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, N.U.; Albaqami, F.F.; Salkini, M.A.A.; Farahat, N.M.; Alharbi, H.H.; Almuqrin, S.M.; Abdel-Kader, M.S.; Sherif, A.E. Comparative GC Analysis, Bronchodilator Effect and the Detailed Mechanism of Their Main Component—Cinnamaldehyde of Three Cinnamon Species. Separations 2023, 10, 198. https://doi.org/10.3390/separations10030198
Rehman NU, Albaqami FF, Salkini MAA, Farahat NM, Alharbi HH, Almuqrin SM, Abdel-Kader MS, Sherif AE. Comparative GC Analysis, Bronchodilator Effect and the Detailed Mechanism of Their Main Component—Cinnamaldehyde of Three Cinnamon Species. Separations. 2023; 10(3):198. https://doi.org/10.3390/separations10030198
Chicago/Turabian StyleRehman, Najeeb Ur, Faisal F. Albaqami, Mohammad Ayman A. Salkini, Noureldin M. Farahat, Hatim H. Alharbi, Saad M. Almuqrin, Maged S. Abdel-Kader, and Asmaa E. Sherif. 2023. "Comparative GC Analysis, Bronchodilator Effect and the Detailed Mechanism of Their Main Component—Cinnamaldehyde of Three Cinnamon Species" Separations 10, no. 3: 198. https://doi.org/10.3390/separations10030198
APA StyleRehman, N. U., Albaqami, F. F., Salkini, M. A. A., Farahat, N. M., Alharbi, H. H., Almuqrin, S. M., Abdel-Kader, M. S., & Sherif, A. E. (2023). Comparative GC Analysis, Bronchodilator Effect and the Detailed Mechanism of Their Main Component—Cinnamaldehyde of Three Cinnamon Species. Separations, 10(3), 198. https://doi.org/10.3390/separations10030198