Effective Removal of Methylene Blue by Mn3O4/NiO Nanocomposite under Visible Light
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of Pure Mn3O4 Nanoparticles
2.3. Synthesis of Pure NiO Nanoparticles
2.4. Synthesis of Mn3O4/NiO Nanocomposites
2.5. Evaluation of Adsorption and Photocatalytic Activity of Mn3O4/NiO Nanocomposites
2.6. Characterization
3. Results and Discussion
3.1. Structural Analysis of the Synthesized Mn3O4/NiO NPs and NCs
3.2. Morphological and Elemental Analyses of Mn3O4/NiO NPs and NCs
3.3. Optical Analysis of Mn3O4/NiO NPs and NC
3.4. Functional Group Analysis of Mn3O4/NiO NPs and NCs
3.5. Adsorption Study of MB Dye Using Mn3O4/NiO NCs
3.6. Effect of pH on Adsorption of MB Dye
3.7. Photocatalysis under Visible Irradiation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ibrahim, R.K.; Hayyan, M.; AlSaadi, M.A.; Hayyan, A.; Ibrahim, S. Environmental application of nanotechnology: Air, soil, and water. Environ. Sci. Pollut. Res. 2016, 23, 13754–13788. [Google Scholar] [CrossRef] [PubMed]
- Obey, G.; Adelaide, M.; Ramaraj, R. Biochar derived from non-customized matamba fruit shell as an adsorbent for wastewater treatment. J. Bioresour. Bioprod. 2022, 7, 109–115. [Google Scholar] [CrossRef]
- Linley, S.; Thomson, N.R. Environmental Applications of Nanotechnology: Nano-enabled Remediation Processes in Water, Soil and Air Treatment. Water Air Soil Pollut. 2021, 232, 1–50. [Google Scholar] [CrossRef]
- Tom, A.P. Nanotechnology for sustainable water treatment—A review. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Emmanuel, S.S.; Adesibikan, A.A.; Saliu, O.D. Phytogenically bioengineered metal nanoarchitecture for degradation of refractory dye water pollutants: A pragmatic minireview. Appl. Organomet. Chem. 2023, 37, e6946. [Google Scholar] [CrossRef]
- Morin, N.; Eric, C.; Guorui, L.; Balaram, V.; Rita, A.; Ribeiro, L. Worldwide cases of water pollution by emerging contaminants: A review. Environ. Chem. Lett. 2022, 20, 2311–2338. [Google Scholar] [CrossRef]
- Bhatti, M.A.; Shah, A.A.; Almani, K.F.; Tahira, A.; Chalangar, S.E.; dad Chandio, A.; Nur, O.; Willander, M.; Ibupoto, Z.H. Efficient photo catalysts based on silver doped ZnO nanorods for the photo degradation of methyl orange. Ceram. Int. 2019, 45, 23289–23297. [Google Scholar] [CrossRef]
- Jjagwe, J.; Olupot, P.W.; Menya, E.; Kalibbala, H.M. Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. J. Bioresour. Bioprod. 2021, 6, 292–322. [Google Scholar] [CrossRef]
- Ziemba, C.; Larivé, O.; Reynaert, E.; Huisman, T.; Morgenroth, E. Linking transformations of organic carbon to post-treatment performance in a biological water recycling system. Sci. Total Environ. 2020, 721, 137489. [Google Scholar] [CrossRef]
- Gallareta-Olivares, G.; Rivas-Sanchez, A.; Cruz-Cruz, A.; Hussain, S.M.; González-González, R.B.; Cárdenas-Alcaide, M.F.; Iqbal, H.M.; Parra-Saldívar, R. Metal-doped carbon dots as robust nanomaterials for the monitoring and degradation of water pollutants. Chemosphere 2023, 312, 137190. [Google Scholar] [CrossRef]
- Jiang, S.; Yang, W. Template-Free Synthesis of Magnetic La-Mn-Fe Tri-Metal Oxide Nanofibers for Efficient Fluoride Remediation: Kinetics, Isotherms, Thermodynamics and Reusability. Polymers 2022, 14, 5417. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, Y.; Zhao, X.; Chen, L.; Peng, S.; Ma, C.; Duan, G.; Liu, Z.; Wang, H.; Yuan, Y.; et al. A poly (amidoxime)—Modified MOF macroporous membrane for high—Efficient uranium extraction from seawater. e-Polymers 2022, 22, 399–410. [Google Scholar] [CrossRef]
- Zhou, G.; Li, S.; Niu, C.; Wang, Q.; Zhang, X.; Meng, Q.; Li, L. Fir sawdust as a low—Cost and easily recyclable adsorbent: Efficient removal of Pb (II), Cu (II), and Zn (II) contaminants from wastewater. Environ. Sci. Pollut. Res. 2023, 1–15. [Google Scholar] [CrossRef]
- Liu, S.; Wang, M.; He, Y.; Cheng, Q.; Qian, T.; Yan, C. Covalent organic frameworks towards photocatalytic applications: Design principles, achievements, and opportunities. Coord. Chem. Rev. 2023, 475, 214882. [Google Scholar] [CrossRef]
- Bukhari, S.N.; Shah, A.A.; Bhatti, M.A.; Tahira, A.; Channa, I.A.; Shah, A.K.; Chandio, A.D.; Mahdi, W.A.; Alshehri, S.; Ibhupoto, Z.H.; et al. Psyllium-Husk-Assisted Synthesis of ZnO Microstructures with Improved Photocatalytic Properties for the Degradation of Methylene Blue (MB). Nanomaterials 2022, 12, 3568. [Google Scholar] [CrossRef] [PubMed]
- Ujjan, Z.A.; Bhatti, M.A.; Shah, A.A.; Tahira, A.; Shaikh, N.M.; Kumar, S.; Mugheri, A.Q.; Medany, S.S.; Nafady, A.; Alnjiman, F.; et al. Simultaneous doping of sulfur and chloride ions into ZnO nanorods for improved photocatalytic properties towards degradation of methylene blue. Ceram. Int. 2022, 48, 5535–5545. [Google Scholar] [CrossRef]
- Shah, A.A.; Bhatti, M.A.; Tahira, A.; Chandio, A.D.; Channa, I.A.; Sahito, A.G.; Chalangar, E.; Willander, M.; Nur, O.; Ibupoto, Z.H. Facile synthesis of copper doped ZnO nanorods for the efficient photo degradation of methylene blue and methyl orange. Ceram. Int. 2020, 46, 9997–10005. [Google Scholar] [CrossRef]
- Bhatti, M.A.; Almaani, K.F.; Shah, A.A.; Tahira, A.; Chandio, A.D.; Mugheri, A.Q.; Bhatti, A.L.; Waryani, B.; Medany, S.S.; Nafady, A.; et al. Low Temperature Aqueous Chemical Growth Method for the Doping of W into ZnO Nanostructures and Their Photocatalytic Role in the Degradration of Methylene Blue. J. Clust. Sci. 2022, 33, 1445–1456. [Google Scholar] [CrossRef]
- Ouyang, W.-T.; Xiao, F.; Ou, L.-J.; He, W.-M. Green Photocatalytic Syntheses Using Water as Solvent/Hydrogen Source/Oxygen Source. Curr. Opin. Green Sustain. Chem. 2023, 40, 100760. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, A.; He, K.; Liu, B.; Imran, Z.; Ambreen, J.; Hassan, S.; Ahmad, M.; Batool, S.S.; Li, C. Tailoring the bandgap of Mn3O4 for visible light driven photocatalysis. J. Environ. Manag. 2021, 293, 112854. [Google Scholar] [CrossRef] [PubMed]
- Jian, S.; Tian, Z.; Zhang, K.; Duan, G.; Yang, W.; Jiang, S. Hydrothermal Synthesis of Ce-doped ZnO Heterojunction Supported on Carbon Nanofibers with High Visible Light Photocatalytic Activity. Chem. Res. Chin. Univ. 2021, 37, 565–570. [Google Scholar] [CrossRef]
- Nami, M.; Sheibani, S.; Rashchi, F. Photocatalytic performance of coupled semiconductor ZnO–CuO nanocomposite coating prepared by a facile brass anodization process. Mater. Sci. Semicond. Process. 2021, 135, 106083. [Google Scholar] [CrossRef]
- Shah, A.A.; Chandio, A.D.; Sheikh, A.A. Boron doped ZnO nanostructures for photo degradation of methylene blue, methyl orange and rhodamine B. J. Nanosci. Nanotechnol. 2021, 21, 2483–2494. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, M.A.; Gilani, S.J.; Shah, A.A.; Channa, I.A.; Almani, K.F.; Chandio, A.D.; Halepoto, I.A.; Tahira, A.; Bin Jumah, M.N.; Ibupoto, Z.H. Effective removal of methylene blue by surface alteration of TiO2 with Ficus Carica leaf extract under visible light. Nanomaterials 2022, 12, 2766. [Google Scholar] [CrossRef] [PubMed]
- Osgouei, M.S.; Kamrani, N.; Fazli-Shokouhi, S.; Khatamian, M. Improved performance of Mn3O4-based nanocomposites in photocatalytic removal of methylene blue. J. Alloys Compd. 2022, 902, 163729. [Google Scholar] [CrossRef]
- Shaikh, B.; Bhatti, M.A.; Shah, A.A.; Tahira, A.; Shah, A.K.; Usto, A.; Aftab, U.; Bukhari, S.I.; Alshehri, S.; Shah Bukhari, S.N.U.; et al. Mn3O4 @ ZnO Hybrid Material: An Excellent Photocatalyst for the Degradation of Synthetic Dyes including Methylene Blue, Methyl Orange and Malachite Green. Nanomaterials 2022, 12, 3754. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Lin, Y.; Hu, Y.H. Strategies of tuning catalysts for efficient photodegradation of antibiotics in water environments: A review. J. Mater. Chem. A 2021, 9, 2592–2611. [Google Scholar] [CrossRef]
- Tholkappiyan, R.; Naveen, A.N.; Vishista, K.; Hamed, F. Investigation on the electrochemical performance of hausmannite Mn3O4 nanoparticles by ultrasonic irradiation assisted co-precipitation method for supercapacitor electrodes. J. Taibah Univ. Sci. 2018, 12, 669–677. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Yu, J.; Xiao, W. Hierarchically porous MnO2 microspheres with enhanced adsorption performance. J. Mater. Chem. A 2013, 1, 11682–11690. [Google Scholar] [CrossRef]
- Sukhdev, A.; Challa, M.; Narayani, L.; Manjunatha, A.S.; Deepthi, P.R.; Angadi, J.V.; Kumar, P.M.; Pasha, M. Synthesis, phase transformation, and morphology of hausmannite Mn3O4 nanoparticles: Photocatalytic and antibacterial investigations. Heliyon 2020, 6, e03245. [Google Scholar] [CrossRef] [Green Version]
- Mannaa, M.A.; Qasim, K.F.; Alshorifi, F.T.; El-Bahy, S.M.; Salama, R.S. Role of NiO Nanoparticles in Enhancing Structure Properties of TiO2 and Its Applications in Photodegradation and Hydrogen Evolution. ACS Omega 2021, 6, 30386–30400. [Google Scholar] [CrossRef]
- Kannan, K.; Radhika, D.; Nikolova, M.P.; Sadasivuni, K.K.; Mahdizadeh, H.; Verma, U. Structural studies of bio-mediated NiO nanoparticles for photocatalytic and antibacterial activities. Inorg. Chem. Commun. 2020, 113, 107755. [Google Scholar] [CrossRef]
- Kumar, V.P.; Pradeep, C.; Sha, M.M.R.; Radhakrishnan, P.; Mujeeb, A. Band-gap dependence of three-photon absorption in NiO nanoparticles synthesized at different calcination temperatures. Opt. Laser Technol. 2023, 158, 108809. [Google Scholar] [CrossRef]
- Bhat, S.A.; Zafar, F.; Mondal, A.H.; Kareem, A.; Mirza, A.U.; Khan, S.; Mohammad, A.; Haq, Q.M.R.; Nishat, N. Photocatalytic degradation of carcinogenic Congo red dye in aqueous solution, antioxidant activity and bactericidal effect of NiO nanoparticles. J. Iran. Chem. Soc. 2020, 17, 215–227. [Google Scholar] [CrossRef]
- Şahin, B.; Aydin, R.; Cetin, H. Tuning the morphological, structural, optical and dielectric properties of hausmannite (Mn3O4) films by doping heavy metal lead. Superlattices Microstruct. 2020, 143, 106546. [Google Scholar] [CrossRef]
- Ramezanpour, S.; Sheikhshoaie, I.; Khatamian, M. Synthesis, characterization and photocatalytic properties of V-doped Mn3O4 nanoparticles as a visible light-activated photocatalyst. J. Mol. Liq. 2017, 231, 64–71. [Google Scholar] [CrossRef]
- Koe, W.S.; Lee, J.W.; Chong, W.C.; Pang, Y.L.; Sim, L.C. An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane. Environ. Sci. Pollut. Res. 2020, 27, 2522–2565. [Google Scholar] [CrossRef] [PubMed]
- Raj, B.G.S.; Asiri, A.M.; Wu, J.J.; Anandan, S. Synthesis of Mn3O4 nanoparticles via chemical precipitation approach for supercapacitor application. J. Alloys Compd. 2015, 636, 234–240. [Google Scholar] [CrossRef]
- Bonomo, M. Synthesis and characterization of NiO nanostructures: A review. J. Nanopart 2018, 20, 222. [Google Scholar] [CrossRef]
- Raj, R.A.; AlSalhi, M.S.; Devanesan, S. Microwave-assisted synthesis of nickel oxide nanoparticles using Coriandrum sativum leaf extract and their structural-magnetic catalytic properties. Materials 2017, 10, 460. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Fu, F.; Li, Y.; Zhang, D.; Chen, Y. One-step synthesis of Ag@TiO2 nanoparticles for enhanced photocatalytic performance. Nanomaterials 2018, 8, 1032. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.A.; Liu, Z.; Peng, W.X.; Jermsittiparsert, K.; Hosseinzadeh, G.; Hosseinzadeh, R. Combination of sonochemical and freeze-drying methods for synthesis of graphene/Ag-doped TiO2 nanocomposite: A strategy to boost the photocatalytic performance via well distribution of nanoparticles between graphene sheets. Ceram. Int. 2020, 46, 7446–7452. [Google Scholar] [CrossRef]
- Onkani, S.P.; Diagboya, P.N.; Mtunzi, F.M.; Klink, M.J.; Olu-Owolabi, B.I.; Pakade, V. Comparative study of the photocatalytic degradation of 2–chlorophenol under UV irradiation using pristine and Ag-doped species of TiO2, ZnO and ZnS photocatalysts. J. Environ. Manag. 2020, 260, 110145. [Google Scholar] [CrossRef] [PubMed]
- Khatri, A.; Rana, P.S. Visible light assisted photocatalysis of Methylene Blue and Rose Bengal dyes by iron doped NiO nanoparticles prepared via chemical co-precipitation. Phys. B Condens. Matter 2020, 579, 411905. [Google Scholar] [CrossRef]
- Jdidi, R.; Krifa, I.; Saadaoui, K.; Selma, H.B.; Krifa, H. Métastase méningée révélatrice d’un cancer du sein. Neurochirurgie 2020, 66, 325. [Google Scholar] [CrossRef]
- Li, N.; He, M.; Lu, X.; Liang, L.; Li, R.; Yan, B.; Chen, G. Enhanced norfloxacin degradation by visible-light-driven Mn3O4/γ-MnOOH photocatalysis under weak magnetic field. Sci. Total Environ. 2021, 761, 143268. [Google Scholar] [CrossRef] [PubMed]
- Shaik, M.R.; Syed, R.; Adil, S.F.; Kuniyil, M.; Khan, M.; Alqahtani, M.S.; Shaik, J.P.; Siddiqui, M.R.H.; Al-Warthan, A.; Sharaf, M.A.; et al. Mn3O4 nanoparticles: Synthesis, characterization and their antimicrobial and anticancer activity against A549 and MCF-7 cell lines. Saudi J. Biol. Sci. 2021, 28, 1196–1202. [Google Scholar] [CrossRef]
- Alagiri, M.; Ponnusamy, S.; Muthamizhchelvan, C. Synthesis and characterization of NiO nanoparticles by sol-gel method. J. Mater. Sci. Mater. Electron. 2012, 23, 728–732. [Google Scholar] [CrossRef]
- Shaik, D.P.M.D.; Rosaiah, P.; Hussain, O.M. Supercapacitive properties of Mn3O4 nanoparticles synthesized by hydrothermal method. Mater. Today Proc. 2016, 3, 64–73. [Google Scholar] [CrossRef]
- Ristig, S.; Cibura, N.; Strunk, J. Manganese Oxides in Heterogeneous (Photo)Catalysis: Possibilities and Challenges. Green 2015, 5, 23–41. [Google Scholar] [CrossRef]
Materials | Element | Weight % | Atomic % |
---|---|---|---|
Mn3O4 NPs | O K | 19.1 | 44.7 |
Mn K | 80.9 | 55.3 | |
NiO NPs | O K | 23.1 | 46.0 |
Na K | 14.5 | 20.1 | |
Ni K | 62.5 | 33.9 | |
Mn3O4/NiO NC 1:1 | O K | 22.5 | 48.3 |
Na K | 5.2 | 7.8 | |
Mn K | 37.5 | 23.5 | |
Ni K | 34.8 | 20.4 | |
Mn3O4/NiO NC 3:1 | O K | 27.6 | 50.7 |
Na K | 16.6 | 21.2 | |
Mn K | 39. 1 | 21.5 | |
Ni K | 16.7 | 6.6 |
Catalyst | Structure of Catalyst | Dye Degraded | Dye Removal Percent | Rate Constant (min−1) | References |
---|---|---|---|---|---|
Mn3O4 | Nanoparticles | Methylene blue | 68% (UV) | 0.003 | [36] |
Ag-TiO2 | Nanoparticles | Methyl orange | 72.48% (UV) 48.08 (Visible) | 0.00395 | [41] |
Graphene/Ag/TiO2 | Nanocomposite | Yellow 2 | - | 0.022 | [42] |
Ce/ZnO | Nanocomposite | Methylene blue | 96% | 0.007 | [21] |
Ag/ZnO | Nanoparticles | Chlorophenol | 57% (UV) | - | [43] |
Fe-NiO | Nanoparticles | Methylene blue | 85% (UV) | 0.031 | [44] |
Ag/Mn3O4 | Nanoparticles | Congo red | 89% (UV + Visible) | - | [45] |
Ag/Mn3O4 | Nanoparticles | Methylene blue | 90% (Visible) | 0.024 | [20] |
Mn3O4/γ-MnOOH | Nanocomposite | Norfloxacin | - | 0.0720 | [46] |
Mn3O4/NiO | Nanocomposite | Methylene blue | 95% | 0.0014 | Present |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majeed, K.; Ambreen, J.; Khan, S.A.; Muhammad, S.; Shah, A.A.; Bhatti, M.A.; Batool, S.S.; Farooq, M.; Shah Bukhari, S.N.U.; Chandio, A.D.; et al. Effective Removal of Methylene Blue by Mn3O4/NiO Nanocomposite under Visible Light. Separations 2023, 10, 200. https://doi.org/10.3390/separations10030200
Majeed K, Ambreen J, Khan SA, Muhammad S, Shah AA, Bhatti MA, Batool SS, Farooq M, Shah Bukhari SNU, Chandio AD, et al. Effective Removal of Methylene Blue by Mn3O4/NiO Nanocomposite under Visible Light. Separations. 2023; 10(3):200. https://doi.org/10.3390/separations10030200
Chicago/Turabian StyleMajeed, Komal, Jaweria Ambreen, Saeed Ahmed Khan, Saz Muhammad, Aqeel Ahmed Shah, Muhammad Ali Bhatti, Syeda Sitwat Batool, Muhammad Farooq, Syed Nizam Uddin Shah Bukhari, Ali Dad Chandio, and et al. 2023. "Effective Removal of Methylene Blue by Mn3O4/NiO Nanocomposite under Visible Light" Separations 10, no. 3: 200. https://doi.org/10.3390/separations10030200
APA StyleMajeed, K., Ambreen, J., Khan, S. A., Muhammad, S., Shah, A. A., Bhatti, M. A., Batool, S. S., Farooq, M., Shah Bukhari, S. N. U., Chandio, A. D., Gilani, S. J., & Bin Jumah, M. N. (2023). Effective Removal of Methylene Blue by Mn3O4/NiO Nanocomposite under Visible Light. Separations, 10(3), 200. https://doi.org/10.3390/separations10030200