Flavonol-Glycoside and Rare Triterpenoid Derivatives Isolated from Leaves of Combretum glutinosum Perr. Ex Dc. with In Vitro Cytotoxic Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Extraction
2.2. General Chemistry
2.3. Isolation and Purification of Compounds from the Ethyl Acetate Fraction
2.4. In Vitro Cytotoxicity Assay
2.4.1. Cell Lines
2.4.2. MTT Assay
2.4.3. Quantitative Real-Time PCR
2.4.4. Statistics
3. Results and Discussion
3.1. Identification of the Isolated Compounds
3.1.1. Identification of Compound (1)
Position | Type | HSQC | COSY | HMBC (H→C) | Maslinic acid a/b | ||||
---|---|---|---|---|---|---|---|---|---|
* δH (J in Hz) | ** δC | (1H-1H) | J2 | J3 | J4 | δH (J in Hz) a/b | δC a/b | ||
Aglycone | |||||||||
1 | CH2 | 1.74, 1.46, m | 41.6 | C2 | C25 | 0.91, 2.00 | 46.3 | ||
2 | CH | 4.34, br.s | 69.3 | C1 | 3.70, m | 68.9 | |||
3 | CH | 3.24, br.s | 82.9 | 3.01, d (9.5) | 83.2 | ||||
4 | C | 36.4 | 39.4 | ||||||
5 | CH | 1.25, m | 49.8 | C6, C10 | 0.85, bd (11.7) | 55.4 | |||
6 | CH2 | 0.98, br.s, 1.74, m | 29.8 | C7 | 1.40, ddd, 1.55, m | 18.4 | |||
7 | CH2 | 1.25, 1.73, m | 33.7 | C6 | C6, C8 | 1.32, dt, 1.46, ddd | 32.8 | ||
8 | C | 40.5 | 39.3 | ||||||
9 | CH | 1.81, m | 50.1 | C11 | 1.62, m | 47.7 | |||
10 | C | 39.1 | 38.0 | ||||||
11 | CH2 | 1.23, 1.96, m | 25.1 | C9, C12 | C13 | 1.90, 1.95, ddd | 23.5 | ||
12 | CH | 5.31, d (8.3) | 125.4 | C11 | 5.30, t (3.65) | 121.7 | |||
13 | C | 144.2 | C11 | 144.4 | |||||
14 | C | 43.6 | 41.7 | ||||||
15 | CH2 | 0.98, br.s, 1.69, m | 29.8 | C16 | C14 | 1.09, dt, 1.71, ddd | 27.8 | ||
16 | CH2 | 2.29, 1.67, m | 28.9 | C15 | 1.62, m, 2.00, dt | 23.3 | |||
17 | C | 47.6 | 46.2 | ||||||
18 | CH | 3.03, br.s | 45.4 | 2.83, dd | 41.5 | ||||
19 | CH2 | 1.84, 0.85, m | 50.3 | 1.63, m, 1.67, ddd | 46.0 | ||||
20 | C | 39.1 | 30.5 | ||||||
21 | CH2 | 1.26, 1.70, m | 33.7 | C22 | C22 | 1.22, m, 1.35, ddd | 33.8 | ||
22 | CH2 | 1.75, 0.98, m | 29.9 | C21 | 1.59, m, 1.78, td | 32.7 | |||
23 | CH3 | 0.91, s | 29.1 | C4 | C3, C24 | 1.03, s | 28.9 | ||
24 | CH3 | 0.92, s | 25.6 | C4 | C3, C23 | 0.83, s | 17.1 | ||
25 | CH3 | 1.35, s | 19.3 | C9, C10 | 0.99, s | 16.4 | |||
26 | CH3 | 0.98, s | 19.1 | C8 | C9, C14 | 0.82, s | 17.2 | ||
27 | CH3 | 1.24, s | 25.4 | C14 | C8, C13 | 1.14, s | 25.7 | ||
28 | C | 179.1 | 179.0 | ||||||
29 | CH3 | 0.91, s | 29.1 | C19, C30 | 0.91, s | 32.8 | |||
30 | CH3 | 1.24, s | 25.4 | C20 | C29 | C22 | 0.93, s | 23.3 | |
β-D-Glucose c–e/f | |||||||||
1′ | CH | 5.31, d (8.3) | 96.4 | C2′ | C28 | 6.31, d (8.0) | 96.0 | ||
5.37, d (8.1) | 95.7 | ||||||||
2′ | CH | 3.29, br.s | 74.4 | C1′ | C1′, C3′ | 4.23 | 74.2 | ||
3.33, m | 73.9 | ||||||||
3′ | CH | 3.36, d (8.8) | 78.7 | C4′ | C5′ | 4.30 | 79.1 | ||
3.35, d (8.5) | 78.2 | ||||||||
4′ | CH | 3.32, br.s | 71.6 | C1″ | 4.34 | 71.3 | |||
3.39, m | 71.1 | ||||||||
5′ | CH | 3.31, br.s | 79.1 | C6′ | C4′ | C1″ | 4.04 | 79.5 | |
3.42, m | 78.5 | ||||||||
6′ | CH2 | 3.54, d (11.1); 3.41, d (11.1) | 66.4 | C5′ | C4′ | 4.97 dd (1.9; 11.5) 4.70 dd (5.5; 11.5) | 67.1 | ||
1″ | CH | 5.31, d (8.3) | 96.4 | C2″ | 6.31, d (8.0) | 96.0 | |||
5.37, d (8.1) | 95.7 | ||||||||
2″ | CH | 3.29, br.s | 74.4 | C1″ | C1″ | C5″ | 4.23 | 74.2 | |
3.33, m | 73.9 | ||||||||
3″ | CH | 3.27, br.s | 78.7 | C4″ | C2″ | C1″ | 4.30 | 79.1 | |
3.35, d (8.5) | 78.2 | ||||||||
4″ | CH | 3.71, br.s | 70.1 | C3″, C5″ | 4.34 | 71.3 | |||
3.39, m | 71.1 | ||||||||
5″ | CH | 3.26, br.s | 78.7 | C4″ | C1″ | 4.04 | 79.5 | ||
3.42, m | 78.5 | ||||||||
6″ | CH2 | 3.78, d (11.8); 3.65, d (11.7) | 62.8 | C5″ | 4.43, 4.48, d (11.8) | 62.4 | |||
3.80; 3.71 m | 62.5 |
3.1.2. Identification of Compound (2)
3.1.3. Identification of Compound (3)
3.1.4. Identification of Compound (4)
Position | Type | HSQC | COSY | HMBC | Myricetin * | ||
---|---|---|---|---|---|---|---|
δH (J in Hz) | δC | 1H-1H | (H→C) | δH (J in Hz) | δC | ||
Aglycone | |||||||
2 | C | 149.4 | 157.2 | ||||
3 | C | 139.3 | 134.3 | ||||
4 | C | 178.5 | 178.1 | ||||
5 | C | 149.5 | 161.4 | ||||
6 | CH | 6.37 (overlapped) | 108.2 | C5, C7, C9, C10 | 6.67, br.s | 98.6 | |
7 | C | 149.1 | 165.8 | ||||
8 | CH | 6.52, br.s | 108.2 | C7, C9, C10 | 6.36, br.s | 92.8 | |
9 | C | 149.5 | 157.0 | ||||
10 | C | 139.2 | 105.6 | ||||
1′ | C | 123.6 | 122.1 | ||||
2′ | CH | 6.69, t | 116.3 | C2, C3, C1′, C2′, C3′ | 7.55, br.s | 116.4 | |
3′ | C | 149.3 | 146.5 | ||||
4′ | C | 148.0 | 150.6 | ||||
5′ | C | 147.6 | 7.04 (d, J = 8.7 Hz) | 111.9 | |||
6′ | CH | 6.70, t | 114.6 | C2, C3, C1′, C4′, C5′ | 7.73 (br.d, J = 8.7 Hz) | 123.0 | |
β-Glucose | |||||||
1″ | CH | 6.37, d (8.4) | 107.4 | C2, C3 | 4.4, d (7.9) | 105.6 | |
5.69, d (7.7) | 104.9 | ||||||
2″ | CH | 3.12–3.19, m | 75.3 | C3″, C4″, C5″ | 3.17, t (8.5) | 75.5 | |
4.08 | 75.7 | ||||||
3″ | CH | 3.23, br.s | 78.4 | C2″, C4″, C1‴ | 3.33 | 78.3 | |
4.27 | 78.2 | ||||||
4″ | CH | 3.27, m | 71.7 | C3″, C5″ | 3.29 | 71.5 | |
4.15 | 71.4 | ||||||
5″ | CH | 3.12–3.19, m | 75.3 | C6″ | C2″, C4″ | 3.27 | 77.7 |
4.04 | 76.2 | ||||||
6″ | CH2 | 3.76, 3.80, br.s | 67.5 | C5″ | C4″ | 3.67, dd (11.9, 4.9) 3.83, dd (11.9, 2.1) | 62.7 |
4.35; 4.65, brd (10.7) | 69.3 | ||||||
β-Glucose | |||||||
1‴ | CH | 4.17, dd (2.6, 9.0) | 105.5 | C2‴ | C1″, C4″ | 4.4, d (7.9) | 105.6 |
2‴ | CH | 3.12–3.19, m | 75.3 | C1‴ | C1‴, C3‴, C4‴, C5‴ | 3.17, t (8.5) | 75.5 |
3‴ | CH | 3.31, br.s | 78.5 | C2‴ | 3.33 | 78.3 | |
4‴ | CH | 3.31, m | 71.7 | C2‴ | 3.29 | 71.5 | |
5‴ | CH | 3.27, br.s | 78.5 | C2‴ | 3.27 | 77.7 | |
6‴ | CH2 | 3.75, 3.80, br.s | 67.5 | C1⁗, C1‴, C4‴ | 3.67, dd (11.9, 4.9) 3.83, dd (11.9, 2.1) | 62.7 | |
4.35; 4.65, brd (10.7) | 69.3 | ||||||
β-Glucose | |||||||
1⁗ | CH | 3.95, d (7.6) | 105.2 | C2⁗ | 4.4, d (7.9) | 105.6 | |
2⁗ | CH | 3.22, br.d | 75.4 | C1⁗ | C3⁗, C4⁗, C5⁗ | 3.17, t (8.5) | 75.5 |
3⁗ | CH | 3.31, br.s | 78.5 | C2⁗ | 3.33 | 78.3 | |
4⁗ | CH | 3.31, m | 71.7 | C2⁗ | 3.29 | 71.5 | |
5⁗ | CH | 3.27, br.s | 78.4 | C2⁗ | 3.27 | 77.7 | |
6⁗ | CH2 | 3.70, 3.74, br.s | 65.5 | C1⁗, C4⁗ | 3.67, dd (11.9, 4.9) 3.83, dd (11.9, 2.1) | 62.7 | |
5-O-CH3 | 3.75, br.s | 57.2 | C5 | 3.86, s | 56.7 | ||
7-O-CH3 | 3.80, br.s | 57.0 | C7 | 3.85, s | 56.2 | ||
3′-O-CH3 | 3.70, s | 57.3 | C3′ | 3.86, s | 56.7 | ||
4′-O-CH3 | 3.27, s | 60.4 | C4′, C5′ | 3.86, s | 56.7 | ||
5′-O-CH3 | 3.76, s | 56.8 | C5′ | 3.86, s | 56.7 |
3.1.5. Identification of Compound (5)
3.1.6. Identification of Compound (6)
3.2. Biological Activities of Main Fractions and Isolates from C. glutinosum
3.2.1. In Vitro Cytotoxic Activity
3.2.2. Effect of Compounds (1) and (3) on Gene Expression
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bekele, B.; Lemma, B. Bioactive compounds from ten species of the genus Combretum: Review. Int. J. Chem. Sci. 2021, 5, 18–30. [Google Scholar]
- Lima, G.R.D.M.; Sales, I.R.D.; Filho, M.R.C.; Jesus, N.Z.D.; Falcão, H.D.S.; Barbosa-Filho, J.M.; Cabral, A.G.; Souto, A.L.; Tavares, J.F.; Batista, L.M. Bioactivities of the genus Combretum (Combretaceae): A review. Molecules 2012, 17, 9142–9206. [Google Scholar] [CrossRef] [Green Version]
- Bisoli, E.; Freire, T.V.; Yoshida, N.C.; Garcez, W.S.; Queiróz, L.M.M.; Matos, M.F.C.; Perdomo, R.T.; Garcez, F.R. Cytotoxic Phenanthrene, Dihydrophenanthrene, and Dihydrostilbene Derivatives and Other Aromatic Compounds from Combretum laxum. Molecules 2020, 25, 3154. [Google Scholar] [CrossRef]
- Géorcelin, A.; Olounlade, P.A.; Azando, E.V.B.; Dedehou, V.F.G.N.; Daga, F.D.; Adote, M.S.H. A review of Bridelia ferruginea, Combretum glutinosum and Mitragina inermis plants used in zootherapeutic remedies in West Africa: Historical origins, current uses and implications for conservation. J. Appl. Biosci. 2015, 87, 8003. [Google Scholar] [CrossRef] [Green Version]
- Niass, O.; Diop, A.; Mariko, M.; Géye, R.; Thiam, K.; Sarr, O.; Ndiaye, B.; Diop, Y.M. Comparative Study of the Composition of Aqueous Extracts of Green Tea (Camellia Sinensis) in Total Alkaloids, Total Flavonoids, Total Polyphenols and Antioxidant Activity with the Leaves of Combretum glutinosum, Combretum Micranthum and the Red Pulps of Hibiscus Sabdariffa. Int. J. Progress. Sci. Technol. 2017, 5, 71–75. [Google Scholar]
- Dawe, A.; Pierre, S.; Tsala, D.E.; Habtemariam, S. Phytochemical Constituents of Combretum Loefl. (Combretaceae). Pharm. Crop. 2013, 4, 38–59. [Google Scholar] [CrossRef]
- Aderogba, M.A.; Kgatle, D.T.; McGaw, L.J.; Eloff, J.N. Isolation of antioxidant constituents from Combretum apiculatum subsp. apiculatum. S. Afr. J. Bot. 2012, 79, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Toklo, P.M.; Ladekan, E.Y.; Linden, A.; Hounzangbe-Adote, S.; Kouam, S.F.; Gbenou, J.D. Anthelmintic flavonoids and other compounds from Combretum glutinosum Perr. ex DC (Combretaceae) leaves. Acta Cryst. Sect. C 2021, 77, 505–512. [Google Scholar] [CrossRef]
- Amako, N.F.; Amupitan, J.O. A dammarane triterpenoid ester from Combretum glutinosum Perr. Ex. Dc., stem bark. J. Chem. Soc. Nigeria 2017, 40, 1–5. [Google Scholar]
- Morgan, A.M.A.; Mohamed, A.E.; Saophea, C.; Park, S.U.; Kim, Y.H. Pentacyclic triterpenes from the stem bark of Combretum hartmannianum Schweinf. Biochem. Syst. Ecol. 2018, 77, 48–50. [Google Scholar] [CrossRef]
- Harouna, S.; Adama, H.; Djifaby, S.P.A.E.; Moussa, C.; Roland, M.; Jeanne, M.; Germaine, N.O. Phytochemistry and Biological Activities of Extracts from Two Combretaceae Found in Burkina Faso: Anogeissus leiocarpus (DC) Guill. and Perr. and Combretum glutinosum Perr. Ex DC. Univers. J. Environ. Res. Technol. 2012, 2, 383–392. [Google Scholar]
- Roy, S.; Gorai, D.; Acharya, R.; Roy, R. COMBRETUM (COMBRETACEAE): BIOLOGICAL ACTIVITY AND PHYTOCHEMISTRY. Indo Am. J. Pharm. Res. 2014, 4, 5266–5299. [Google Scholar]
- Hassanpour, S.H.; Mohammadamin, D. Review of cancer from perspective of molecular. J. Cancer Res. Pract. 2017, 4, 127–129. [Google Scholar] [CrossRef]
- Sweilam, S.H.; Abdel Bar, F.M.; Foudah, A.I.; Alqarni, M.H.; Elattal, N.A.; El-Gindi, O.D.; El-Sherei, M.M.; Abdel-Sattar, E. Phytochemical, Antimicrobial, Antioxidant, and In Vitro Cytotoxicity Evaluation of Echinops erinaceus Kit Tan. Separations 2022, 9, 447. [Google Scholar] [CrossRef]
- Handa, S.S.; Khanuja, S.P.S.; Longo, G.; Rakesh, D.D. Extraction Technologies for Medicinal and Aromatic Plants; United Nations Industrial Development Organization and the International Center for Science and High Technology: Trieste, Italy, 2008; p. 116. [Google Scholar]
- Abdalla, A.N.; Stefano, M.D.; Poli, G.; Tuccinardi, T.; Bader, A.; Vassallo, A.; Abdallah, M.E.; El-Readi, M.Z.; Refaat, B.; Algarni, A.S.; et al. Co-Inhibition of P-gp and Hsp90 by an Isatin-Derived Compound Contributes to the Increase of the Chemosensitivity of MCF7/ADR-Resistant Cells to Doxorubicin. Molecules 2021, 27, 90. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, Q.; Al-Deeb, I.; Bader, A.; Hamam, F.; Saleh, K.; Abdulmajid, A. Anti-angiogenic activity of Middle East medicinal plants of the Lamiaceae family. Mol. Med. Rep. 2018, 18, 2441–2448. [Google Scholar] [CrossRef]
- Abdalla, A.N.; Abdallah, M.E.; Aslam, A.; Bader, A.; Vassallo, A.; Tommasi, N.; Malki, W.H.; Gouda, A.M.; Mukhtar, M.H.; El-Readi, M.Z.; et al. Synergistic Anti Leukemia Effect of a Novel Hsp90 and a Pan Cyclin Dependent Kinase Inhibitors. Molecules 2020, 25, 2220. [Google Scholar] [CrossRef]
- Abdalla, A.N.; Malki, W.H.; Qattan, A.; Shahid, I.; Hossain, M.A.; Ahmed, M. Chemosensitization of HT29 and HT29-5FU Cell Lines by a Combination of a Multi-Tyrosine Kinase Inhibitor and 5FU Downregulates ABCC1 and Inhibits PIK3CA in Light of Their Importance in Saudi Colorectal Cancer. Molecules 2021, 26, 334. [Google Scholar] [CrossRef]
- Muhammad, B.Y.; Shaban, N.Z.; Elrashidy, F.H.; Ghareeb, D.A. Antioxidant, Anti-inflammatory, Antiproliferative and Antimicrobial Activities of Combretum glutinosum and Gardenia aqualla Extracts in vitro. Free Radic. Antioxid. 2020, 9, 66–72. [Google Scholar] [CrossRef]
- Woo, K.W.; Han, J.Y.; Choi, S.U.; Kim, K.H.; Lee, K.R. Triterpenes from Perilla frutescens var. acuta and Their Cytotoxic Activity. Nat. Prod. Sci. 2014, 20, 71–75. [Google Scholar]
- Dais, P.; Plessel, R.; Williamson, K.; Hatzakis, E. Complete 1H and 13C NMR assignment and 31P NMR determination of pentacyclic triterpenic acids. Anal. Methods 2017, 9, 949–957. [Google Scholar] [CrossRef]
- Kim, B.; Han, J.W.; Ngo, M.T.; Dang, Q.L.; Kim, J.; Kim, H.; Choi, G.J. Identification of novel compounds, oleanane- and ursane-type triterpene glycosides, from Trevesia palmata: Their biocontrol activity against phytopathogenic fungi. Sci. Rep. 2018, 8, 14522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, P.K. NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry 1992, 31, 3307–3330. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Kim, H.W.; Kim, Y.C.; Sung, S.H. Cytotoxic activities of naturally occurring oleanane-, ursane-, and lupane-type triterpenes on HepG2 and AGS cells. Pharmacogn. Mag. 2017, 13, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andrijaschenko, P.V.; Popov, R.S.; Chingizova, E.A.; Kalinin, V.I.; Dmitrenok, P.S. Triterpene Glycosides from the Far Eastern Sea Cucumber Psolus chitonoides: Chemical Structures and Cytotoxicities of Chitonoidosides E1, F, G, and H. Mar. Drugs 2021, 19, 696. [Google Scholar] [CrossRef]
- Augustin, J.M.; Drok, S.; Shinoda, T.; Sanmiya, K.; Nielsen, J.K.; Khakimov, B.; Olsen, C.E.; Hansen, E.H.; Kuzina, V.; Ekstrøm, C.T.; et al. UDP-Glycosyltransferases from the UGT73C Subfamily in Barbarea vulgaris Catalyze Sapogenin 3-O-Glucosylation in Saponin-Mediated Insect Resistance1[W][OA]. Plant Physiol. 2012, 160, 1881–1895. [Google Scholar] [CrossRef] [Green Version]
- Yao, H.; Wang, J.; Yin, J.; Nie, S.; Xie, M. A review of NMR analysis in polysaccharide structure and conformation: Progress, challenge and perspective. Food Res. Int. 2021, 143, 110290. [Google Scholar] [CrossRef]
- Guohong, Y.; Zhou, J.Z.; Changchun, S.; Xingquan, M.; Junjie, W. Chemical study on glycosides from the leaves of Japanese Aralia (Aralia elata). Zhongcaoyao 1995, 26, 514–517. [Google Scholar]
- Carvalho, G.J.A.; Carvalho, M.G.; Braz-Filhob, R. A triterpenoid saponin isolated from Lafoensia glyptocarpa. Phytochemistry 1999, 52, 1617–1619. [Google Scholar] [CrossRef]
- Ünlü, A.; Teralı, K.; Aydın, Z.Ü.; Dönmez, A.; Yusufoglu, H.; Calis, I. Isolation, Characterization and In Silico Studies of Secondary Metabolites from the Whole Plant of Polygala inexpectata Peşmen & Erik. Molecules 2022, 27, 684. [Google Scholar] [CrossRef]
- Taketa, A.T.C.; Breitmaiera, E.; Schenkel, E.P. Triterpenes and Triterpenoidal Glycosides from the Fruits of Ilex paraguariensis (Maté). J. Braz. Chem. Soc. 2004, 15, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Note, O.P.; Jihu, D.; Antheaume, C.; Guillaume, D.; Pegnyemb, D.E.; Kilhoffer, M.C.; Lobstein, A. Triterpenoid saponins from Albizia boromoensis Aubrev. & Pellegr. Phytochem. Lett. 2015, 11, 37–42. [Google Scholar]
- Chang, S.; Kim, K.; Kyun, L.; Choi, S.; Yong, R.S.; Ro, L. Phytochemical constituents of Bistorta manshuriensis. Nat. Prod. Sci. 2009, 15, 234–240. [Google Scholar]
- Shi, G.; Xu, M.; Duan, W.; Fang, L.; Liu, W.; Wang, X.; Zhang, Y. Chemical Constituents from Trichosanthis pericarpium. Asian J. Chem. 2014, 26, 4626–4630. [Google Scholar] [CrossRef]
- Bun-Sung, J.; Young-Je, C. Inhibitory Activity against Helicobacter pylori of Isolated Compounds from Pinus koraiensis Siebold et Zucc Leaves. J. Appl. Biol. Chem. 2016, 59, 19–23. [Google Scholar] [CrossRef] [Green Version]
Gene | Sequence |
---|---|
Caspase 3 | F: ACATGGAAGCGAATCAATGGACTC R: AAGGACTCAAATTCTGTTGCCACC |
Bax | F: GCCCTTTTGCTTCAGGGTTT R: TCCAATGTCCAGCCCATGAT |
Survivin | F: TTGCTCCTGCACCCCAGAGC R: AGGCTCAGCGTAAGGCAGCC |
PCNA | F: CACCAAGGAGGGTGTCAAGT R: GATCTTGGGGTGCCAGATAA |
CCND1 | F: GGATGCTGGAGGTCTGCGA R: AGAGGCCACGAACATGCAAG |
GAPDH | F: AGGTCGGTGTGAACGGATTTG R: TGTAGACCATGTAGTTGAGGTCA |
Extract | Growth Inhibition% ± SD | ||
---|---|---|---|
MCF-7 | HT-29 | MRC-5 | |
Crude EtOH | 93 ± 2.40 | 90 ± 1.24 | 85 ± 3.21 |
DCM | 89 ± 2 | 93 ± 1 | 94.2 ± 0.6 |
MeOH 80% | 55 ± 3 | 35 ± 5 | 47 ± 4 |
n-Hex | 31 ± 5 | 25 ± 4 | 48.4 ± 5.5 |
Re. Aq | 81 ± 1 | 62 ± 2 | 49 ± 3 |
Extract */ Compound | MCF7 | HT29 | HepG2 | Average ** IC50 | MRC5 |
---|---|---|---|---|---|
EtOH Ext. | 3.50 ± 0.74 | 12.09 ± 2.22 | 2.99 ± 0.56 | 6.19 | 13.84 ± 1.57 |
1 | 1.37 ± 0.21 | 4.54 ± 1.48 | 3.30 ± 0.02 | 3.07 | 10.22 ± 1.46 |
2 | 2.40 ± 0.22 | 18.48 ± 0.78 | 3.37 ± 0.02 | 8.08 | 14.76 ± 0.32 |
3 | 2.27 ± 0.19 | 6.24 ± 0.93 | 2.42 ± 0.21 | 3.64 | 3.54 ± 1.35 |
4 | 1.72 ± 0.19 | 3.99 ± 1.03 | 3.30 ± 0.93 | 3.00 | 15.68 ± 3.02 |
5 | 1.48 ± 0.02 | 6.62 ± 0.67 | 3.82 ± 0.50 | 3.97 | 7.04 ± 0.61 |
6 | 1.48 ± 0.34 | 4.06 ± 0.48 | 2.10 ± 0.22 | 2.54 | 13.85 ± 2.00 |
Doxo | 0.29 ± 0.03 | 0.13 ± 0.03 | 2.33 ± 0.19 | 0.91 | 3.71 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sweilam, S.H.; Ebrahim, M.B.O.; Kamal, M.; Khafagy, E.-S.; Abdalla, A.N.; Elzubier, M.E.; Moglad, E.H. Flavonol-Glycoside and Rare Triterpenoid Derivatives Isolated from Leaves of Combretum glutinosum Perr. Ex Dc. with In Vitro Cytotoxic Activity. Separations 2023, 10, 209. https://doi.org/10.3390/separations10030209
Sweilam SH, Ebrahim MBO, Kamal M, Khafagy E-S, Abdalla AN, Elzubier ME, Moglad EH. Flavonol-Glycoside and Rare Triterpenoid Derivatives Isolated from Leaves of Combretum glutinosum Perr. Ex Dc. with In Vitro Cytotoxic Activity. Separations. 2023; 10(3):209. https://doi.org/10.3390/separations10030209
Chicago/Turabian StyleSweilam, Sherouk Hussein, Maha B. O. Ebrahim, Mehnaz Kamal, El-Sayed Khafagy, Ashraf N. Abdalla, Mohamed E. Elzubier, and Ehssan H. Moglad. 2023. "Flavonol-Glycoside and Rare Triterpenoid Derivatives Isolated from Leaves of Combretum glutinosum Perr. Ex Dc. with In Vitro Cytotoxic Activity" Separations 10, no. 3: 209. https://doi.org/10.3390/separations10030209
APA StyleSweilam, S. H., Ebrahim, M. B. O., Kamal, M., Khafagy, E. -S., Abdalla, A. N., Elzubier, M. E., & Moglad, E. H. (2023). Flavonol-Glycoside and Rare Triterpenoid Derivatives Isolated from Leaves of Combretum glutinosum Perr. Ex Dc. with In Vitro Cytotoxic Activity. Separations, 10(3), 209. https://doi.org/10.3390/separations10030209