Analysis of Urinary Amino Acids by High-Performance Liquid Chromatography with Fluorescence Detection Using 2,3-Naphthalenedicarboxaldehyde as Fluorescence Derivatization Reagent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Sample Preparation
2.3. High-Performance Liquid Chromatography Conditions
2.4. Validation
3. Results and Discussion
3.1. Investigation for NDA–Amino Acid Derivatization Conditions
3.2. Optimization of Separation Conditions of NDA–Amino Acids
3.3. Method Validation
3.4. Application to Urine Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dalangin, R.; Kim, A.; Campbell, R.E. The Role of Amino Acids in Neurotransmission and Fluorescent Tools for Their Detection. Int. J. Mol. Sci. 2020, 21, 6197. [Google Scholar] [CrossRef] [PubMed]
- Zhenqi, L.; Linda, A.; Jahn, L.W.; Wen, L.; Eugene, J.B. Amino Acids Stimulate Translation Initiation and Protein Synthesis through an Akt-Independent Pathway in Human Skeletal Muscle. J. Clin. Endocrinol. Metab. 2002, 87, 5553–5558. [Google Scholar]
- Li, P.; Yin, Y.; Li, D.; Woo, K.S.; Wu, G. Amino acids and immune function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirayama, M.; Tsunoda, M.; Yamamoto, M.; Tsuda, T.; Ohno, K. Serum Tyrosine-to-Phenylalanine Ratio is Low in Parkinson’s Disease. J. Parkinson Dis. 2016, 6, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Boroughs, L.; DeBerardinis, R. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 2015, 17, 351–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duranton, F.; Lundin, U.; Gayrard, N.; Mischak, H.; Aparicio, M.; Mourad, G.; Daurès, J.P.; Weinberger, K.M.; Argilés, A. Plasma and urinary amino acid metabolomic profiling in patients with different levels of kidney function. Clin. J. Am. Soc. Nephrol. 2014, 9, 37–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yap, I.K.; Angley, M.; Veselkov, K.A.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Urinary metabolic phenotyping differentiates children with autism from their unaffected siblings and age-matched controls. J. Proteome Res. 2010, 9, 2996–3004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wild, J.; Shanmuganathan, M.; Hayashi, M.; Potter, M.; Britz, M.P. Metabolomics for improved treatment monitoring of phenylketonuria: Urinary biomarkers for non-invasive assessment of dietary adherence and nutritional deficiencies. Analyst 2019, 144, 6595–6608. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Garcia, T.G.; Reddy, K.R.; O’Leary, J.G.; Vargas, H.E.; Lai, J.C.; Kamath, P.S.; Tandon, P.; Subramanian, R.M.; Thuluvath, P.; et al. Admission Urinary and Serum Metabolites Predict Renal Outcomes in Hospitalized Patients With Cirrhosis. Hepatology 2021, 74, 2699–2713. [Google Scholar] [CrossRef] [PubMed]
- Tsunoda, M.; Sumida, Y. Liquid Chromatography|Amino Acids. In Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P.I., Poole, C., Townshend, A., Miro, M., Eds.; Elsevier: Oxford, UK, 2019; Volume 6, pp. 1–11. [Google Scholar]
- Song, Y.; Xu, C.; Kuroki, H.; Liao, Y.; Tsunoda, M. Recent trends in analytical methods for the determination of amino acids in biological samples. J. Pharm. Biomed. Anal. 2018, 147, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Wu, Z.; Jia, S.; Wu, G. Analysis of amino acid composition in proteins of animal tissues and foodsas pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. J. Chromatogr. B 2014, 964, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Roach, M.C.; Harmony, M.D. Determination of amino acids at subfemtomole levels by high-performance liquid chromatography with laser-induced fluorescence detection. Anal. Chem. 1987, 59, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Manica, D.P.; Lapos, J.A.; Jones, A.D.; Ewing, A.G. Analysis of the Stability of Amino Acids Derivatized with Naphthalene-2,3-Dicarboxaldehyde Using High Performance Liquid Chromatography and Mass Spectrometry. Anal. Biochem. 2003, 322, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Ueda, T.; Mitchell, R.; Kitamura, F.; Metcalf, T.; Kuwana, T.; Nakamoto, A. Separation of naphthalene-2,3-dicarboxaldehyde-labeled amino acids by high-performance capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr. 1992, 593, 265–274. [Google Scholar] [CrossRef]
- Song, Y.; Funatsu, T.; Tsunoda, M. Amino acids analysis using a monolithic silica column after derivatization with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F). J. Chromatogr. B 2011, 879, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, R.; Funatsu, T.; Tsunoda, M. Identification of methylated tubulin through analysis of methylated lysine. Anal. Bioanal. Chem. 2018, 410, 4189–4194. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kuroki, H.; Funatsu, T.; Tsunoda, M. Retention of Fluorescent Amino Acid Derivatives in Ion-pairing Reversed-phase Liquid Chromatography. Anal. Sci. 2018, 34, 1209–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ICH. Q2(R1), Validation of analytical procedures: Text and methodology. In Proceedings of the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human, Geneva, Switzerland, 19 November 2005. [Google Scholar]
- Zhu, Q.; Zhang, Q.; Zhang, N.; Gong, M. Alternate injections coupled with flow-gated capillary electrophoresis for rapid and accurate quantitative analysis of urine samples. Anal. Chim. Acta 2017, 978, 55–60. [Google Scholar] [CrossRef] [PubMed]
Amino Acids | Limit of Detection | Limit of Quantification | Calibration Curve | ||
---|---|---|---|---|---|
(LOD) (fmol) | LOQ (fmol) | Range (pmol/inj) | Equation | r2 | |
His | 5.0 | 16.7 | 0.25–25 | y = 0.076x + 0.0151 | 0.999 |
Arg | 22.4 | 74.7 | 0.25–25 | y = 0.017x + 0.0039 | 0.999 |
Asn | 6.2 | 20.7 | 0.25–25 | y = 0.054x + 0.0039 | 1.000 |
Gln | 6.2 | 20.7 | 0.25–25 | y = 0.067x + 0.0089 | 0.999 |
Cit | 7.2 | 24.0 | 0.25–25 | y = 0.044x + 0.0053 | 0.999 |
Ser | 9.8 | 32.7 | 0.25–25 | y = 0.038x − 0.0026 | 1.000 |
Asp | 9.0 | 30.0 | 0.25–25 | y = 0.044x + 0.0068 | 0.999 |
Thr | 7.1 | 23.7 | 0.25–25 | y = 0.050x + 0.0164 | 0.999 |
Glu | 6.2 | 20.7 | 0.25–25 | y = 0.055x − 0.0011 | 1.000 |
Gly | 8.2 | 27.3 | 0.25–25 | y = 0.052x − 0.0001 | 0.998 |
Tyr | 6.3 | 21.0 | 0.25–25 | y = 0.063x − 0.0081 | 1.000 |
Ala | 8.2 | 27.3 | 0.25–25 | y = 0.057x − 0.0173 | 0.999 |
Trp | 13.4 | 44.7 | 0.25–25 | y = 0.038x − 0.0044 | 0.999 |
Val | 6.1 | 20.3 | 0.25–25 | y = 0.064x + 0.007 | 0.999 |
Phe | 6.9 | 23.0 | 0.25–25 | y = 0.059x + 0.0023 | 0.999 |
Ile | 5.9 | 19.7 | 0.25–25 | y = 0.029x + 0.0015 | 0.999 |
Leu | 6.1 | 20.3 | 0.25–25 | y = 0.035x − 0.0061 | 0.998 |
Amino Acids | Precision (RSD, %) | |||||||
---|---|---|---|---|---|---|---|---|
Intra-Day (n = 4) | Inter-Day (n = 4) | |||||||
LLOQ | Low | Mid | High | LLOQ | Low | Mid | High | |
His | 4.0 | 4.6 | 2.7 | 1.5 | 12.6 | 3.6 | 4.6 | 8.4 |
Arg | 3.0 | 3.6 | 2.7 | 2.6 | 6.8 | 9.1 | 9.9 | 9.1 |
Asn | 3.8 | 2.4 | 3.0 | 1.3 | 12.2 | 7.4 | 7.2 | 6.8 |
Gln | 4.3 | 2.1 | 3.2 | 1.6 | 10.5 | 6.3 | 5.6 | 8.5 |
Cit | 9.0 | 1.6 | 2.9 | 1.0 | 12.5 | 7.3 | 6.8 | 6.6 |
Ser | 7.8 | 2.3 | 1.9 | 1.1 | 10.1 | 4.2 | 2.5 | 6.2 |
Asp | 7.9 | 4.1 | 3.5 | 2.8 | 3.8 | 3.4 | 1.0 | 7.6 |
Thr | 10.1 | 3.8 | 4.0 | 2.3 | 5.2 | 3.8 | 2.1 | 6.5 |
Glu | 2.8 | 2.0 | 2.7 | 2.1 | 9.0 | 4.0 | 2.0 | 7.4 |
Gly | 1.4 | 2.5 | 2.1 | 1.3 | 15.5 | 5.9 | 7.0 | 4.5 |
Tyr | 3.8 | 0.6 | 3.3 | 1.4 | 6.1 | 5.9 | 3.9 | 6.0 |
Ala | 13.2 | 2.5 | 1.1 | 1.0 | 15.3 | 2.0 | 2.1 | 5.3 |
Trp | 12.6 | 9.6 | 1.8 | 2.6 | 13.5 | 4.6 | 1.7 | 7.0 |
Val | 4.7 | 3.0 | 3.9 | 1.0 | 9.1 | 4.0 | 3.0 | 5.9 |
Phe | 6.0 | 3.5 | 3.4 | 1.5 | 10.4 | 4.7 | 4.2 | 7.7 |
Ile | 5.7 | 1.3 | 8.9 | 4.9 | 3.5 | 4.3 | 4.3 | 9.3 |
Leu | 7.3 | 4.3 | 3.9 | 3.8 | 10.6 | 4.5 | 3.6 | 7.7 |
Amino Acids | Concentration in Urine (μM) (n = 4, Mean ± SD) | Precision (RSD, %) | Accuracy (%) | ||
---|---|---|---|---|---|
Low | Middle | High | |||
His | 922 ± 70 | 1.4 | 86.3 | 117 | 100 |
Arg | 13.7 ± 1.4 | 5.2 | 95.4 | 101 | 97.1 |
Asn | 59.3 ± 1.5 | 4.0 | 99.1 | 96.8 | 101 |
Gln | 956 ± 63 | 2.1 | 85.1 | 104 | 101 |
Cit | 16.2 ± 1.0 | 3.6 | 119 | 100 | 107 |
Ser | 315 ± 10 | 1.7 | 119 | 101 | 101 |
Thr | 4.7 ± 0.2 | 4.8 | 88.8 | 102 | 101 |
Glu | 106.3 ± 4.7 | 2.6 | 82.8 | 99.4 | 97.0 |
Gly | 801 ± 27 | 0.8 | 91.9 | 104 | 102 |
Tyr | 30.6 ± 1.9 | 8.2 | 100 | 96.9 | 99.5 |
Ala | 306 ± 4 | 2.1 | 110 | 101 | 97.2 |
Trp | 10.6 ± 1.0 | 3.5 | 89.7 | 98.5 | 101 |
Val | 12.0 ± 1.1 | 3.7 | 105 | 101 | 101 |
Phe | 15.2 ± 1.2 | 5.8 | 96.3 | 104 | 94.8 |
Ile | 4.7 ± 0.2 | 7.7 | 84.8 | 103 | 98.8 |
Leu | 9.2 ± 0.5 | 3.9 | 102 | 105 | 95.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishida, Y.; Inoue, R.; Tsunoda, M. Analysis of Urinary Amino Acids by High-Performance Liquid Chromatography with Fluorescence Detection Using 2,3-Naphthalenedicarboxaldehyde as Fluorescence Derivatization Reagent. Separations 2023, 10, 224. https://doi.org/10.3390/separations10040224
Ishida Y, Inoue R, Tsunoda M. Analysis of Urinary Amino Acids by High-Performance Liquid Chromatography with Fluorescence Detection Using 2,3-Naphthalenedicarboxaldehyde as Fluorescence Derivatization Reagent. Separations. 2023; 10(4):224. https://doi.org/10.3390/separations10040224
Chicago/Turabian StyleIshida, Yuma, Ryoto Inoue, and Makoto Tsunoda. 2023. "Analysis of Urinary Amino Acids by High-Performance Liquid Chromatography with Fluorescence Detection Using 2,3-Naphthalenedicarboxaldehyde as Fluorescence Derivatization Reagent" Separations 10, no. 4: 224. https://doi.org/10.3390/separations10040224
APA StyleIshida, Y., Inoue, R., & Tsunoda, M. (2023). Analysis of Urinary Amino Acids by High-Performance Liquid Chromatography with Fluorescence Detection Using 2,3-Naphthalenedicarboxaldehyde as Fluorescence Derivatization Reagent. Separations, 10(4), 224. https://doi.org/10.3390/separations10040224