Characterization and Photocatalytic Performance of Newly Synthesized ZnO Nanoparticles for Environmental Organic Pollutants Removal from Water System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of ZnO Nanoparticles (ZnO-NPs)
2.2. Materials Characterization
2.3. Measurements of Photocatalytic Activity
2.4. Analytical Methods
3. Results and Discussion
3.1. Characterization of ZnO Nanoparticles (ZnO-NPs)
3.2. Removal Efficiency
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, J.; Rathi, A.; Rawat, M.; Kumar, V.; Kim, K.-H. The effect of manganese doping on structural, optical, and photocatalytic activity of zinc oxide nanoparticles. Compos. Part B 2019, 166, 361–370. [Google Scholar] [CrossRef]
- Sabouni, R.; Gomaa, H. Photocatalytic degradation of pharmaceutical micro-pollutants using ZnO. Environ. Sci. Pollut. Res. Int. 2019, 26, 5372–5380. [Google Scholar] [CrossRef] [PubMed]
- Fenner, K.; Canonica, S.; Wackett, L.P.; Elsner, M. Evaluating pesticide degradation in the environment: Blind spots and emerging opportunities. Science 2013, 341, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Buttiglieri, G.; Peschka, M.; Fromel, T.; Muller, J.; Malpei, F.; Seel, P.; Knepper, T.P. Environmental occurrence and degradation of the herbicide n-chloridazon. Water Res. 2009, 43, 2865–2873. [Google Scholar] [CrossRef]
- Lu, M.; Du, J.; Zhou, P.; Chen, H.; Lu, C.; Zhang, Q. Endocrine disrupting potential of fipronil and its metabolite in reporter gene assays. Chemosphere 2015, 120, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, N.; Yang, J.; Jin, L.; Guo, H.; Shi, W.; Zhang, X.; Yang, L.; Yu, H.; Wei, S. Suspect and non-target screening of pesticides and pharmaceuticals transformation products in wastewater using QTOF-MS. Environ. Int. 2020, 137, 105599. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ji, C.; Yan, L.; Lu, M.; Lu, C.; Zhao, M. The identification of the metabolites of chlorothalonil in zebrafish (Danio rerio) and their embryo toxicity and endocrine effects at environmentally relevant levels. Environ. Pollut. 2016, 218, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Hensen, B.; Olsson, O.; Kummerer, K. A strategy for an initial assessment of the ecotoxicological effects of transformation products of pesticides in aquatic systems following a tiered approach. Environ. Int. 2020, 137, 105533. [Google Scholar] [CrossRef] [PubMed]
- Le Cor, F.; Slaby, S.; Dufour, V.; Iuretig, A.; Feidt, C.; Dauchy, X.; Banas, D. Occurrence of pesticides and their transformation products in headwater streams: Contamination status and effect of ponds on contaminant concentrations. Sci. Total Environ. 2021, 788, 147715. [Google Scholar] [CrossRef]
- Zanella, R.; Primel, E.G.; Machado, S.L.O.; Gonçalves, F.F.; Marchezan, E. Monitoring of the herbicide clomazone in environmental water samples by solid-phase extraction and high-performance liquid chromatography with ultraviolet detection. Chromatographia 2002, 55, 573–577. [Google Scholar] [CrossRef]
- Zanella, R.; Primel, E.G.; Gonçalves, F.F.; Martins, M.L.; Adaime, M.B.; Marchesan, E.; Machado, S.L.O. Study of the degradation of the herbicide clomazone in distilled and in irrigated rice field waters using HPLC-DAD and GC-MS. J. Braz. Chem. Soc. 2008, 19, 987–995. [Google Scholar] [CrossRef]
- de Menezes, C.C.; Loro, V.L.; da Fonseca, M.B.; Cattaneo, R.; Pretto, A.; Miron, D.d.S.; Santi, A. Oxidative parameters of Rhamdia quelen in response to commercial herbicide containing clomazone and recovery pattern. Pestic. Biochem. Physio. 2011, 100, 145–150. [Google Scholar] [CrossRef]
- Bonnet, J.L.; Bonnemoy, F.; Dusser, M.; Bohatier, J. Toxicity assessment of the herbicides sulcotrione and mesotrione toward two reference environmental microorganisms: Tetrahymena pyriformis and Vibrio fischeri. Arch. Environ. Contam. Toxicol. 2008, 55, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Cherrier, R.; Boivin, A.; Perrin-Ganier, C.; Schiavon, M. Sulcotrione versus atrazine transport and degradation in soil columns. Pest. Manag. Sci. 2005, 61, 899–904. [Google Scholar] [CrossRef]
- Chaabane, H.; Cooper, J.-F.; Azouzi, L.; Coste, C.-M. Influence of soil properties on the adsorption−desorption of sulcotrione and its hydrolysis metabolites on various soils. J. Agric. Food Chem. 2005, 53, 4091–4095. [Google Scholar] [CrossRef]
- EFSA European Food Safety Authority. Conclusion regarding the peer review of the pesticide risk assessment of the active substance of sulcotrione. EFSA Sci. Rep. 2008, 150, 1–86. [Google Scholar]
- Barchanska, H.; Sajdak, M.; Szczypka, K.; Swientek, A.; Tworek, M.; Kurek, M. Atrazine, triketone herbicides, and their degradation products in sediment, soil and surface water samples in Poland. Environ. Sci. Pollut. Res. Int. 2017, 24, 644–658. [Google Scholar] [CrossRef]
- Simazaki, D.; Kubota, R.; Suzuki, T.; Akiba, M.; Nishimura, T.; Kunikane, S. Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health. Water Res. 2015, 76, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef]
- World Health Organization. Pharmaceuticals in Drinking-Water; World Health Organization: Geneva, Switzerland, 2013. Available online: https://www.who.int/publications/m/item/information-sheet-pharmaceuticals-in-drinking-water (accessed on 6 October 2022).
- Schultzt, M.M.; Furlong, E.T. Trace analysis of antidepressant pharmaceuticals and their select degradates in aquatic matrixes by LC/ESI/MS/MS. Anal. Chem. 2003, 80, 1756–1762. [Google Scholar] [CrossRef]
- Calisto, V.; Esteves, V.I. Psychiatric pharmaceuticals in the environment. Chemosphere 2009, 77, 1257–1274. [Google Scholar] [CrossRef]
- Abbar, J.C.; Lamani, S.D.; Nandibewoor, S.T. Ruthenium(III) catalyzed oxidative degradation of amitriptyline-A tricyclic antidepressant drug by permanganate in aqueous acidic medium. J. Sol. Chem. 2011, 40, 502–520. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. Multiresidue methods for the analysis of pharmaceuticals, personal care products and illicit drugs in surface water and wastewater by solid-phase extraction and ultra performance liquid chromatography–electrospray tandem mass spectrometry. Anal. Bioanal. Chem. 2008, 391, 1293–1308. [Google Scholar] [CrossRef]
- Lajeunesse, A.; Gagnon, C.; Sauvé, S. Determination of basic antidepressants and their N-desmethyl metabolites in raw sewage and wastewater using solid-phase extraction and liquid chromatography−tandem mass spectrometry. Anal. Chem. 2008, 80, 5325–5333. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res. 2008, 42, 3498–3518. [Google Scholar] [CrossRef] [PubMed]
- Vystavna, Y.; Huneau, F.; Grynenko, V.; Vergeles, Y.; Celle-Jeanton, H.; Tapie, N.; Budzinski, H.; Le Coustumer, P. Pharmaceuticals in rivers of two regions with contrasted socio-economic conditions: Occurrence, accumulation, and comparison for Ukraine and France. Water Air Soil Pollut. 2012, 223, 2111–2124. [Google Scholar] [CrossRef]
- Togola, A.; Budzinski, H. Multi-residue analysis of pharmaceutical compounds in aqueous samples. J. Chromatogr. A 2008, 1177, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Bhatkhande, D.S.; Pangarkar, V.G.; Beenackers, A.A.C.M. Photocatalytic degradation for environmental applications—A review. J. Chem. Technol. Biotechnol. 2002, 77, 102–116. [Google Scholar] [CrossRef]
- Kumar, M.; Mehta, A.; Mishra, A.; Singh, J.; Rawat, M.; Basu, S. Biosynthesis of tin oxide nanoparticles using Psidium Guajava leave extract for photocatalytic dye degradation under sunlight. Mater. Lett. 2018, 215, 121–124. [Google Scholar] [CrossRef]
- Benitez, F.J.; Acero, J.L.; Real, F.J.; Roldan, G.; Casas, F. Comparison of different chemical oxidation treatments for the removal of selected pharmaceuticals in water matrices. Chem. Eng. J. 2011, 168, 1149–1156. [Google Scholar] [CrossRef]
- Musial, J.; Mlynarczyk, D.T.; Stanisz, B.J. Photocatalytic degradation of sulfamethoxazole using TiO2-based materials—Perspectives for the development of a sustainable water treatment technology. Sci. Total Environ. 2023, 856, 159122. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, B.; Chen, H.; Yuan, R. Heterogeneous photocatalytic oxidation for the removal of organophosphorus pollutants from aqueous solutions: A review. Sci. Total Environ. 2023, 856, 159048. [Google Scholar] [CrossRef]
- Abramovic, B.F.; Despotovic, V.N.; Sojic, D.V.; Orcic, D.Z.; Csanadi, J.J.; Cetojevic-Simin, D.D. Photocatalytic degradation of the herbicide clomazone in natural water using TiO2: Kinetics, mechanism, and toxicity of degradation products. Chemosphere 2013, 93, 166–171. [Google Scholar] [CrossRef]
- Šojić, D.V.; Orčić, D.Z.; Četojević-Simin, D.D.; Banić, N.D.; Abramović, B.F. Efficient removal of sulcotrione and its formulated compound Tangenta® in aqueous TiO2 suspension: Stability, photoproducts assessment and toxicity. Chemosphere 2015, 138, 988–994. [Google Scholar] [CrossRef]
- Šojić Merkulov, D.V.; Despotović, V.D.; Banić, N.D.; Armaković, S.J.; Finčur, N.L.; Lazarević, M.J.; Četojević-Simin, D.D.; Orčić, D.Z.; Radoičić, M.B.; Šaponjić, Z.V.; et al. Photocatalytic decomposition of selected biologically active compounds in environmental waters using TiO2/polyaniline nanocomposites: Kinetics, toxicity and intermediates assessment. Environ. Pollut. 2018, 239, 457–465. [Google Scholar] [CrossRef]
- Khan, M.M.; Adil, S.F.; Al-Mayouf, A. Metal oxides as photocatalysts. J. Saudi. Chem. Soc. 2015, 19, 462–464. [Google Scholar] [CrossRef]
- Carraway, E.R.; Hoffman, A.J.; Hoffmann, M.R. Photocatalytic oxidation of organic-acids on quantum-sized semiconductor colloids. Environ. Sci. Technol. 1994, 28, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Pal, B.; Sharon, M. Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol-gel process. Mater. Chem. Phys. 2002, 76, 82–87. [Google Scholar] [CrossRef]
- Chang, X.; Li, Z.; Zhai, X.; Sun, S.; Gu, D.; Dong, L.; Yin, Y.; Zhu, Y. Efficient synthesis of sunlight-driven ZnO-based heterogeneous photocatalysts. Mater. Des. 2016, 98, 324–332. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, G.; Guo, T.; Hou, H.; Tan, S. Preparation, infrared emissivity and thermochromic properties of Co doped ZnO by solid state reaction. J. Alloys Compd. 2017, 720, 105–115. [Google Scholar] [CrossRef]
- Kakarndee, S.; Nanan, S. SDS capped and PVA capped ZnO nanostructures with high photocatalytic performance toward photodegradation of reactive red (RR141) azo dye. J. Environ. Chem. Eng. 2018, 6, 74–94. [Google Scholar] [CrossRef]
- Jia, P.; Tan, H.; Liu, K.; Gao, W. Enhanced photocatalytic performance of ZnO/bone char composites. Mater. Lett. 2017, 205, 233–235. [Google Scholar] [CrossRef]
- Mahdavi, R.; Talesh, S.S.A. Sol-gel synthesis, structural and enhanced photocatalytic performance of Al doped ZnO nanoparticles. Adv. Powder Technol. 2017, 28, 1418–1425. [Google Scholar] [CrossRef]
- Phuruangrat, A.; Thongtem, S.; Thongtem, T. Ultrasonic-assisted synthesis and photocatalytic performance of ZnO nanoplates and microflowers. Mater. Des. 2016, 107, 250–256. [Google Scholar] [CrossRef]
- Arsha Kusumam, T.V.; Panakkal, T.; Divya, T.; Nikhila, M.P.; Anju, M.; Anas, K.; Renuka, N.K. Morphology controlled synthesis and photocatalytic activity of zinc oxide nanostructures. Ceram. Inter. 2016, 42, 3769–3775. [Google Scholar] [CrossRef]
- Mohd Daud, S.N.H.; Haw, C.; Chiu, W.; Aspanut, Z.; Chia, M.; Khanis, N.H.; Khiew, P.; Abd Hamid, M.A. ZnO nanonails: Organometallic synthesis, self-assembly and enhanced hydrogen gas production. Mater. Sci. Semicond. Process. 2016, 56, 228–237. [Google Scholar] [CrossRef]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2004. [Google Scholar] [CrossRef]
- Lente, G. Deterministic Kinetics in Chemistry and Systems Biology the Dynamics of Complex Reaction Networks; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Finčur, N.; Šojić Merkulov, D.; Putnik, P.; Despotović, V.; Banić, N.; Lazarević, M.; Četojević-Simin, S.; Agbaba, J.; Abramović, B. Environmental photocatalytic degradation of antidepressants with solar radiation: Kinetics, mineralization, and toxicity. Nanomaterials 2021, 11, 632. [Google Scholar] [CrossRef] [PubMed]
- Finčur, N.L.; Krstić, J.B.; Šibul, F.S.; Šojić, D.V.; Despotović, V.N.; Banić, N.D.; Agbaba, J.R.; Abramović, B.F. Removal of alprazolam from aqueous solutions by advanced oxidation processes: Influencing factors, intermediates, and products. Chem. Eng. J. 2017, 307C, 1105–1115. [Google Scholar] [CrossRef]
- Šojić, D.V.; Orčić, D.Z.; Četojević-Simin, D.D.; Despotović, V.D.; Abramović, B.F. Kinetics and the mechanism of the photocatalytic degradation of mesotrione in aqueous suspension and toxicity of its degradation mixtures. J. Mol. Catal. A Chem. 2014, 392, 67–75. [Google Scholar] [CrossRef]
Photocatalyst Sample | Average Crystallite Size (nm) |
---|---|
A_ZnOw | 29.2 |
A_ZnOw_300 | 31.9 |
A_ZnOw_400 | 34.8 |
A_ZnOw_500 | 40.1 |
N_ZnOw_500 | 39.9 |
A_ZnOw_700 | 45.1 |
A_ZnOe | 22.8 |
A_ZnOe_300 | 27.8 |
A_ZnOe_400 | 36.4 |
A_ZnOe_500 | 45.9 |
A_ZnOe_700 | 43.9 |
Sample | Specific Surface Area (m2/g) | Average Pore Diameter (nm) | Total Pore Volume (cm3/g) |
---|---|---|---|
A_ZnOw | 15.80 | 21.0 | 0.091 |
A_ZnOw_300 | 11.48 | 15.1 | 0.047 |
A_ZnOw_400 | 8.46 | 14.1 | 0.032 |
A_ZnOw_500 | 5.21 | 10.3 | 0.014 |
N_ZnOw_500 | 5.89 | 11.6 | 0.018 |
A_ZnOw_700 | 4.08 | 13.7 | 0.014 |
A_ZnOe | 17.41 | 19.1 | 0.109 |
A_ZnOe_300 | 17.04 | 34.8 | 0.174 |
A_ZnOe_400 | 9.85 | 17.0 | 0.042 |
A_ZnOe_500 | 5.67 | 14.7 | 0.020 |
A_ZnOe_700 | 5.73 | 17.7 | 0.027 |
kapp (min−1) | R2 | kapp (min−1) | R2 | |
---|---|---|---|---|
pH-Value | ||||
Pollutant | ~7 | ~10 | ||
CLO | 0.0104 | 0.997 | 0.0100 | 0.999 |
AMI | 0.0311 | 0.993 | 0.0398 | 0.929 |
SUL | 0.0124 | 0.987 | 0.0116 | 0.995 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Despotović, V.; Finčur, N.; Bognar, S.; Šojić Merkulov, D.; Putnik, P.; Abramović, B.; Panić, S. Characterization and Photocatalytic Performance of Newly Synthesized ZnO Nanoparticles for Environmental Organic Pollutants Removal from Water System. Separations 2023, 10, 258. https://doi.org/10.3390/separations10040258
Despotović V, Finčur N, Bognar S, Šojić Merkulov D, Putnik P, Abramović B, Panić S. Characterization and Photocatalytic Performance of Newly Synthesized ZnO Nanoparticles for Environmental Organic Pollutants Removal from Water System. Separations. 2023; 10(4):258. https://doi.org/10.3390/separations10040258
Chicago/Turabian StyleDespotović, Vesna, Nina Finčur, Sabolč Bognar, Daniela Šojić Merkulov, Predrag Putnik, Biljana Abramović, and Sanja Panić. 2023. "Characterization and Photocatalytic Performance of Newly Synthesized ZnO Nanoparticles for Environmental Organic Pollutants Removal from Water System" Separations 10, no. 4: 258. https://doi.org/10.3390/separations10040258
APA StyleDespotović, V., Finčur, N., Bognar, S., Šojić Merkulov, D., Putnik, P., Abramović, B., & Panić, S. (2023). Characterization and Photocatalytic Performance of Newly Synthesized ZnO Nanoparticles for Environmental Organic Pollutants Removal from Water System. Separations, 10(4), 258. https://doi.org/10.3390/separations10040258