Remediation of Amitriptyline Pharmaceutical Wastewater by Heteroatom-Doped Graphene Oxide: Process Optimization and Packed-Bed Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of GO
2.3. Preparation of 3D/BGO Adsorbent
2.4. Characterization Tests
2.5. HPLC Analysis
2.6. CCD Experimental Design and Modeling
2.7. Fixed-Bed Adsorption Tests
2.8. Column Adsorption Modeling
2.9. Regeneration Test
3. Results and Discussion
3.1. Characterization of GO
3.1.1. FESEM Analysis
3.1.2. EDX Analysis
3.1.3. TGA
3.1.4. FTIR Analysis
Wavenumber Range (cm−1) | Bond | Wavenumber (cm−1) | Reference | |
---|---|---|---|---|
Before Adsorption | After Adsorption | |||
3200–3550 | O–H stretching | 3218 | 3205 | [39,41,42] |
2840–3000 | C–H stretching | 2921 | 2925 | |
1566–1650 | C=C stretching | 1583 | 1585 | |
395–1440 | O–H bonding | 1414 | - | |
1310–1390 | O–H bending | 1324 | - | |
1300–1000 | C–O stretching | 1056 | 1062 | |
1022 | 1013 | |||
930–1284 | C–N, C–B, B–O stretching | 930 | - |
3.1.5. XPS Analysis
3.2. CCD Model Generation
3.2.1. Model Verification
3.2.2. Response Surface Analysis and Process Optimization
3.3. Fixed-Bed Column Studies
3.3.1. Effect of Column Parameters
3.3.2. Breakthrough Curve Modelling
3.4. Regeneration
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Umaharan, T.; Sivayokan, S.; Sivansuthan, S. Amitriptyline Dependence and Its Associations: A Case Report and Literature Review. Case Rep. Psychiatry 2021, 2021, 6647952. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Chen, C.; Wu, X.; Han, Z.; Zhang, S.; Chen, K.; Qiu, X. Exposure to amitriptyline induces persistent gut damages and dysbiosis of the gut microbiota in zebrafish (Danio rerio). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2022, 260, 109417. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Shah, J.C.; Hwang, S.S. Pharmacokinetic and pharmacodynamic characterization of OROS and immediate-release amitriptyline. Br. J. Clin. Pharmacol. 1999, 48, 71–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo-Zacarías, C.; Barocio, M.E.; Hidalgo-Vázquez, E.; Sosa-Hernández, J.E.; Parra-Arroyo, L.; López-Pacheco, I.Y.; Barceló, D.; Iqbal, H.N.M.; Parra-Saldívar, R. Antidepressant drugs as emerging contaminants: Occurrence in urban and non-urban waters and analytical methods for their detection. Sci. Total Environ. 2021, 757, 143722. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Chen, C.; Han, Z.; Chen, K.; Wu, X.; Qiu, X. Combined exposure to microplastics and amitriptyline caused intestinal damage, oxidative stress and gut microbiota dysbiosis in zebrafish (Danio rerio). Aquat. Toxicol. 2023, 260, 106589. [Google Scholar] [CrossRef]
- Ebele, A.J.; Abou-Elwafa Abdallah, M.; Harrad, S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. 2017, 3, 1–16. [Google Scholar] [CrossRef]
- Mohiuddin, I.; Bhogal, S.; Grover, A.; Malik, A.K.; Aulakh, J.S. Simultaneous determination of amitriptyline, nortriptyline, and clomipramine in aqueous samples using selective multi-template molecularly imprinted polymers. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100527. [Google Scholar] [CrossRef]
- Baker, D.R.; Kasprzyk-Hordern, B. Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: New developments. Sci. Total Environ. 2013, 454–455, 442–456. [Google Scholar] [CrossRef]
- Togola, A.; Budzinski, H. Multi-residue analysis of pharmaceutical compounds in aqueous samples. J. Chromatogr. A 2008, 1177, 150–158. [Google Scholar] [CrossRef]
- Nordin, A.H.; Norfarhana, A.S.; Noor, S.F.M.; Paiman, S.H.; Nordin, M.L.; Husna, S.M.N.; Ilyas, R.A.; Ngadi, N.; Bakar, A.A.; Ahmad, Z.; et al. Recent Advances in Using Adsorbent Derived from Agricultural Waste for Antibiotics and Non-Steroidal Anti-Inflammatory Wastewater Treatment: A Review. Separations 2023, 10, 300. [Google Scholar] [CrossRef]
- Köpping, I.; McArdell, C.S.; Borowska, E.; Böhler, M.A.; Udert, K.M. Removal of pharmaceuticals from nitrified urine by adsorption on granular activated carbon. Water Res. X 2020, 9, 100057. [Google Scholar] [CrossRef]
- Tee, W.T.; Hiew, B.Y.Z.; Thangalazhy-Gopakumar, S.; Gan, S.; Lee, L.Y. Biochar as a remediation solution for pharmaceutical-contaminated wastewater. In BioChar: Applications for Bioremediation of Contaminated Systems; De Gruyter: Berlin, Germany, 2022; p. 373. [Google Scholar]
- Sarti, E.; Chenet, T.; Stevanin, C.; Costa, V.; Cavazzini, A.; Catani, M.; Martucci, A.; Precisvalle, N.; Beltrami, G.; Pasti, L. High-Silica Zeolites as Sorbent Media for Adsorption and Pre-Concentration of Pharmaceuticals in Aqueous Solutions. Molecules 2020, 25, 3331. [Google Scholar] [CrossRef] [PubMed]
- Lee, X.J.; Chemmangattuvalappil, N.; Lee, L.Y. Adsorptive removal of salicylic acid from aqueous solutions using new graphene-based nanosorbents. Chem. Eng. Trans. 2015, 45, 1387–1392. [Google Scholar] [CrossRef]
- Hiew, B.Y.Z.; Tee, W.T.; Loh, N.Y.L.; Lai, K.C.; Hanson, S.; Gan, S.; Thangalazhy-Gopakumar, S.; Lee, L.Y. Synthesis of a highly recoverable 3D MnO2/rGO hybrid aerogel for efficient adsorptive separation of pharmaceutical residue. J. Environ. Sci. 2022, 118, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Qiu, P.; Wang, S.; Tian, C.; Lin, Z. Adsorption of low-concentration mercury in water by 3D cyclodextrin/graphene composites: Synergistic effect and enhancement mechanism. Environ. Pollut. 2019, 252, 1133–1141. [Google Scholar] [CrossRef]
- Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A.H.; Mujtaba, M.A.; Alghamdi, N.A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef]
- Ayouch, I.; Kassem, I.; Kassab, Z.; Barrak, I.; Barhoun, A.; Jacquemin, J.; Draoui, K.; Achaby, M.E. Crosslinked carboxymethyl cellulose-hydroxyethyl cellulose hydrogel films for adsorption of cadmium and methylene blue from aqueous solutions. Surf. Interfaces 2021, 24, 101124. [Google Scholar] [CrossRef]
- Tee, W.T.; Loh, N.Y.L.; Hiew, B.Y.Z.; Chiu, W.S.; Khiew, P.S.; Thangalazhy-Gopakumar, S.; Gan, S.; Lee, L.Y. Design and development of a high-performance 3D graphene system for adsorptive removal of organic toxins from wastewater: Mechanisms and process optimization. Chem. Eng. Res. Des. 2023, 195, 132–150. [Google Scholar] [CrossRef]
- Tee, W.T.; Loh, N.Y.L.; Lai, K.C.; Hiew, B.Y.Z.; Gan, S.; Lee, L.Y. Application of 3D heteroatom-doped graphene in adsorptive removal of water pollutants: Review on hydrothermal synthesis and its influencing factors. Sep. Purif. Technol. 2023, 320, 124072. [Google Scholar] [CrossRef]
- El Hadki, A.; Ulucan-Altuntas, K.; El Hadki, H.; Ustundag, C.B.; Kabbaj, O.K.; Dahchour, A.; Komiha, N.; Zrineh, A.; Debik, E. Removal of oxytetracycline by graphene oxide and Boron-doped reduced graphene oxide: A combined density function Theory, molecular dynamics simulation and experimental study. FlatChem 2021, 27, 100238. [Google Scholar] [CrossRef]
- Patel, H. Fixed-bed column adsorption study: A comprehensive review. Appl. Water Sci. 2019, 9, 45. [Google Scholar] [CrossRef] [Green Version]
- Solgi, M.; Steiger, B.G.K.; Wilson, L.D. A Fixed-Bed Column with an Agro-Waste Biomass Composite for Controlled Separation of Sulfate from Aqueous Media. Separations 2023, 10, 262. [Google Scholar] [CrossRef]
- Yu, F.; Pan, J.; Li, Y.; Yang, Y.; Zhang, Z.; Nie, J.; Ma, J. Batch and continuous fixed-bed column adsorption of tetracycline by biochar/MOFs derivative covered with κ-carrageenan/calcium alginate hydrogels. J. Environ. Chem. Eng. 2022, 10, 107996. [Google Scholar] [CrossRef]
- Hethnawi, A.; Alnajjar, M.; Manasrah, A.D.; Hassan, A.; Vitale, G.; Jeong, R.; Nassar, N.N. Metformin Removal from Water Using Fixed-bed Column of Silica-Alumina Composite. Colloids Surf. A Physicochem. Eng. Asp. 2020, 597, 124814. [Google Scholar] [CrossRef]
- Américo-Pinheiro, J.H.P.; Salomão, G.R.; Moreno Paschoa, C.V.; Cruz, I.A.; Isique, W.D.; Romanholo Ferreira, L.F.; Torres, N.H.; Bilal, M.; Iqbal, H.M.N.; Sillanpää, M.; et al. Effective adsorption of diclofenac and naproxen from water using fixed-bed column loaded with composite of heavy sugarcane ash and polyethylene terephthalate. Environ. Res. 2022, 211, 112971. [Google Scholar] [CrossRef]
- Lee, X.J.; Hiew, B.Y.Z.; Lai, K.C.; Tee, W.T.; Thangalazhy-Gopakumar, S.; Gan, S.; Lee, L.Y. Applicability of a novel and highly effective adsorbent derived from industrial palm oil mill sludge for copper sequestration: Central composite design optimisation and adsorption performance evaluation. J. Environ. Chem. Eng. 2021, 9, 105968. [Google Scholar] [CrossRef]
- Zaaba, N.I.; Foo, K.L.; Hashim, U.; Tan, S.J.; Liu, W.-W.; Voon, C.H. Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence. Procedia Eng. 2017, 184, 469–477. [Google Scholar] [CrossRef]
- Apiratikul, R.; Chu, K.H. Improved fixed bed models for correlating asymmetric adsorption breakthrough curves. J. Water Process. Eng. 2021, 40, 101810. [Google Scholar] [CrossRef]
- Lai, K.C.; Hiew, B.Y.Z.; Tee, W.T.; Thangalazhy-Gopakumar, S.; Gan, S.; Lee, L.Y. Usage of a new macro-hierarchical graphene sponge in batch adsorption and packed column configuration for efficient decontamination of cadmium in aqueous environment. J. Environ. Chem. Eng. 2021, 9, 106057. [Google Scholar] [CrossRef]
- Loo, S.L.; Vásquez, L.; Athanassiou, A.; Fragouli, D. Polymeric Hydrogels—A Promising Platform in Enhancing Water Security for a Sustainable Future. Adv. Mater. Interfaces 2021, 8, 2100580. [Google Scholar] [CrossRef]
- Boateng, E.; Dondapati, J.S.; Thiruppathi, A.R.; Chen, A. Significant enhancement of the electrochemical hydrogen uptake of reduced graphene oxide via boron-doping and decoration with Pd nanoparticles. Int. J. Hydrog. Energy 2020, 45, 28951–28963. [Google Scholar] [CrossRef]
- Qiu, X.; Cai, H.; Fang, X.; Zheng, J. The improved thermal oxidative stability of silicone rubber by incorporating reduced graphene oxide: Impact factors and action mechanism. Polym. Compos. 2018, 39, 1105–1115. [Google Scholar] [CrossRef]
- Ngidi, N.P.D.; Ollengo, M.A.; Nyamori, V.O. Tuning the properties of boron-doped reduced graphene oxide by altering the boron content. New J. Chem. 2020, 44, 16864–16876. [Google Scholar] [CrossRef]
- Fan, X.; Cai, C.; Gao, J.; Han, X.; Li, J. Hydrothermal reduced graphene oxide membranes for dyes removing. Sep. Purif. Technol. 2020, 241, 116730. [Google Scholar] [CrossRef]
- Chintalapudi, K.; Pannem, R.M.R. The effects of Graphene Oxide addition on hydration process, crystal shapes, and microstructural transformation of Ordinary Portland Cement. J. Build. Eng. 2020, 32, 101551. [Google Scholar] [CrossRef]
- Khushbu; Jindal, R. Sodium Alginate and Chitosan Based Amphoteric Nanocomposites Modified with Graphene Oxide and Bentonite as an Efficient Adsorbent for Both Anionic and Cationic Dyes. J. Polym. Environ. 2023, 31, 264–286. [Google Scholar] [CrossRef]
- Aliyev, E.; Filiz, V.; Khan, M.M.; Lee, Y.J.; Abetz, C.; Abetz, V. Structural Characterization of Graphene Oxide: Surface Functional Groups and Fractionated Oxidative Debris. Nanomaterials 2019, 9, 1180. [Google Scholar] [CrossRef] [Green Version]
- Viji, A.; Balachandran, V.; Babiyana, S.; Narayana, B.; Salian, V.V. FT-IR and FT-Raman investigation, quantum chemical studies, molecular docking study and antimicrobial activity studies on novel bioactive drug of 1-(2,4-Dichlorobenzyl)-3-[2-(3-(4-chlorophenyl)-5-(4-(propan-2-yl)phenyl-4,5-dihydro-1H-pyrazol-1-yl]-4-oxo-4,5-dihydro-1,3-thiazol-5(4H)-ylidence]-2,3-dihydro-1H-indol-2-one. J. Mol. Struct. 2020, 1215, 128244. [Google Scholar] [CrossRef]
- Ahmad, S.Z.N.; Wan Salleh, W.N.; Ismail, A.F.; Yusof, N.; Mohd Yusop, M.Z.; Aziz, F. Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms. Chemosphere 2020, 248, 126008. [Google Scholar] [CrossRef]
- Hiew, B.Y.Z.; Lee, L.Y.; Lee, X.J.; Gan, S.Y.; Thangalazhy-Gopakumar, S.; Lim, S.S.; Pan, G.T.; Yang, T.C.K. Adsorptive removal of diclofenac by graphene oxide: Optimization, equilibrium, kinetic and thermodynamic studies. J. Taiwan Inst. Chem. Eng. 2019, 98, 150–162. [Google Scholar] [CrossRef]
- Lai, K.C.; Lee, L.Y.; Hiew, B.Y.Z.; Thangalazhy-Gopakumar, S.; Gan, S. Facile synthesis of xanthan biopolymer integrated 3D hierarchical graphene oxide/titanium dioxide composite for adsorptive lead removal in wastewater. Bioresour. Technol. 2020, 309, 123296. [Google Scholar] [CrossRef]
- Xu, H.; Li, G.; Li, J.; Chen, C.; Ren, X. Interaction of Th(IV) with graphene oxides: Batch experiments, XPS investigation, and modeling. J. Mol. Liq. 2016, 213, 58–68. [Google Scholar] [CrossRef]
- Altuntepe, A.; Zan, R. Permanent Boron Doped Graphene with high Homogeneity using Phenylboronic Acid. J. Mol. Struct. 2021, 1230, 129629. [Google Scholar] [CrossRef]
- Sahoo, M.; Sreena, K.P.; Vinayan, B.P.; Ramaprabhu, S. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery. Mater. Res. Bull. 2015, 61, 383–390. [Google Scholar] [CrossRef]
- Karri, R.R.; Tanzifi, M.; Tavakkoli Yaraki, M.; Sahu, J.N. Optimization and modeling of methyl orange adsorption onto polyaniline nano-adsorbent through response surface methodology and differential evolution embedded neural network. J. Environ. Manag. 2018, 223, 517–529. [Google Scholar] [CrossRef] [PubMed]
- Azman, A.; Ngadi, N.; Khairunnisa Awg Zaini, D.; Jusoh, M.; Mohamad, Z.; Arsad, A. Effect of Adsorption Parameter on the Removal of Aspirin Using Tyre Waste Adsorbent. Chem. Eng. Trans. 2019, 72, 157–162. [Google Scholar] [CrossRef]
- Momina; Shahadat, M.; Isamil, S. Regeneration performance of clay-based adsorbents for the removal of industrial dyes: A review. RSC Adv. 2018, 8, 24571–24587. [Google Scholar] [CrossRef] [PubMed]
- Patel, H. Review on solvent desorption study from exhausted adsorbent. J. Saudi Chem. Soc. 2021, 25, 101302. [Google Scholar] [CrossRef]
- Abu Alwan, R.; Zhuman, B.; Kumar, M.; Arafat, H.A.; AlNashef, I. Mussel-inspired polydopamine functionalized with ionic liquid as a novel, eco-efficient adsorbent for the selective removal of anionic pollutants from aqueous solutions. Chem. Eng. J. 2023, 454, 140498. [Google Scholar] [CrossRef]
Run | A (mg) | B (min) | C (ppm) | D (°C) | Ract (%) | Rpred (%) | Residue |
---|---|---|---|---|---|---|---|
1 | 7.5 | 30 | 100 | 50 | 52.36 | 55.87 | −3.510 |
2 | 10.0 | 20 | 125 | 60 | 63.66 | 64.00 | −0.336 |
3 | 5.0 | 40 | 75 | 40 | 59.96 | 58.71 | 1.240 |
4 | 7.5 | 30 | 100 | 50 | 57.15 | 55.87 | 1.280 |
5 | 5.0 | 40 | 125 | 60 | 53.32 | 47.83 | 5.490 |
6 | 10.0 | 20 | 125 | 40 | 62.64 | 59.58 | 3.070 |
7 | 7.5 | 30 | 100 | 30 | 62.80 | 64.60 | −1.800 |
8 | 7.5 | 30 | 100 | 50 | 51.78 | 55.87 | −4.090 |
9 | 5.0 | 40 | 75 | 60 | 51.27 | 56.67 | −5.390 |
10 | 7.5 | 30 | 50 | 50 | 78.60 | 76.95 | 1.650 |
11 | 12.5 | 30 | 100 | 50 | 83.19 | 80.96 | 2.220 |
12 | 7.5 | 30 | 100 | 50 | 59.04 | 55.87 | 3.170 |
13 | 10.0 | 40 | 75 | 60 | 88.08 | 88.01 | 0.064 |
14 | 10.0 | 20 | 75 | 60 | 74.72 | 76.60 | −1.880 |
15 | 7.5 | 30 | 100 | 50 | 55.60 | 55.87 | −0.271 |
16 | 5.0 | 20 | 125 | 40 | 39.84 | 39.00 | 0.845 |
17 | 7.5 | 30 | 150 | 50 | 56.23 | 56.47 | −0.233 |
18 | 7.5 | 10 | 100 | 50 | 50.62 | 49.11 | 1.510 |
19 | 10.0 | 20 | 75 | 40 | 66.64 | 71.22 | −4.580 |
20 | 5.0 | 40 | 125 | 40 | 50.38 | 50.83 | −0.446 |
21 | 7.5 | 30 | 100 | 50 | 59.29 | 55.87 | 3.420 |
22 | 7.5 | 30 | 100 | 70 | 70.19 | 66.97 | 3.210 |
23 | 5.0 | 20 | 125 | 60 | 33.16 | 38.01 | −4.850 |
24 | 5.0 | 20 | 75 | 40 | 51.76 | 50.80 | 0.958 |
25 | 10.0 | 40 | 125 | 40 | 75.48 | 76.92 | −1.440 |
26 | 7.5 | 50 | 100 | 50 | 72.27 | 72.36 | −0.090 |
27 | 10.0 | 40 | 125 | 60 | 76.05 | 79.33 | −3.280 |
28 | 2.5 | 30 | 100 | 50 | 28.23 | 29.04 | −0.806 |
29 | 5.0 | 20 | 75 | 60 | 53.11 | 50.76 | 2.350 |
30 | 10.0 | 40 | 75 | 40 | 87.18 | 84.65 | 2.530 |
Model | Equation | Reference |
---|---|---|
Thomas | [29,30] | |
Log Thomas | ||
Yoon–Nelson | ||
Log Yoon–Nelson | ||
Bohart–Adams | ||
Log Bohart–Adams |
Element (at%) | GO | BGO | 3D/BGO (Before Adsorption) | 3D/BGO (After Adsorsption) |
---|---|---|---|---|
C | 63.64 | 67.02 | 52.71 | 72.52 |
O | 34.03 | 18.02 | 34.37 | 14.77 |
B | - | 14.20 | 12.92 | 12.64 |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 5931.46 | 14 | 423.68 | 28.68 | <0.0001 |
A | 4044.68 | 1 | 4044.68 | 273.78 | <0.0001 |
B | 810.80 | 1 | 810.80 | 54.88 | <0.0001 |
C | 629.48 | 1 | 629.48 | 42.61 | <0.0001 |
D | 8.47 | 1 | 8.47 | 0.5730 | 0.4608 |
AB | 30.37 | 1 | 30.37 | 2.06 | 0.1721 |
AC | 0.0234 | 1 | 0.0234 | 0.0016 | 0.9688 |
AD | 29.25 | 1 | 29.25 | 1.98 | 0.1798 |
BC | 15.36 | 1 | 15.36 | 1.04 | 0.3240 |
BD | 4.04 | 1 | 4.04 | 0.2735 | 0.6086 |
CD | 0.9126 | 1 | 0.9126 | 0.0618 | 0.8071 |
A2 | 1.29 | 1 | 1.29 | 0.0875 | 0.7714 |
B2 | 40.58 | 1 | 40.58 | 2.75 | 0.1182 |
C2 | 201.50 | 1 | 201.50 | 13.64 | 0.0022 |
D2 | 168.61 | 1 | 168.61 | 11.41 | 0.0041 |
Residual | 221.60 | 15 | 14.77 | ||
Lack of Fit | 169.14 | 10 | 16.91 | 1.61 | 0.3118 |
Pure Error | 52.46 | 5 | 10.49 | ||
Cor Total | 6153.06 | 29 | |||
Std. Dev. | 3.84 | R2 | 0.9640 | ||
Mean | 60.82 | Adjusted R2 | 0.9304 | ||
C.V. % | 6.32 | Predicted R2 | 0.8294 | ||
Adequate Precision | 21.70 |
Case | Concentration (ppm) | Flowrate (mL/min) | Bed Height (cm) | Dosage (g) | mads (mg) | q (mg/g) |
---|---|---|---|---|---|---|
1 | 50 | 2 | 3.5 | 0.125 | 45.66 | 365.32 |
2 | 100 | 2 | 3.5 | 0.125 | 55.90 | 447.24 |
3 | 50 | 3 | 3.5 | 0.125 | 51.73 | 413.83 |
4 | 50 | 2 | 3 | 0.1 | 30.86 | 308.57 |
Condition | Model | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Bohart–Adams | Log Bohart–Adams | ||||||||||
z (cm) | C0 (ppm) | Q (mL/min) | Dosage (g) | kBA (mL/mg·min) | N0 (mg/mL) | R2 | RRMSE | kBA (mL/mg·min) | N0 (mg/mL) | R2 | RRMSE |
3.5 | 50 | 2 | 0.125 | 0.092 | 16.041 | 0.961 | 0.071 | 1.614 | 12.435 | 0.992 | 0.033 |
3.5 | 100 | 2 | 0.125 | 0.064 | 15.086 | 0.927 | 0.085 | 1.127 | 10.217 | 0.991 | 0.03 |
3.5 | 50 | 3 | 0.125 | 0.139 | 18.393 | 0.989 | 0.041 | 2.062 | 15.503 | 0.987 | 0.987 |
3 | 50 | 2 | 0.1 | 0.118 | 11.695 | 0.964 | 0.066 | 1.367 | 8.379 | 0.982 | 0.046 |
Thomas | Log Thomas | ||||||||||
kTH (mL/mg·min) | q0 (mg/g) | kTH (mL/mg·min) | q0 (mg/g) | ||||||||
3.5 | 50 | 2 | 0.125 | 0.092 | 352.76 | 1.614 | 273.46 | ||||
3.5 | 100 | 2 | 0.125 | 0.064 | 331.77 | 1.127 | 224.68 | ||||
3.5 | 50 | 3 | 0.125 | 0.139 | 404.48 | 2.062 | 340.94 | ||||
3 | 50 | 2 | 0.1 | 0.118 | 275.55 | 1.367 | 197.42 | ||||
Yoon–Nelson | Log Yoon–Nelson | ||||||||||
KYN (min−1) | τ (min) | KYN (min−1) | τ (min) | ||||||||
3.5 | 50 | 2 | 0.125 | 0.005 | 440.95 | 1.614 | 341.83 | ||||
3.5 | 100 | 2 | 0.125 | 0.006 | 207.35 | 1.127 | 140.43 | ||||
3.5 | 50 | 3 | 0.125 | 0.007 | 337.06 | 2.062 | 284.11 | ||||
3 | 50 | 2 | 0.1 | 0.006 | 275.55 | 1.367 | 197.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tee, W.T.; Chua, J.; Yong, J.E.; Hiew, B.Y.Z.; Gan, S.; Lee, L.Y. Remediation of Amitriptyline Pharmaceutical Wastewater by Heteroatom-Doped Graphene Oxide: Process Optimization and Packed-Bed Studies. Separations 2023, 10, 392. https://doi.org/10.3390/separations10070392
Tee WT, Chua J, Yong JE, Hiew BYZ, Gan S, Lee LY. Remediation of Amitriptyline Pharmaceutical Wastewater by Heteroatom-Doped Graphene Oxide: Process Optimization and Packed-Bed Studies. Separations. 2023; 10(7):392. https://doi.org/10.3390/separations10070392
Chicago/Turabian StyleTee, Wan Ting, Jasmine Chua, Jia En Yong, Billie Yan Zhang Hiew, Suyin Gan, and Lai Yee Lee. 2023. "Remediation of Amitriptyline Pharmaceutical Wastewater by Heteroatom-Doped Graphene Oxide: Process Optimization and Packed-Bed Studies" Separations 10, no. 7: 392. https://doi.org/10.3390/separations10070392
APA StyleTee, W. T., Chua, J., Yong, J. E., Hiew, B. Y. Z., Gan, S., & Lee, L. Y. (2023). Remediation of Amitriptyline Pharmaceutical Wastewater by Heteroatom-Doped Graphene Oxide: Process Optimization and Packed-Bed Studies. Separations, 10(7), 392. https://doi.org/10.3390/separations10070392