Removal of Pb(II) from Aqueous Solution and Adsorption Kinetics of Corn Stalk Biochar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Biochar
2.2. Characterization of Biochar
2.3. Adsorption Ability of Biochar
2.4. Adsorption Kinetics of Biochar
2.5. Adsorption Isotherms
2.6. Thermodynamic Analysis
3. Results and Discussion
3.1. The Properties of Biochar
3.2. Effect of Biochar Dose on Pb(II) Removal
3.3. Effect of pH on Pb(II) Removal
3.4. Pb(II) Adsorption Kinetics of Biochar
3.5. Isothermal Adsorption of Pb(II) Removal
3.6. Thermodynamic Analysis of the Adsorption Process
3.7. Optimization of Biochar Adsorption Process
3.8. Assessment of the Pb(II) Removal Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oliveira, M.L.S.; Izquierdo, M.; Querol, X.; Lieberman, R.N.; Saikia, B.K.; Silva, L.F.O. Nanoparticles from construction wastes: A problem to health and the environment. J. Clean. Prod. 2019, 219, 236–243. [Google Scholar] [CrossRef]
- Tang, Q.; Wang, K.; Yaseen, M.; Tong, Z.; Cui, X. Synthesis of highly efficient porous inorganic polymer microspheres for the adsorptive removal of Pb2+ from wastewater. J. Clean. Prod. 2018, 193, 351–362. [Google Scholar] [CrossRef]
- Hazrati, S.; Farahbakhsh, M.; Heydarpoor, G.; Besalatpour, A.A. Mitigation in availability and toxicity of multi-metal contaminated soil by combining soil washing and organic amendments stabilization. Ecotox. Environ. Safe. 2020, 201, 110807. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhou, S.; Wu, S.; Wang, C.; He, D. Concentration, fluxes, risks, and sources of heavy metals in atmospheric deposition in the Lihe River watershed, Taihu region, eastern China. Environ. Pollut. 2019, 255, 113301. [Google Scholar] [PubMed]
- Chen, Y.; Zhang, X.; Chen, W.; Yang, H.; Chen, H. The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance. Bioresour. Technol. 2017, 246, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.C.; Mei, P.Y.; Zhang, Z.; Jiang, W.; Li, X.R. Research progress on treatment technology of lead-bearing wastewater. Ind. Water. Treat. 2020, 40, 14–19. [Google Scholar]
- Liu, G.; Liao, L.; Dai, Z.; Qi, Q.; Wu, J.; Ma, L.Q.; Tang, C.; Xu, J. Organic adsorbents modified with citric acid and Fe3O4 enhance the removal of Cd and Pb in contaminated solutions. Chem. Eng. J. 2020, 395, 125108. [Google Scholar] [CrossRef]
- Jin, Y.; Teng, C.; Yu, S.; Song, T.; Dong, L.; Liang, J.; Bai, X.; Liu, X.; Hu, X.; Qu, J. Batch and fixed-bed biosorption of Cd(II) from aqueous solution using immobilized Pleurotus ostreatus spent substrate. Chemosphere 2018, 191, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Bai, X.; Dong, L.; Liang, J.; Jin, Y.; Wei, Y.; Li, Y.; Huang, S.; Qu, J. Composting enhances the removal of lead ions in aqueous solution by spent mushroom substrate: Biosorption and precipitation. J. Clean. Prod. 2018, 200, 1–11. [Google Scholar]
- Lyu, H.D. Study on Adsorption Characteristics of Heavy Metals from Wastewater Treatment Residuals. Master’s Thesis, Beijing University of Civil Engineering and Architecture, Beijing, China, 2020. [Google Scholar]
- Yang, D.; Li, T.; Nie, Y.; Ren, J.; Rao, N.; Ma, X. Research progress of biomass adsorption materials in water pollution treatment. Shandong Chem. Ind. 2022, 51, 187–188+192. [Google Scholar]
- Jia, D.; Li, C. Adsorption of Pb(II) from aqueous solutions using corn straw. Desalination Water Treat. 2015, 56, 223–231. [Google Scholar] [CrossRef]
- Regkouzas, P.; Diamadopoulos, E. Adsorption of selected organic micro-pollutants on sewage sludge biochar. Chemosphere 2019, 224, 840–851. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, W.-J.; Zhang, N.; Li, Y.-S.; Jiang, H.; Sheng, G.-P. Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. Bioresour. Technol. 2014, 169, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Li, W.; Zhang, Q.; Liu, L.; Zhang, N.; Qu, B.; Yang, X.; Xu, R.; Chen, J.; Sun, Y. Enhancing photo-fermentation biohydrogen production by strengthening the beneficial metabolic products with catalysts. J. Clean. Prod. 2021, 317, 128437. [Google Scholar] [CrossRef]
- Li, J.; Liang, M.; Wang, D.; Lu, L.; Zhu, Y. Advances in the study of lead adsorption by biochar and its composites. Environ. Sci. Technol. 2021, 44, 163–171. [Google Scholar]
- Mu, R.M.; Wang, M.X.; Bu, Q.W.; Liu, D.; Zhao, Y.L. Adsorption of Pb(II) from aqueous solutions by wheat straw biochar. IOP Conf. Ser. Earth Environ. Sci. 2018, 191, 012041. [Google Scholar] [CrossRef]
- Xue, Y.; Gao, B.; Yao, Y.; Inyang, M.; Zhang, M.; Zimmerman, A.R.; Ro, K.S. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chem. Eng. J. 2012, 200–202, 673–680. [Google Scholar]
- Taşar, Ş.; Özer, A. A Thermodynamic and Kinetic Evaluation of the adsorption of Pb(II) ions using peanut (Arachis Hypogaea) shell-based biochar from aqueous media. Pol. J. Environ. Stud. 2019, 29, 293–305. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, J.; Yellezuome, D.; Liu, R. Effects of cotton straw-derived biochar under different pyrolysis conditions on Pb (II) adsorption properties in aqueous solutions. J. Anal. Appl. Pyrolysis 2021, 157, 105214. [Google Scholar] [CrossRef]
- Liu, L.; Huang, Y.; Zhang, S.; Gong, Y.; Su, Y.; Cao, J.; Hu, H. Adsorption characteristics and mechanism of Pb(II) by agricultural waste-derived biochars produced from a pilot-scale pyrolysis system. Waste Manage. 2019, 100, 287–295. [Google Scholar] [CrossRef]
- Waqas, A.; Sajid, M.; Mohsin, M.; Sehrish, A.; Awais, S.; Avelino, N.; Ammar, A.R.M.; Hongwei, Z.; Wenjie, L.; Weidong, L. Adsorption of Pb(II) from wastewater using a red mud modified rice-straw biochar: Influencing factors and reusability. Environ. Pollut. 2023, 326, 121405. [Google Scholar]
- Lian, Q.; Ahmad, Z.U.; Gang, D.D.; Zappi, M.E.; Fortela, D.L.B.; Hernandez, R. The effects of carbon disulfide driven functionalization on graphene oxide for enhanced Pb(II) adsorption: Investigation of adsorption mechanism. Chemosphere 2020, 248, 126078. [Google Scholar] [PubMed]
- Wei, D.; Huo, W.; Li, G.; Xie, Q.; Jiang, Y. The combined effects of lysozyme and ascorbic acid on microstructure and properties of zein-based films. Chin. J. Chem. Eng. 2018, 26, 648–656. [Google Scholar] [CrossRef]
- Hoppen, M.I.; Carvalho, K.Q.; Ferreira, R.C.; Passig, F.H.; Pereira, I.C.; Rizzo-Domingues, R.C.P.; Lenzi, M.K.; Bottini, R.C.R. Adsorption and desorption of acetylsalicylic acid onto activated carbon of babassu coconut mesocarp. J. Environ. Chem. Eng. 2018, 7, 102862. [Google Scholar] [CrossRef]
- Babić, B.M.; Milonjić, S.K.; Polovina, M.J.; Kaludierović, B.V. Point of zero charge and intrinsic equilibrium constants of activated carbon cloth. Carbon 1999, 37, 477–481. [Google Scholar] [CrossRef]
- Al-Jubouri, S.M.; Curry, N.A.; Holmes, S.M. Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams and effective encapsulation of hazardous waste. J. Hazard. Mater. 2016, 320, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ji, Y.; Ding, S.; Ma, H.; Han, X. Adsorption and desorption behavior of tannic acid in aqueous solution on polyaniline adsorbent. Chin. J. Chem. Eng. 2013, 21, 594–599. [Google Scholar] [CrossRef]
- Ma, K.Y.; Zhang, H.; Song, N.N.; Wang, F.L.; Lin, D.S. Mechanism of cadmium adsorption by oxidative aging corn straw biochar. J. Agro-Environ. Sci. 2022, 41, 1230–1240. [Google Scholar]
- Zhang, G.S.; Cheng, H.Y.; Zhang, H.B.; Su, L.; He, X.F.; Tian, X.; Ning, R.Y. Adsorption mechanism of Pb2+ in water by biochar derived from spent Agaricus bisporus substrate and its environmental application potential. J. Agro-Environ. Sci. 2021, 40, 659–667. [Google Scholar]
- Zhang, J.S.; Stanforth, R. Slow adsorption reaction between arsenic species and goethite (alpha-FeOOH): Diffusion or heterogeneous surface reaction control. Langmuir 2005, 21, 2895–2901. [Google Scholar] [CrossRef]
- Zhang, X.; Gang, D.D.; Sun, P.; Lian, Q.; Yao, H. Goethite dispersed corn straw-derived biochar for phosphate recovery from synthetic urine and its potential as a slow-release fertilizer. Chemosphere 2021, 262, 127861. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U., Jr.; Bricka, M.; Smith, F.; Yancey, B.; Mohammad, J.; Steele, P.H.; Alexandre-Franco, M.F.; Gómez-Serrano, V.; Gong, H. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J. Colloid Interface Sci. 2007, 310, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Tian, D.; Zhang, X.; Tang, L.; Su, M.; Zhang, L.; Li, Z.; Hu, S.; Hou, D. Mechanisms of biochar assisted immobilization of Pb2+ by bioapatite in aqueous solution. Chemosphere 2018, 190, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Long, Y.; Hu, X.; Hu, J.; Zhu, M.; Zhou, S. A facile microwave-assisted synthesis of mesoporous hydroxyapatite as an efficient adsorbent for Pb2+ adsorption. J. Solid State Chem. 2020, 289, 121491. [Google Scholar] [CrossRef]
- Lin, P.-Y.; Wu, H.-M.; Hsieh, S.-L.; Li, J.-S.; Dong, C.; Chen, C.-W.; Hsieh, S. Preparation of vaterite calcium carbonate granules from discarded oyster shells as an adsorbent for heavy metal ions removal. Chemosphere 2020, 254, 126903. [Google Scholar] [CrossRef]
- Dong, S.X.; Wang, Y.L.; Zhao, Y.W.; Zhou, X.H.; Zheng, H.L. La3+/La(OH)(3) loaded magnetic cationic hydrogel composites for phosphate removal: Effect of lanthanum species and mechanistic study. Water Res. 2017, 126, 433–441. [Google Scholar] [CrossRef]
- Deng, H.; Lu, J.; Li, G.; Zhang, G.; Wang, X. Adsorption of methylene blue on adsorbent materials produced from cotton stalk. Chem. Eng. J. 2011, 172, 326–334. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhang, H.; Li, Y.; Zhang, Z.; Zhang, W. Recycling spent lithium-ion battery as adsorbents to remove aqueous heavy metals: Adsorption kinetics, isotherms, and regeneration assessment. Resour. Conserv. Recycl. 2020, 156, 104688. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, T.; Zhang, H.; Liu, Y.; Xing, B. Adsorption of Pb(II) and Cd(II) by magnetic activated carbon and its mechanism. Sci. Total. Environ. 2021, 757, 143910. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Medhat, A.; El-Maghrabi, H.H.; Abdelghany, A.; Menem, N.M.A.; Raynaud, P.; Moustafa, Y.M.; Elsayed, M.A.; Nada, A.A. Efficiently activated carbons from corn cob for methylene blue adsorption. Appl. Surf. Sci. Adv. 2021, 3, 100037. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Jing, Y.; Ge, X.; Wang, Y.; Lu, C.; Zhou, X.; Zhang, Q. Statistical optimization of simultaneous saccharification fermentative hydrogen production from Platanus orientalis leaves by photosynthetic bacteria HAU-M1. Int. J. Hydrog. Energy 2017, 42, 5804–5811. [Google Scholar] [CrossRef]
- Lu, C.; Jing, Y.; Zhang, H.; Lee, D.-J.; Tahir, N.; Zhang, Q.; Li, W.; Wang, Y.; Liang, X.; Wang, J.; et al. Biohydrogen production through active saccharification and photo-fermentation from alfalfa. Bioresour. Technol. 2020, 304, 123007. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Li, F.; Li, Y.; Jin, P.; Zhu, S.; He, C.; Zhao, J.; Zhang, Z.; Zhang, Q. Statistical optimization of simultaneous saccharification fermentative hydrogen production from corn stover. Bioengineered 2019, 11, 428–438. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Zhang, Z.; Ge, X.; Wang, Y.; Zhou, X.; You, X.; Liu, H.; Zhang, Q. Bio-hydrogen production from apple waste by photosynthetic bacteria HAU-M1. Int. J. Hydrogen Energy 2016, 41, 13399–13407. [Google Scholar] [CrossRef]
- OuYang, X.-K.; Yang, L.-P.; Wen, Z.-S. Adsorption of Pb(II) from solution using peanut shell as biosorbent in the presence of amino acid and sodium chloride. BioResources 2014, 9, 2446–2458. [Google Scholar] [CrossRef] [Green Version]
- Kalinke, C.; Mangrich, A.S.; Marcolino-Junior, L.H.; Bergamini, M.F. Biochar prepared from castor oil cake at different temperatures: A voltammetric study applied for Pb2+, Cd2+ and Cu2+ ions preconcentration. J. Hazard. Mater. 2016, 318, 526–532. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Zhang, P.; Wang, X.; Cao, Y.; Han, L. Qualitative and quantitative correlation of physicochemical characteristics and lead sorption behaviors of crop residue-derived chars. Bioresour. Technol. 2018, 270, 545–553. [Google Scholar] [CrossRef]
- Tan, G.; Yuan, H.; Liu, Y.; Xiao, D. Removal of lead from aqueous solution with native and chemically modified corncobs. J. Hazard. Mater. 2009, 174, 740–745. [Google Scholar] [CrossRef]
- Largitte, L.; Gervelas, S.; Tant, T.; Dumesnil, P.C.; Hightower, A.; Yasami, R.; Bercion, Y.; Lodewyckx, P. Removal of lead from aqueous solutions by adsorption with surface precipitation. Adsorption 2014, 20, 689–700. [Google Scholar] [CrossRef]
- Qiao, L.; Yutao, G.; Jian, L.; Wenchuan, D.; Yi, Y. Removal of Pb(II) and Cu(II) from aqueous solutions by ultraviolet irradiation-modified biochar. Desalin. Water Treat. 2017, 82, 179–187. [Google Scholar]
- Tan, Y.; Wan, X.; Zhou, T.; Wang, L.; Yin, X.; Ma, A.; Wang, N. Novel Zn-Fe engineered kiwi branch biochar for the removal of Pb(II) from aqueous solution. J. Hazard. Mater. 2022, 424, 127349. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Guo, W.; Gao, F.; Yang, R. Characterization and Pb(II) removal potential of corn straw- and municipal sludge-derived biochars. R. Soc. Open Sci. 2017, 4, 170402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lian, W.; Yang, L.; Joseph, S.; Shi, W.; Bian, R.; Zheng, J.; Li, L.; Shan, S.; Pan, G. Utilization of biochar produced from invasive plant species to efficiently adsorb Cd (II) and Pb (II). Bioresour. Technol. 2020, 317, 124011. [Google Scholar] [CrossRef]
C (%) | H (%) | N (%) | S (%) | C/H | C/N | Total Volume (cm3/g) | Pore Diameter (nm) | Specific Surface Area (m2/g) |
---|---|---|---|---|---|---|---|---|
49.15 | 1.81 | 0.95 | 0.16 | 27.20 | 52.16 | 1.71 × 10−2 | 20.32 | 3.36 |
Langmuir | Freundlich | ||||
---|---|---|---|---|---|
Qm (mg/g) | k (L/mg) | R2 | kf | n | R2 |
40.984 | 0.041 | 0.998 | 16.443 | 0.138 | 0.965 |
T (K) | ΔG0 (kJ/mol) | ΔH0 (kJ/mol) | ΔS0 (J/mol·K) |
---|---|---|---|
298 | −3.060 | ||
308 | −2.729 | −9.152 | −20.576 |
318 | −2.654 |
Factor | Variables | Unit | Minimum | Maximum | Mean |
---|---|---|---|---|---|
A | pH value | 4 | 6 | 5 | |
B | Contact time | min | 120 | 360 | 240 |
C | Biochar dose | g/L | 2 | 4 | 3 |
Run | pH Value | Contact Time (min) | Biochar Dose | Removal Efficiency | |||
---|---|---|---|---|---|---|---|
(g/L) | (%) | ||||||
A Actual | Coded | B Actual | Coded | C Actual | Coded | ||
1 | 4 | −1 | 240 | 0 | 4 | +1 | 88.56 |
2 | 6 | +1 | 360 | +1 | 3 | 0 | 88.69 |
3 | 6 | +1 | 240 | 0 | 4 | +1 | 88.38 |
4 | 4 | −1 | 120 | −1 | 3 | 0 | 87.16 |
5 | 5 | 0 | 240 | 0 | 3 | 0 | 91.22 |
6 | 4 | −1 | 360 | +1 | 3 | 0 | 88.62 |
7 | 5 | 0 | 360 | +1 | 2 | −1 | 87.80 |
8 | 5 | 0 | 120 | −1 | 2 | −1 | 87.52 |
9 | 4 | −1 | 240 | 0 | 2 | −1 | 87.06 |
10 | 5 | 0 | 240 | 0 | 3 | 0 | 91.50 |
11 | 6 | +1 | 120 | −1 | 3 | 0 | 88.75 |
12 | 5 | 0 | 240 | 0 | 3 | 0 | 91.56 |
13 | 5 | 0 | 120 | −1 | 4 | +1 | 87.16 |
14 | 5 | 0 | 360 | +1 | 4 | +1 | 88.78 |
15 | 5 | 0 | 240 | 0 | 3 | 0 | 91.62 |
16 | 6 | +1 | 240 | 0 | 2 | −1 | 88.01 |
17 | 5 | 0 | 240 | 0 | 3 | 0 | 91.47 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Mode | 46.31 | 9 | 5.15 | 85.86 | <0.0001 |
A | 0.7381 | 1 | 0.7381 | 12.32 | 0.0099 |
B | 1.36 | 1 | 1.36 | 22.71 | 0.0020 |
C | 0.7750 | 1 | 0.7750 | 12.93 | 0.0088 |
AB | 0.5776 | 1 | 0.5776 | 9.64 | 0.0172 |
AC | 0.3192 | 1 | 0.3192 | 5.33 | 0.0543 |
BC | 0.4489 | 1 | 0.4489 | 7.49 | 0.0290 |
A2 | 9.36 | 1 | 9.36 | 156.14 | <0.0001 |
B2 | 11.86 | 1 | 11.86 | 197.89 | <0.0001 |
C2 | 16.52 | 1 | 16.52 | 275.66 | <0.0001 |
Residual | 0.4195 | 7 | 0.0599 | ||
Lack of Fit | 0.3256 | 3 | 0.1085 | 4.62 | 0.0866 |
Pure Error | 0.0939 | 4 | 0.0235 | ||
Cor Total | 46.73 | 16 |
Std. Dev. | R-Squared | Mean | Adj R-Squared | C.V. % | Pred R-Squared | Adeq Precision |
---|---|---|---|---|---|---|
0.2448 | 0.9910 | 89.05 | 0.9795 | 0.2749 | 0.8854 | 23.2698 |
Adsorbent | qmax (mg/g) | References |
---|---|---|
Peanut Shell | 7.1 | [47] |
Corn straw | 15.03 | [12] |
Castor oil cake biochar | 15.9 | [48] |
Corn straw biochar | 21.6 | This study |
Peanut hull biochar | 22.8 | [18] |
Rice husk biochar | 36.73 | [49] |
Esterified corncobs | 43.4 | [50] |
Coconut shell biochar | 47.2 | [51] |
Corn stalk biochar | 49.7 | [21] |
Peanut shells biochar | 56.5 | [19] |
Coconut shell-based biochar by ultraviolet (UV) irradiation | 66.86 | [52] |
Cotton straw-derived biochar | 124.7 | [20] |
Kiwi branch biochar modified with Zn-Fe (KB/Zn-Fe) | 161.29 | [53] |
Corn stalk biochar | 352 | [54] |
Ragweed biochar | 358.7 | [55] |
Red mud modified rice-straw biochar | 426.84 | [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Lu, C.; Liang, B.; Yin, C.; Lei, G.; Wang, B.; Zhou, X.; Zhen, J.; Quan, S.; Jing, Y. Removal of Pb(II) from Aqueous Solution and Adsorption Kinetics of Corn Stalk Biochar. Separations 2023, 10, 438. https://doi.org/10.3390/separations10080438
Yang W, Lu C, Liang B, Yin C, Lei G, Wang B, Zhou X, Zhen J, Quan S, Jing Y. Removal of Pb(II) from Aqueous Solution and Adsorption Kinetics of Corn Stalk Biochar. Separations. 2023; 10(8):438. https://doi.org/10.3390/separations10080438
Chicago/Turabian StyleYang, Wenling, Chaoyang Lu, Bo Liang, Chaohui Yin, Gao Lei, Baitao Wang, Xiaokai Zhou, Jing Zhen, Shujing Quan, and Yanyan Jing. 2023. "Removal of Pb(II) from Aqueous Solution and Adsorption Kinetics of Corn Stalk Biochar" Separations 10, no. 8: 438. https://doi.org/10.3390/separations10080438
APA StyleYang, W., Lu, C., Liang, B., Yin, C., Lei, G., Wang, B., Zhou, X., Zhen, J., Quan, S., & Jing, Y. (2023). Removal of Pb(II) from Aqueous Solution and Adsorption Kinetics of Corn Stalk Biochar. Separations, 10(8), 438. https://doi.org/10.3390/separations10080438