Analysis of the Lipid Component and the Sterol Ester Fraction for the Detection of Soft Wheat in Durum Wheat Flour and Pasta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Reagents, Products and Instrumentation
2.2. HRGC Analysis of Lipids Extracted from Flour Products as Is
2.3. HRGC Analysis of Flour Products after Transesterification
2.4. GC-MS Analysis
2.5. Extraction by Percolation of Fat from Flour Products
2.6. Transesterification of the Extracted Fat
2.7. Extraction of the Non-Polar Fraction of the Fat from Flour Products
3. Results
3.1. Principle of the Method
3.2. Evaluation of the Rapid Extraction Method Used as an Alternative to Conventional Methods
3.3. Effect of Temperature on the Stability of the Lipid Component
3.4. GC-MS Analysis of Sterol Esters after Transesterification of the Non-Polar Lipid Fraction of Flour Products
3.5. Characteristic Ratios of Sterol Esters in Flours and Semolina after Transesterification
3.6. Detection of the Presence of Soft Wheat in Pasta
3.7. Rapid Alternative Method to the Official Methods for Checking the Semolina Used for Pasta Making
3.8. Detection of the Presence of Soft Wheat in Pasta at Various Drying Times
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feldman, M.; Levy, A.A.; Triticum, L. Wheat Evolution and Domestication; Springer: Cham, Switzerland, 2023; pp. 365–526. [Google Scholar]
- Mastrangelo, A.M.; Cattivelli, L. What makes bread and durum wheat different? Trends Plant Sci. 2021, 26, 677–684. [Google Scholar] [CrossRef]
- Kyratzis, A.C.; Pallides, A.; Katsiotis, A. Investigating stability parameters for agronomic and quality traits of durum wheat grown under Mediterranean conditions. Agronomy 2022, 12, 1774. [Google Scholar] [CrossRef]
- Bresciani, A.; Pagani, M.A.; Marti, A. Pasta-making process: A narrative review on the relation between process variables and pasta quality. Foods 2022, 11, 256. [Google Scholar] [CrossRef]
- Cecchini, C.; Bresciani, A.; Menesatti, P.; Pagani, M.A.; Marti, A. Assessing the rheological properties of durum wheat semolina: A review. Foods 2021, 10, 2947. [Google Scholar] [CrossRef]
- Decreto del Presidente della Repubblica n.146. Regolamento per la revisione della normativa sulla produzione e commercializzazione di sfarinati e paste alimentari, a norma dell’articolo 50 della legge 22 febbraio 1994. Gazz. Uff. 2001, 117, 6–12.
- Ingrassia, M.; Columba, P.; Bacarella, S.; Chironi, S.; Altamore, L. Consumption of pasta in Italy: Factors affecting preferences. In Green Metamorphoses: Agriculture, Food, Ecology: Proceedings of the LV Conference of SIDEA Studies; Wageningen Academic: Wageningen, The Netherlands, 2020; pp. 453–476. [Google Scholar]
- Cecchini, C.; Menesatti, P.; Antonucci, F.; Costa, C. Trends in research on durum wheat and pasta, a bibliometric mapping approach. Cereal Chem. 2020, 97, 581–588. [Google Scholar] [CrossRef]
- Dello Russo, M.; Spagnuolo, C.; Moccia, S.; Angelino, D.; Pellegrini, N.; Martini, D.; Italian Society of Human Nutrition (SINU) Young Working Group. Nutritional quality of pasta sold on the Italian market: The food labelling of Italian products (FLIP) study. Nutrients 2021, 13, 171. [Google Scholar] [CrossRef] [PubMed]
- Boncinelli, F.; Dominici, A.; Bondioni, F.; Marone, E. Consumers bahavior towards the country of origin labeling policy: The case of the pasta market in Italy. Agribusiness 2023, 40, 46–69. [Google Scholar] [CrossRef]
- IPO. The World Pasta Industry Status Report—International Pasta Organization. 2014. Available online: http://www.internationalpasta.org (accessed on 5 May 2021).
- Naviglio, D.; Langella, C.; Faralli, S.; Ciaravolo, M.; Salvatore, M.M.; Andolfi, A.; Varchetta, V.; Romano, R.; Gallo, M. Determination of egg number added to special pasta by means of cholesterol contained in extracted fat using GC-FID. Foods 2018, 7, 131. [Google Scholar] [CrossRef] [PubMed]
- Gallo, M.; Ferrara, L.; Calogero, A.; Montesano, D.; Naviglio, D. Relationships between food and diseases: What to know to ensure food safety. Food Res. Int. 2020, 137, 109414. [Google Scholar] [CrossRef] [PubMed]
- Medina, S.; Perestrelo, R.; Silva, P.; Pereira, J.A.; Câmara, J.S. Current trends and recent advances on food authenticity technologies and chemometric approaches. Trends Food Sci. Technol. 2019, 85, 163–176. [Google Scholar] [CrossRef]
- De Girolamo, A.; Cervellieri, S.; Mancini, E.; Pascale, M.; Logrieco, A.F.; Lippolis, V. Rapid authentication of 100% italian durum wheat pasta by FT-NIR spectroscopy combined with chemometric tools. Foods 2020, 9, 1551. [Google Scholar] [CrossRef]
- Cavanna, D.; Loffi, C.; Dall’Asta, C.; Suman, M. A non-targeted high-resolution mass spectrometry approach for the assessment of the geographical origin of durum wheat. Food Chem. 2020, 317, 126366. [Google Scholar] [CrossRef] [PubMed]
- Gallo, M.; Ferranti, P. The evolution of analytical chemistry methods in foodomics. J. Chromatogr. A 2016, 1428, 3–15. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 14th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Russin, T.A.; Boye, J.I.; Arcand, Y.; Rajamohamed, S.H. Alternative techniques for defatting soy: A practical review. Food Bioprocess Technol. 2011, 4, 200–223. [Google Scholar] [CrossRef]
- Hewavitharana, G.G.; Perera, D.N.; Navaratne, S.B.; Wickramasinghe, I. Extraction methods of fat from food samples and preparation of fatty acid methyl esters for gas chromatography: A review. Arab. J. Chem. 2020, 13, 6865–6875. [Google Scholar] [CrossRef]
- López-Bascón, M.A.; De Castro, M.L. Soxhlet extraction. In Liquid-Phase Extraction; Elsevier: Amsterdam, The Netherlands, 2020; pp. 327–354. [Google Scholar]
- Melis, S.; Foubert, I.; Delcour, J.A. Normal-phase HPLC-ELSD to compare lipid profiles of different wheat flours. Foods 2021, 10, 428. [Google Scholar] [CrossRef] [PubMed]
- Caboni, M.F.; Iafelice, G.; Pelillo, M.; Marconi, E. Analysis of fatty acid steryl esters in tetraploid and hexaploid wheats: Identification and comparison between chromatographic methods. J. Agric. Food Chem. 2005, 53, 7465–7472. [Google Scholar] [CrossRef] [PubMed]
- Hammann, S.; Korf, A.; Bull, I.D.; Hayen, H.; Cramp, L.J. Lipid profiling and analytical discrimination of seven cereals using high temperature gas chromatography coupled to high resolution quadrupole time-of-flight mass spectrometry. Food Chem. 2019, 282, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, M.; McDonald, C.E. Detection of bread wheat farina adulterant in durum wheat semolina and pasta dried at low, high, and ultra-high temperatures. Cereal Chem. 1993, 70, 405–411. [Google Scholar]
- Collar, C.; Martinez, J.C.; Rosell, C.M. Lipid binding of fresh and stored formulated wheat breads. Relationships with dough and bread technological performance. Food Sci. Technol. Int. 2001, 7, 501–510. [Google Scholar] [CrossRef]
- Andersson, A.A.; Dimberg, L.; Åman, P.; Landberg, R. Recent findings on certain bioactive components in whole grain wheat and rye. J. Cereal Sci. 2014, 59, 294–311. [Google Scholar] [CrossRef]
- Scotter, M.J. Methods for the determination of European Union-permitted added natural colours in foods: A review. Food Addit. Contam. 2011, 28, 527–596. [Google Scholar] [CrossRef] [PubMed]
- Molfetta, M.; Celano, G.; Minervini, F. Functional, nutritional, and sensory quality of mixed flours-based breads as compared to durum wheat semolina-based breads. Foods 2021, 10, 1613. [Google Scholar] [CrossRef]
Diethyl Ether Volume, mL | Soft Wheat Flour, % | Semolina, % | Pasta, % |
---|---|---|---|
30.0 ± 0.2 | 18.7 ± 0.3 | 13.6 ± 0.2 | 11.5 ± 0.3 |
50.0 ± 0.5 | 35.8 ± 0.5 | 31.4 ± 0.4 | 30.7 ± 0.5 |
70.0 ± 0.7 | 68.9 ± 0.8 | 64.8 ± 0.5 | 62.6 ± 0.6 |
100 ± 0.3 | 99.4 ± 0.9 | 99.0 ± 0.7 | 99.2 ± 0.9 |
120 ± 0.3 | 99.9 ± 0.8 | 99.8 ± 0.9 | 99.7 ± 0.9 |
Type of Method | Soft Wheat Flour, % | Semolina, % | Pasta, % |
---|---|---|---|
Rapid method | 1.04 ± 0.02 | 0.69 ± 0.03 | 0.15 ± 0.02 |
Soxhlet | 1.08 ± 0.03 | 0.70 ± 0.02 | 0.16 ± 0.01 |
Batch | 1.06 ± 0.02 | 0.73 ± 0.01 | 0.17 ± 0.02 |
Samples SWF and S | Peak Ratio 3/6 SWF | Peak Ratio 3/6 S | Peak Ratio 3/7 SWF | Peak Ratio 3/7 S | SWF Sterol Esters mg/100 g | S Sterol Esters mg/100 g |
---|---|---|---|---|---|---|
1 | 4.3 ± 0.2 | 0.89 ± 0.03 | 1.5 ± 0.1 | 0.67 ± 0.03 | 0.015 ± 0.002 | 0.035 ± 0.002 |
2 | 8.0 ± 0.3 | 0.86 ± 0.03 | 2.3 ± 0.2 | 0.62 ± 0.04 | 0.017 ± 0.003 | 0.030 ± 0.003 |
3 | 5.0 ± 0.2 | 0.70 ± 0.02 | 1.3 ± 0.1 | 0.74 ± 0.05 | 0.013 ± 0.002 | 0.028 ± 0.002 |
4 | 7.6 ± 0.4 | 0.75 ± 0.03 | 2.3 ± 0.2 | 0.74 ± 0.04 | 0.018 ± 0.001 | 0.029 ± 0.001 |
5 | 12.7 ± 0.4 | 0.60 ± 0.02 | 2.9 ± 0.2 | 0.71 ± 0.03 | 0.019 ± 0.002 | 0.026 ± 0.003 |
6 | 13.7 ± 0.3 | 0.69 ± 0.04 | 3.2 ± 0.3 | 0.67 ± 0.05 | 0.020 ± 0.002 | 0.027 ± 0.002 |
7 | 13 ± 05 | 0.72 ± 0.05 | 4.3 ± 0.3 | 0.70 ± 0.06 | 0.021 ± 0.001 | 0.028 ± 0.002 |
8 | 5.0 ± 0.2 | 0.61 ± 0.03 | 1.3 ± 0.1 | 0.66 ± 0.05 | 0.020 ± 0.002 | 0.026 ± 0.003 |
9 | 9.6 ± 0.2 | 0.76 ± 0.04 | 2.5 ± 0.2 | 0.70 ± 0.03 | 0.013 ± 0.001 | 0.028 ± 0.002 |
10 | 10.7 ± 0.5 | 0.81 ± 0.05 | 2.5 ± 0.2 | 0.67 ± 0.04 | 0.018 ± 0.002 | 0.029 ± 0.002 |
Samples | Characteristic Ratio 3/6 | Characteristic Ratio 3/7 | Percentage of Fat Extracted, % |
---|---|---|---|
SWF | 13.0 ± 0.2 | 3.1 ± 0.3 | 1.04 ± 0.02 |
DD of SWF (25 °C) | 12.8 ± 0.3 | 3.0 ± 0.2 | 0.18 ± 0.01 |
DD of SWF (25 °C) | 13.3 ± 0.2 | 3.2 ± 0.3 | 0.15 ± 0.01 |
DD of SWF (25 °C) | 12.7 ± 0.2 | 3.3 ± 0.2 | 0.16 ± 0.01 |
S | 0.81 ± 0.1 | 0.67 ± 0.1 | 0.80 ± 0.03 |
DD of S (25 °C) | 0.79 ± 0.1 | 0.66 ± 0.1 | 0.15 ± 0.01 |
DD of S (70 °C) | 0.80 ± 0.2 | 0.65 ± 0.2 | 0.17 ± 0.02 |
DD of S (130 °C) | 0.83 ± 0.1 | 0.68 ± 0.1 | 0.16 ± 0.01 |
Samples | Peak Ratio 3/6 Theoretical | Peak Ratio 3/6 Experimental | Peak Ratio 3/7 Theoretical | Peak Ratio 3/7 Experimental |
---|---|---|---|---|
SWF | - | 13.0 ± 0.2 | - | 3.1 ± 0.2 |
S | - | 0.81 ± 0.04 | - | 0.67 ± 0.02 |
2% SWF mixture | 1.07 | 1.04 ± 0.03 | 0.91 | 0.95 ± 0.04 |
5% SWF mixture | 1.43 | 1.51 ± 0.02 | 1.20 | 1.24 ± 0.03 |
10% SWF mixture | 2.13 | 2.00 ± 0.03 | 1.61 | 1.55 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naviglio, D.; Perrone, A.; Varchetta, F.; Trucillo, P.; Montesano, D.; Gallo, M. Analysis of the Lipid Component and the Sterol Ester Fraction for the Detection of Soft Wheat in Durum Wheat Flour and Pasta. Separations 2024, 11, 53. https://doi.org/10.3390/separations11020053
Naviglio D, Perrone A, Varchetta F, Trucillo P, Montesano D, Gallo M. Analysis of the Lipid Component and the Sterol Ester Fraction for the Detection of Soft Wheat in Durum Wheat Flour and Pasta. Separations. 2024; 11(2):53. https://doi.org/10.3390/separations11020053
Chicago/Turabian StyleNaviglio, Daniele, Angela Perrone, Francesca Varchetta, Paolo Trucillo, Domenico Montesano, and Monica Gallo. 2024. "Analysis of the Lipid Component and the Sterol Ester Fraction for the Detection of Soft Wheat in Durum Wheat Flour and Pasta" Separations 11, no. 2: 53. https://doi.org/10.3390/separations11020053
APA StyleNaviglio, D., Perrone, A., Varchetta, F., Trucillo, P., Montesano, D., & Gallo, M. (2024). Analysis of the Lipid Component and the Sterol Ester Fraction for the Detection of Soft Wheat in Durum Wheat Flour and Pasta. Separations, 11(2), 53. https://doi.org/10.3390/separations11020053