Immunochromatographic Detection of Human Blood: A Forensic Review
Abstract
:1. Introduction
2. Operative Principles
3. Sensitivity of the IC Assays
Strategies Developed for Tiny/Aged Bloodstains
4. Specificity and False Positive Results
5. False-Negative Results
5.1. The “Hook Effect”
5.2. Ageing of the Sample
5.3. Chemical Compounds and Washing
6. Identification of Menstrual Blood
7. Discussion
8. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harbison, S.A.; Fleming, R.I. Forensic body fluid identification: State of the art. Res. Rep. Forensic Med. Sci. 2016, 6, 11–23. [Google Scholar] [CrossRef]
- An, J.H.; Shin, K.J.; Yang, W.I.; Lee, H.Y. Body fluid identification in forensics. BMB Rep. 2012, 45, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Sijen, T.; Harbison, S.A. On the Identification of Body Fluids and Tissues: A Crucial Link in the Investigation and Solution of Crime. Genes 2021, 12, 1728. [Google Scholar] [CrossRef]
- Vandewoestyne, M.; Lepez, T.; Van Hoofstat, D.; Deforce, D. Evaluation of a Visualization Assay for Blood on Forensic Evidence. J. Forensic Sci. 2015, 60, 707–711. [Google Scholar] [CrossRef]
- De Vittori, E.; Barni, F.; Lewis, S.W.; Antonini, G.; Rapone, C.; Berti, A. Forensic application of a rapid one-step tetramethylbenzidine-based test for the presumptive trace detection of bloodstains at the crime scene and in the laboratory. Forensic Chem. 2016, 2, 63–74. [Google Scholar] [CrossRef]
- Barni, F.; Simon, W.L.; Berti, A.; Gordon, M.M.; Lago, G. Forensic application of the luminol reaction as a presumptive test for latent blood detection. Talanta 2007, 72, 896–913. [Google Scholar] [CrossRef]
- de Beijer, R.P.; de Graaf, C.; van Weert, A.; van Leeuwen, T.G.; Aalders, M.C.G.; van Dam, A. Identification and Detection of Protein Markers to Differentiate between Forensically Relevant Body Fluids. Forensic Sci. Int. 2018, 290, 196–206. [Google Scholar] [CrossRef]
- Bruijns, B.; Tiggelaar, R.; Knotter, J.; van Dam, A. Use of Lateral Flow Assays in Forensics. Sensors 2023, 23, 6201. [Google Scholar] [CrossRef]
- Inoue, H.; Takabe, F.; Iwasa, M.; Maeno, Y. Identification of fetal hemoglobin and simultaneous estimation of bloodstain age by high-performance liquid chromatography. Int. J. Leg. Med. 1991, 104, 127–131. [Google Scholar] [CrossRef]
- von Heeren, F.; Thormann, W. Capillary electrophoresis in clinical and forensic analysis. Electrophoresis 1997, 18, 2415–2426. [Google Scholar] [CrossRef]
- Van Steendam, K.; De Ceuleneer, M.; Dhaenens, M.; Van Hoofstat, D.; Deforce, D. Mass spectrometry-based proteomics as a tool to identify biological matrices in forensic science. Int. J. Legal Med. 2013, 127, 287–298. [Google Scholar] [CrossRef]
- Khandasammy, S.R.; Fikiet, M.A.; Mistek, E.; Ahmed, Y.; Halámková, L.; Bueno, J.; Lednev, I.K. Bloodstains, paintings, and drugs: Raman spectroscopy applications in forensic science. Forensic Chem. 2018, 8, 111–133. [Google Scholar] [CrossRef]
- Mistek-Morabito, E.; Lednev, I.K. Discrimination of menstrual and peripheral blood traces using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy and chemometrics for forensic purposes. Anal. Bioanal. Chem. 2021, 413, 2513–2522. [Google Scholar] [CrossRef]
- Pereira, J.F.Q.; Silva, C.S.; Vieira, M.J.L.; Pimentel, M.F.; Braz, A.; Honorato, R.S. Evaluation and identification of blood stains with handheld NIR spectrometer. Microchem. J. 2017, 133, 561–566. [Google Scholar] [CrossRef]
- Setzer, M.; Juusola, J.; Ballantyne, J. Recovery and Stability of RNA in Vaginal Swabs and Blood, Semen, and Saliva Stains. J. Forensic Sci. 2008, 53, 296–305. [Google Scholar] [CrossRef]
- ABAcard® HemaTrace. Available online: https://www.abacusdiagnostics.com/hematrace.htm (accessed on 12 October 2023).
- Johnston, S.; Newman, J.; Frappier, R. Validation study of the Abacus Diagnostics ABAcard® Hematrace® membrane test for the forensic identification of human blood. Can. Soc. Forensic Sci. J. 2003, 36, 173–183. [Google Scholar] [CrossRef]
- Atkinson, C.; Silenieks, T.; Pearman, C. VALIDATION OF ABAcard™ HemaTrace® KITS-To Determine the Presence of Higher Primate Hemoglobin in Bloodstains; Evidence Recovery and Biology Analytical Groups Summer Vacation Project; January–February 2003; Evrec 03-1; Forensic Science: Adelaide, Australia, 2003. [Google Scholar]
- Shahhaziq, S. The Effects of Temperature on the ABAcard® HemaTrace® Kit for the Identification of Human Blood. Master’s Thesis, Murdoch University, Perth, Australia, 2007. [Google Scholar]
- Wallis, L.; Hitchcock, C.; McNevin, D.; Raymond, J. Source Level Attribution: DNA Profiling from the ABAcard® HemaTrace® Kit. Forensic Sci. 2021, 1, 116–129. [Google Scholar] [CrossRef]
- Streeting, C.A.; Chaseling, J.; Krosch, M.N.; Wright, K. A comparison of ABAcard® Hematrace® and RSIDTM-Blood tests on dried, diluted bloodstains treated with leucocrystal violet or luminol. Aust. J. Forensic Sci. 2022, 54, 108–118. [Google Scholar] [CrossRef]
- Howard, D.; Chaseling, J.; Wright, K. Detection of blood on clothing laundered with sodium percarbonate. Forensic Sci. Int. 2019, 302, 109885. [Google Scholar] [CrossRef]
- BLUESTAR® OBTI. Available online: https://www.bluestar-forensic.com (accessed on 12 October 2023).
- Hochmeister, M.N.; Budowle, B.; Sparkes, R.; Rudin, O.; Gehrig, C.; Thali, M.; Schmidt, L.; Cordier, A.; Dirnhofer, R. Validation studies of an immunochromatographic 1-step test for the forensic identification of human blood. J. Forensic Sci. 1999, 44, 597–602. [Google Scholar] [CrossRef]
- Hermon, D.; Shpitzen, M.; Oz, C.; Glattstein, B.; Azoury, M.; Gafny, R. The use of the Hexagon OBTI Test for detection of human blood at crime scenes and on items of evidence. J. Forensic Ident. 2003, 53, 566–574. [Google Scholar]
- Turrina, S.; Filippini, G.; Atzei, R.; Zaglia, E.; De Leo, D. Validation studies of rapid stain identification-blood (RSID-blood) kit in forensic caseworks. Forensic Sci. Int. Genet. Suppl. Ser. 2008, 1, 74–75. [Google Scholar] [CrossRef]
- Johnston, E.; Ames, C.E.; Dagnall, K.E.; Foster, J.; Daniel, B.E. Comparison of presumptive blood test kits including Hexagon OBTI. J. Forensic Sci. 2008, 53, 687–689. [Google Scholar] [CrossRef]
- Frippiat, C.; De Roy, G.; Fontaine, L.M.; Dognaux, S.; Noel, F.; Heudt, L.; Lepot, L. Nylon flocked swab severely reduces Hexagon Obti sensibility. Forensic Sci. Int. 2015, 247, 126–129. [Google Scholar] [CrossRef]
- Castellò, A.; Francés, F.; Verdù, F. Bloodstains on Leather: Examination of False Negatives in Presumptive Test and Human Hemoglobin Test. J. Forensic Sci. 2017, 62, 1308–1313. [Google Scholar] [CrossRef]
- Durdle, A.; Mitchell, R.J.; van Oorschot, R.A.H. The Use of Forensic Tests to Distinguish Blowfly Artifacts from Human Blood, Semen, and Saliva. J. Forensic Sci. 2015, 60, 468–470. [Google Scholar] [CrossRef] [PubMed]
- Basset, P.; Blandin, P.; Grini, A.; Delemont, S.; Samie, L.; Castella, V. A simplified protocol for the detection of blood, saliva, and semen from a single biological trace using immunochromatographic tests. Forensic Sci. Med. Pathol. 2022, 18, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Idris, B.; Goodwin, W.H. Evaluating the sensitivity of presumptive and confirmatory tests for body fluids. Forensic Sci. Int. Genet. Supp. Ser. 2022, 8, 276–278. [Google Scholar] [CrossRef]
- SERATEC® HemDirect Hemoglobin Assay. Available online: www.seratec.com (accessed on 12 October 2023).
- Misencik, A.; Laux, D.L. Validation study of the Seratec HemDirect hemoglobin assay for the forensic identification of human blood. MAFS Newslett. 2007, 36, 18–26. [Google Scholar]
- Horjan, I.; Barbaric, L.; Mrsic, G. Applicability of three commercially available kits for forensic identification of bloodstains. J. Forensic Leg. Med. 2016, 38, 101–105. [Google Scholar] [CrossRef]
- Holtkötter, H.; Schwender, K.; Wiegand, P.; Peiffer, H.; Vennemann, M. Improving Body Fluid Identification in Forensic Trace Evidence-Construction of an Immunochromatographic Test Array to Rapidly Detect up to Five Body Fluids Simultaneously. Int. J. Leg. Med. 2018, 132, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Rapid Stain Identification of Human Blood (RSID™-Blood). Available online: http://www.galantos.eu (accessed on 12 October 2023).
- Schweers, B.A.; Old, J.; Boonlayangoor, P.W.; Reich, K.A. Developmental validation of a novel lateral flow strip test for rapid identification of human blood (Rapid Stain Identification™-Blood). Forensic Sci. Int. Genet. 2008, 2, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Souto, L.; Moreira, H. Evaluation of Bloodstain Detection Tests for Forensic Applications. Acta Madicinae Legalis et Socialis; Duarte, N.V., Busuttil, A., Cusack, D., Beth, P., Eds.; Imprensa da Universidade de Coimbra: Coimbra, Portugal; International Academy of Legal Medicine: Geneve, Switzerland, 2010. [Google Scholar] [CrossRef]
- Kulstein, G.; Wiegand, P. Comprehensive examination of conventional and innovative body fluid identification approaches and DNA profiling of laundered blood- and saliva-stained pieces of cloths. Int. J. Leg. Med. 2018, 132, 67–81. [Google Scholar] [CrossRef]
- Stroud, A.; Gamblin, A.; Birchall, P.; Harbison, S.A.; Opperman, S. A comprehensive study into false positive rates for ‘other’ biological samples using common presumptive testing methods. Sci. Justice 2023, 63, 414–420. [Google Scholar] [CrossRef]
- BLUESTAR® Identi-HEM®. Available online: https://www.bluestar-forensic.com (accessed on 12 October 2023).
- Gheevarghese, R.M. False Negative Results for Blood Tested in the Presence of Chemical Interferents Hematrace RSDI. Master’s Thesis, Boston University, Boston, MA, USA, 2021. Available online: https://hdl.handle.net/2144/43844 (accessed on 12 October 2023).
- Walker, H.K.; Hall, W.D.; Hurst, J.W. (Eds.) Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Butterworths: Boston, MA, USA, 1990; ISBN-10 0-409-90077-X. [Google Scholar]
- Matsumura, S.; Matsusue, A.; Waters, B.; Kashiwagi, M.; Hara, K.; Kubo, S. Application of mRNA Expression Analysis to Human Blood Identification in Degenerated Samples that were False-negative by Immunochromatography. J. Forensic Sci. 2016, 61, 903–912. [Google Scholar] [CrossRef]
- Hara, M.; Nakanishi, H.; Yoneyama, K.; Saito, K.; Takada, A. Effects of storage conditions on forensic examinations of blood samples and bloodstains stored for 20 years. Leg. Med. 2016, 18, 81–84. [Google Scholar] [CrossRef]
- Murahashi, M.; Makinodan, M.; Yui, M.; Hibi, T.; Kobayashi, M. Immunochromatographic detection of human hemoglobin from deteriorated bloodstains due to methamphetamine contamination, aging, and heating. Anal. Bioanal. Chem. 2020, 412, 5799–5809. [Google Scholar] [CrossRef]
- Kind, S.S.; Watson, M. The estimation of bloodstain age from the spectrophotometric properties of ammoniacal bloodstain extracts. J. Forensic Sci. 1973, 2, 325–332. [Google Scholar] [CrossRef]
- Borremans, B. Ammonium improves elution of fixed dried blood spots without affecting immunofluorescence assay quality. Trop. Med. Int. Health 2014, 19, 413–416. [Google Scholar] [CrossRef]
- Nakanishi, H.; Ohmori, T.; Yoneyama, K.; Hara, M.; Takada, A.; Saito, K. Bloodstain examination and DNA typing from hand-washed bloodstains on clothes. Leg. Med. 2020, 47, 101758. [Google Scholar] [CrossRef]
- Castelló, A.; Francès, F.; Verdú, F. An alternative to the human hemoglobin test in the investigation of bloodstains treated with active oxygen: The human glycophorin A test. Sci. World J. 2011, 11, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Holtkötter, H.; Dierig, L.; Schürenkamp, M.; Sibbing, U.; Pfeiffer, H.; Vennemann, M. Validation of an immunochromatographic D-dimer test to presumptively identify menstrual fluid in forensic exhibits. Int. J. Leg. Med. 2015, 129, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Holtkötter, H.; Dias Filho, C.R.; Schwender, K.; Stadler, C.; Vennemann, M.; Pacheco, A.C.; Roca, G. Forensic differentiation between peripheral and menstrual blood in cases of alleged sexual assault-validating an immunochromatographic multiplex assay for simultaneous detection of human hemoglobin and D-dimer. Int. J. Leg. Med. 2018, 132, 683–690. [Google Scholar] [CrossRef]
- Konrad, H.; Hartung, B.; Poetsch, M. (Un) Reliable detection of menstrual blood in forensic casework–evaluation of the Seratec® PMB test with mock samples. Int. J. Leg. Med. 2023; Epub ahead of print. [Google Scholar] [CrossRef]
- Graham, A.W. Body fluid identification: A case for more research and innovation. Forensic Sci. Int. Rep. 2020, 2, 100096. [Google Scholar] [CrossRef]
- Fiori, A.; Benciolini, P. The AB0 grouping of stains from body fluids. Z. Rechtsmed. 1972, 70, 214–222. [Google Scholar] [CrossRef]
- Anderson, N.L.; Anderson, N.G. The Human Plasma Proteome: History, Character, and Diagnostic Prospects. Mol. Cell. Proteom. 2002, 1, 845–867. [Google Scholar] [CrossRef]
- Wang, S.; Shanthan, G.; Bouzga, M.M.; Dinh, H.M.T.; Haas, C.; Fonneløp, A.E. Evaluating the Performance of Five Up-to-Date DNA/RNA Co-Extraction Methods for Forensic Application. Forensic Sci. Int. 2021, 328, 110996. [Google Scholar] [CrossRef]
- Kohlmeier, F.; Schneider, P.M. Successful mRNA Profiling of 23 Years Old Blood Stains. Forensic Sci. Int. Genet. 2012, 6, 274–276. [Google Scholar] [CrossRef]
- Salzmann, A.P.; Russo, G.; Aluri, S.; Haas, C. Transcription and Microbial Profiling of Body Fluids Using a Massively Parallel Sequencing Approach. Forensic Sci. Int. Genet. 2019, 43, 102149. [Google Scholar] [CrossRef]
- Park, J.L.; Park, S.M.; Kim, J.H.; Lee, H.C.; Lee, S.H.; Woo, K.M.; Kim, S.Y. Forensic Body Fluid Identification by Analysis of Multiple RNA Markers Using NanoString Technology. Genom. Inform. 2013, 11, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Satoh, T.; Kouroki, S.; Ogawa, K.; Tanaka, Y.; Matsumura, K.; Iwase, S. Development of MRNA-Based Body Fluid Identification Using Reverse Transcription Loop-Mediated Isothermal Amplification. Anal. Bioanal. Chem. 2018, 410, 4371–4378. [Google Scholar] [CrossRef]
- Lin, M.H.; Jones, D.F.; Fleming, R. Transcriptomic Analysis of Degraded Forensic Body Fluids. Forensic Sci. Int. Genet. 2015, 17, 35–42. [Google Scholar] [CrossRef]
- Fattorini, P.; Bonin, S.; Marrubini, G.; Bertoglio, B.; Grignani, P.; Recchia, E.; Pitacco, P.; Zupanic Pajnic, I.; Sorçaburu Ciglieri, S.; Previderè, C. Highly degraded RNA can still provide molecular information: An in vitro approach. Electrophoresis 2020, 41, 386–393. [Google Scholar] [CrossRef]
- Silva, S.S.; Lopes, C.; Teixeira, A.L.; Carneiro de Sousa, M.J.; Medeiros, R. Forensic miRNA: Potential biomarker for body fluids? Forensic Sci. Int. Genet. 2015, 14, 1–10. [Google Scholar] [CrossRef]
- Heaton, C.; Clement, S.; Kelly, P.F.; King, R.S.P.; Reynolds, J.C. Differentiation of Body Fluid Stains Using a Portable, Low-Cost Ion Mobility Spectrometry Device—A Pilot Study. Molecules 2023, 28, 6533. [Google Scholar] [CrossRef]
- Samie, L.; Champod, C.; Delémont, S.; Basset, P.; Hicks, T.; Castella, V. Use of Bayesian Networks for the investigation of the nature of biological material in casework. Forensic Sci. Int. 2022, 331, 111174. [Google Scholar] [CrossRef]
Kit | Target | Test | Ctrl | Ref. |
---|---|---|---|---|
1 | hHb | mono + poly | n.p. | [16,17,18,19,20,21,22,40,43] |
2 | hHb | mono + mono | n.p. | [23,24,25,26,27,28,29,30,31,32,38] |
3 | hHb | mono+ mono | anti-rabbit Ab * | [32,33,34,35] |
4 | Gly-A | mono + mono | anti-mouse Ab | [22,31,36,37,38,39,40] |
5 | hHb | mono + poly | n.p. | [23] |
6 | hHb | mono + poly | n.p. | [42] |
Kit | Buffer (Volume) | Incubation (Time) | Load (Volume) | LOD [hHb] | LOD (Blood) |
---|---|---|---|---|---|
1 | 0.3 mL | 1–5 min | 150 μL | 50 ng/mL | 0.3 nL |
2 | 1.7 mL | briefly | 80 μL | 100 ng/mL | 0.6 nL |
3 | 1.5 mL | Briefly ** | 100 μL | 40 ng/mL | 0.25 nL |
4 | 0.1–0.3 mL | 1–2 h | ≤20 μL | 12.5 µg/mL | 75 nL |
5 | n.p. | 5–20 min * | 120 μL | 50 ng/mL | 0.3 nL |
6 | 2.0 mL | 10 sec | 240 μL | 10 ng/mL | 0.06 nL |
Possible Cause | Molecular Reason | Suggested Action |
---|---|---|
hook effect | High Ag. concentration | Dilution of the extract |
Ageing | Ag. denaturation | - |
Ag. insolubility | Extraction with 5% ammonia | |
Chemicals/washing | Ag. washing out | - |
Ag. denaturation | - | |
Ag. insolubility | Extraction with 5% ammonia | |
High/low pH | Adjustment of the pH to 7 | |
Detergents (SDS) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuttaia, C.; Di Stefano, B.; Sorçaburu Ciglieri, S.; Vetrini, R.; Previderè, C.; Fattorini, P. Immunochromatographic Detection of Human Blood: A Forensic Review. Separations 2024, 11, 66. https://doi.org/10.3390/separations11030066
Cuttaia C, Di Stefano B, Sorçaburu Ciglieri S, Vetrini R, Previderè C, Fattorini P. Immunochromatographic Detection of Human Blood: A Forensic Review. Separations. 2024; 11(3):66. https://doi.org/10.3390/separations11030066
Chicago/Turabian StyleCuttaia, Calogero, Barbara Di Stefano, Solange Sorçaburu Ciglieri, Raffaella Vetrini, Carlo Previderè, and Paolo Fattorini. 2024. "Immunochromatographic Detection of Human Blood: A Forensic Review" Separations 11, no. 3: 66. https://doi.org/10.3390/separations11030066
APA StyleCuttaia, C., Di Stefano, B., Sorçaburu Ciglieri, S., Vetrini, R., Previderè, C., & Fattorini, P. (2024). Immunochromatographic Detection of Human Blood: A Forensic Review. Separations, 11(3), 66. https://doi.org/10.3390/separations11030066