Structural Characterization and Immunological Activity of Polysaccharide Degradation Products from Phlebopus portentosus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Crude Polysaccharides
2.3. Purification of Crude Polysaccharides
2.4. Degradation of Crude Polysaccharides
2.5. Preparation of PPRP
2.6. Analysis of Structure Characterization of PPRP
2.6.1. Determination of Molecular Weight Distribution
2.6.2. Determination of Monosaccharide Composition
2.6.3. Fourier Transform Infrared (FTIR) Spectroscopy Analysis
2.6.4. Nuclear Magnetic Resonance (NMR) Spectroscopy Analysis
2.7. Immune Activity Analysis
2.7.1. Nonspecific Immune Responses
2.7.2. Specific Immune Responses
2.8. Statistical Analysis
3. Results
3.1. Extraction and Purification of Crude Polysaccharides from P. portentosus
3.2. Preparation of PPRP
3.3. Structural Characterization of PPRP
3.3.1. Molecular Weight
3.3.2. Monosaccharide Composition
3.3.3. FT−IR Spectrum
3.3.4. NMR Spectrum
3.4. Immune Response
3.4.1. Effects of PPRP on Nonspecific Immune Response
3.4.2. Effects of Refined Polysaccharide on Specific Immune Response
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Rizzo, G.; Goggi, S.; Giampieri, F.; Baroni, L. A review of mushrooms in human nutrition and health. Trends Food Sci. Technol. 2021, 117, 60–73. [Google Scholar] [CrossRef]
- Wang, X.-M.; Zhang, J.; Wu, L.-H.; Zhao, Y.-L.; Li, T.; Li, J.-Q.; Wang, Y.-Z.; Liu, H.-G. A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chem. 2014, 151, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Perera, C.; Hemar, Y. Antitumor activity of mushroom polysaccharides: A review. Food Funct. 2012, 3, 1118–1130. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Meng, W.; Li, L.; Meng, Z.; Wang, D. Adjuvant therapy with mushroom polysaccharides for diabetic complications. Front. Pharmacol. 2020, 11, 168. [Google Scholar] [CrossRef] [PubMed]
- Zaki, A.H.; Zahid, M.T.; Haiying, B. Bioactive Compounds of the Culinary-Medicinal Mushroom Leucocalocybe mongolica (Agaricomycetes): Pharmacological and Therapeutic Applications—A Review. Int. J. Med. Mushrooms 2022, 24, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Arunachalam, K.; Sreeja, P.S.; Yang, X. The antioxidant properties of mushroom polysaccharides can potentially mitigate oxidative stress, beta-cell dysfunction and insulin resistance. Front. Pharmacol. 2022, 13, 874474. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; He, M.; Liu, J.; Xu, X.; Cao, Y.; Gao, F.; Fang, Y.; Wang, W.; Wang, Y. Brief introduction to a unique edible Bolete-Phlebopus portentosus in Southern China. J. Agric. Sci. Technol. 2017, 7, 386–394. [Google Scholar]
- Wang, L.; Li, J.; Li, T.; Liu, H.; Wang, Y. Method Superior to Traditional Spectral Identification: FT-NIR Two-Dimensional Correlation Spectroscopy Combined with Deep Learning to Identify the Shelf Life of Fresh Phlebopus portentosus. ACS Omega 2021, 6, 19665–19674. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Hu, M.; Sun, Z.; Zhu, N.; Yang, J.; Ma, G.; Xu, X. Pyrrole alkaloids from the edible mushroom Phlebopus portentosus with their bioactive activities. Molecules 2018, 23, 1198. [Google Scholar] [CrossRef] [PubMed]
- Kumla, J.; Suwannarach, N.; Tanruean, K.; Lumyong, S. Comparative evaluation of chemical composition, phenolic compounds, and antioxidant and antimicrobial activities of tropical Black Bolete mushroom using different preservation methods. Foods 2021, 10, 781. [Google Scholar] [CrossRef] [PubMed]
- Kaewnarin, K.; Suwannarach, N.; Kumla, J.; Choonpicharn, S.; Tanreuan, K.; Lumyong, S. Characterization of polysaccharides from wild edible mushrooms from Thailand and their antioxidant, antidiabetic, and antihypertensive activities. Int. J. Med. Mushrooms 2020, 22, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-F.; Pan, Z.-C.; Chen, J.-M.; Zeng, L.-X.; Xie, H.-J.; Liang, Z.-Q.; Wang, Y.; Zeng, N.-K. Green synthesis of silver nanoparticles using Phlebopus portentosus polysaccharide and their antioxidant, antidiabetic, anticancer, and antimicrobial activities. Int. J. Biol. Macromol. 2024, 254, 127579. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, L.; Jin, X.; Li, Z.; Wang, C.; Teng, L.; Li, Y.; Zhang, Y.; Wang, D. Structure characterisation of polysaccharides purified from Boletus aereus Bull. and its improvement on AD-like behaviours via reliving neuroinflammation in APP/PS1 mice. Int. J. Biol. Macromol. 2024, 258, 128819. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, L.; Zhou, Y. Immunomodulation and antitumor activities of different-molecular-weight polysaccharides from Porphyridium cruentum. Carbohydr. Polym. 2012, 87, 1206–1210. [Google Scholar] [CrossRef]
- Li, X.; Yu, L.; Xie, Y.; Li, C.; Fang, Z.; Hu, B.; Wang, C.; Chen, S.; Wu, W.; Li, X.; et al. Effect of different cooking methods on the nutrient, and subsequent bioaccessibility and biological activities in Boletus auripes. Food Chem. 2023, 405, 134358. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Sun, S.-Q.; Wu, W.-Z.; Yang, S.-L.; Tan, J.-M. Characterization of a water-soluble polysaccharide from Boletus edulis and its antitumor and immunomodulatory activities on renal cancer in mice. Carbohydr. Polym. 2014, 105, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Ding, X.; Hou, Y.; Liu, B.; Du, Z.; Liu, J. Structure elucidation, immunomodulatory activity, antitumor activity and its molecular mechanism of a novel polysaccharide from Boletus reticulatus Schaeff. Food Sci. Hum. Wellness 2023, 12, 647–661. [Google Scholar] [CrossRef]
- Zheng, T.; Gu, D.; Wang, X.; Shen, X.; Yan, L.; Zhang, W.; Pu, Y.; Ge, C.; Fan, J. Purification, characterization and immunomodulatory activity of polysaccharides from Leccinum crocipodium (Letellier.) Watliag. Int. J. Biol. Macromol. 2020, 148, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Kakar, M.U.; Naveed, M.; Saeed, M.; Zhao, S.; Rasheed, M.; Firdoos, S.; Manzoor, R.; Deng, Y.; Dai, R. A review on structure, extraction, and biological activities of polysaccharides isolated from Cyclocarya paliurus (Batalin) Iljinskaja. Int. J. Biol. Macromol. 2020, 156, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Tan, J.; Nima, L.; Sang, Y.; Cai, X.; Xue, H. Polysaccharides from fungi: A review on their extraction, purification, structural features, and biological activities. Food Chem. X 2022, 15, 100414. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Tang, W.; Yin, J.-Y.; Nie, S.-P.; Xie, M.-Y. Monosaccharide composition analysis of polysaccharides from natural sources: Hydrolysis condition and detection method development. Food Hydrocoll. 2021, 116, 106641. [Google Scholar] [CrossRef]
- Wang, J.; Nie, S.; Cui, S.; Wang, Z.; Phillips, A.O.; Phillips, G.O.; Li, Y.; Xie, M. Structural characterization and immunostimulatory activity of a glucan from natural Cordyceps sinensis. Food Hydrocoll. 2017, 67, 139–147. [Google Scholar] [CrossRef]
- Gu, B.; You, J.; Li, Y.; Duan, C.; Fang, M. Enteric-coated garlic supplement markedly enhanced normal mice immunocompetence. Eur. Food Res. Technol. 2010, 230, 627–634. [Google Scholar] [CrossRef]
- Cai, G.; Wu, C.; Zhu, T.; Peng, S.; Xu, S.; Hu, Y.; Liu, Z.; Yang, Y.; Wang, D. Structure of a Pueraria root polysaccharide and its immunoregulatory activity on T and B lymphocytes, macrophages, and immunosuppressive mice. Int. J. Biol. Macromol. 2023, 230, 123386. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zhang, T.; Fan, J.; Zhuang, Y.; Sun, L. Protective effects of a polysaccharide from Boletus aereus on S180 tumor-bearing mice and its structural characteristics. Ind. Crops Prod. 2021, 188, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Tang, Z.; Zhang, X.; Zhong, Y.H.; Yao, S.Z.; Wang, L.S.; Lin, C.W.; Luo, X. Chemical properties and antioxidant activity of a water-soluble polysaccharide from Dendrobium officinale. Int. J. Biol. Macromol. 2016, 89, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Niu, X.; Liu, N.; Gao, Y.; Wang, L.; Xu, G.; Li, X.; Yang, Y. Characterization, antioxidant and hypoglycemic activities of degraded polysaccharides from blackcurrant (Ribes nigrum L.) fruits. Food Chem. 2018, 243, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Wei, W.; Wang, W.; Zha, Z.; Li, T.; Zhang, Z.; Luo, C.; Yin, H.; Huang, F.; Wang, Y. Effects of cultured Cordyceps mycelia polysaccharide A on tumor neurosis factor-α induced hepatocyte injury with mitochondrial abnormality. Carbohydr. Polym. 2017, 163, 43–53. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Huang, S.; Xu, G.; Jiang, P.; Huang, L.; Sun, C.; Jin, J.; Chen, C. Structural characteristics and immunomodulation activity of a polysaccharide from purslane (Portulaca oleracea). J. Funct. Foods 2023, 109, 105781. [Google Scholar] [CrossRef]
- Zhu, H.; Ding, X.; Hou, Y.; Li, Y.; Wang, M. Structure elucidation and bioactivities of a new polysaccharide from Xiaojin Boletus speciosus Frost. Int. J. Biol. Macromol. 2019, 126, 697–716. [Google Scholar] [CrossRef] [PubMed]
Factor | A | B | C | D | E | F | G | H | I |
---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | 60 | 60 | 60 | 70 | 70 | 70 | 80 | 80 | 80 |
Acid concentration (M) | 0.5 | 1 | 2 | 0.5 | 1 | 2 | 2 | 1 | 0.5 |
Time (h) | 1 | 2 | 3 | 2 | 3 | 1 | 2 | 1 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, D.; Cai, X.; Wang, S.; Li, Y.; Du, Y.; Wang, Z.A.; Jiao, S.; Yang, Z. Structural Characterization and Immunological Activity of Polysaccharide Degradation Products from Phlebopus portentosus. Separations 2024, 11, 105. https://doi.org/10.3390/separations11040105
Yu D, Cai X, Wang S, Li Y, Du Y, Wang ZA, Jiao S, Yang Z. Structural Characterization and Immunological Activity of Polysaccharide Degradation Products from Phlebopus portentosus. Separations. 2024; 11(4):105. https://doi.org/10.3390/separations11040105
Chicago/Turabian StyleYu, Dan, Xiaoming Cai, Shuo Wang, Yi Li, Yuguang Du, Zhuo A. Wang, Siming Jiao, and Zhenquan Yang. 2024. "Structural Characterization and Immunological Activity of Polysaccharide Degradation Products from Phlebopus portentosus" Separations 11, no. 4: 105. https://doi.org/10.3390/separations11040105
APA StyleYu, D., Cai, X., Wang, S., Li, Y., Du, Y., Wang, Z. A., Jiao, S., & Yang, Z. (2024). Structural Characterization and Immunological Activity of Polysaccharide Degradation Products from Phlebopus portentosus. Separations, 11(4), 105. https://doi.org/10.3390/separations11040105