Flotation Separation of Cassiterite from Calcite Using Low-Molecular-Weight Citrus Pectin as Depressant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mineral Preparation and Experimental Process
2.2. Extraction and Detection of Citrus Pectin
2.3. Interaction Measurements
3. Results and Discussion
3.1. Characterization of Citrus Pectin
3.2. Micro-Flotation Experiment
3.3. Zeta Potential Result
3.4. Contact Angle Result
3.5. Adsorption Experiment
3.6. FTIR Result
3.7. XPS Result
3.8. AFM Result
4. Conclusions
- During the analysis of the surface wettability of cassiterite and calcite, the surface of cassiterite became hydrophobic after being treated with citrus pectin and NaOL, while the surface of calcite became hydrophilic after the same treatment. The difference in surface wettability between cassiterite and calcite was the prerequisite for separation.
- The analysis of the zeta potential of cassiterite and calcite showed that NaOL cannot be adsorbed on the surface of calcite treated with citrus pectin.
- The results of FTIR and XPS analysis on the surface of cassiterite and calcite showed that the chemical reaction between citrus pectin and calcite forms a Ca–COOR bond on the surface of calcite, while the interaction between citrus pectin and cassiterite was physical adsorption.
- The difference between citrus pectin with cassiterite and calcite can also be seen from the static adsorption and adsorption morphology. The citrus pectin was dispersed on cassiterite, while the adsorption capacity on calcite was dense and concentrated.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, M.; Liu, R.; Gao, Z.; Chen, P.; Han, H.; Wang, L.; Zhang, C.; Sun, W.; Hu, Y. Activation mechanism of Fe (III) ions in cassiterite flotation with benzohydroxamic acid collector. Miner. Eng. 2018, 119, 31–37. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Zhu, Y.; Li, Y. Selective adsorption of Na2ATP as an eco-friendly depressant on the calcite surface for effective flotation separation of cassiterite from calcite. Colloids Surf. A Physicochem. Eng. Asp. 2021, 625, 126899. [Google Scholar] [CrossRef]
- Cao, Y.; Sun, L.; Gao, Z.; Sun, W.; Cao, X. Activation mechanism of zinc ions in cassiterite flotation with benzohydroxamic acid as a collector. Miner. Eng. 2020, 156, 106523. [Google Scholar] [CrossRef]
- Tian, M.; Gao, Z.; Han, H.; Sun, W.; Hu, Y. Improved flotation separation of cassiterite from calcite using a mixture of lead (II) ion/benzohydroxamic acid as collector and carboxymethyl cellulose as depressant. Miner. Eng. 2017, 113, 68–70. [Google Scholar] [CrossRef]
- Angadi, S.I.; Sreenivas, T.; Jeon, H.-S.; Baek, S.-H.; Mishra, B.K. A review of cassiterite beneficiation fundamentals and plant practices. Miner. Eng. 2015, 70, 178–200. [Google Scholar] [CrossRef]
- Leistner, T.; Embrechts, M.; Leißner, T.; Chehreh Chelgani, S.; Osbahr, I.; Möckel, R.; Peuker, U.A.; Rudolph, M. A study of the reprocessing of fine and ultrafine cassiterite from gravity tailing residues by using various flotation techniques. Miner. Eng. 2016, 96–97, 94–98. [Google Scholar] [CrossRef]
- Li, F.; Zhong, H.; Zhao, G.; Wang, S.; Liu, G. Flotation performances and adsorption mechanism of α-hydroxyoctyl phosphinic acid to cassiterite. Appl. Surf. Sci. 2015, 353, 856–864. [Google Scholar] [CrossRef]
- Wei, Q.; Dong, L.; Jiao, F.; Qin, W. Use of citric acid and Fe(III) mixture as depressant in calcite flotation. Colloids Surf. A Physicochem. Eng. Asp. 2019, 578, 123579. [Google Scholar] [CrossRef]
- Hanxu, Y.; Xiong, T.; Xian, X.; Zhonghao, H.; Yunpeng, D. Reasearch review of cassitrite flotation. Nonferrous Met. Sci. Eng. 2020, 11, 85–91. [Google Scholar]
- Liu, J.; Kong, D.; Xie, R.; Li, Y.; Zhu, Y.; Liu, C. Flotation behavior and mechanism of hydroxycitric acid as a depressant on the flotation separation of cassiterite from calcite. Miner. Eng. 2021, 170, 107046. [Google Scholar] [CrossRef]
- Yang, L.; Xiong, T.; Jinfang, L.; Xian, X.; Peiqiang, F. Research progress on mechanism of agents in flotation separation of cassiterite. Acta Mineral. Sin. 2023, 43, 1–14. [Google Scholar]
- Lin, S.; Liu, R.; Wu, M.; Hu, Y.; Sun, W.; Shi, Z.; Han, H.; Li, W. Minimizing beneficiation wastewater through internal reuse of process water in flotation circuit. J. Clean. Prod. 2020, 245, 118898. [Google Scholar] [CrossRef]
- Dong, L.; Wei, Q.; Jiao, F.; Qin, W. Utilization of polyepoxysuccinic acid as the green selective depressant for the clean flotation of phosphate ores. J. Clean. Prod. 2021, 282, 124532. [Google Scholar] [CrossRef]
- Millan-Linares, M.C.; Montserrat-de la Paz, S.; Martin, M.E. Pectins and olive pectins: From biotechnology to human health. Biology 2021, 10, 860. [Google Scholar] [CrossRef]
- Zainudin, B.H.; Wong, T.W.; Hamdan, H. Design of low molecular weight pectin and its nanoparticles through combination treatment of pectin by microwave and inorganic salts. Polym. Degrad. Stab. 2018, 147, 35–40. [Google Scholar] [CrossRef]
- Chen, J.; Liang, R.-H.; Liu, W.; Liu, C.-M.; Li, T.; Tu, Z.-C.; Wan, J. Degradation of high-methoxyl pectin by dynamic high pressure microfluidization and its mechanism. Food Hydrocoll. 2012, 28, 121–129. [Google Scholar] [CrossRef]
- Chandel, V.; Biswas, D.; Roy, S.; Vaidya, D.; Verma, A.; Gupta, A. Current Advancements in Pectin: Extraction, Properties and Multifunctional Applications. Foods 2022, 11, 2683. [Google Scholar] [CrossRef] [PubMed]
- Jiao, F.; Dong, L.; Qin, W.; Liu, W.; Hu, C. Flotation separation of scheelite from calcite using pectin as depressant. Miner. Eng. 2019, 136, 120–128. [Google Scholar] [CrossRef]
- Wang, C.; Liu, R.; Wu, M.; Zhai, Q.; Sun, W.; Jing, N.; Xie, F. Induced adsorption of pectin on copper-ion-modified galena surfaces: Flotation and adsorption mechanism. Miner. Eng. 2021, 173, 107229. [Google Scholar] [CrossRef]
- Zhi, Z.; Chen, J.; Li, S.; Wang, W.; Huang, R.; Liu, D.; Ding, T.; Linhardt, R.J.; Chen, S.; Ye, X. Fast preparation of RG-I enriched ultra-low molecular weight pectin by an ultrasound accelerated Fenton process. Sci. Rep. 2017, 7, 541. [Google Scholar] [CrossRef]
- Linhua, H.; Houjiu, W.; Yaqin, M.; Hua, W.; Zhigao, S. Progress in pectic oligosaccharides. Food Sci. 2015, 36, 277–281. [Google Scholar]
- Zhao, S.; Gao, W.; Tian, G.; Zhao, C.; DiMarco-Crook, C.; Fan, B.; Li, C.; Xiao, H.; Lian, Y.; Zheng, J. Citrus Oil Emulsions Stabilized by Citrus Pectin: The Influence Mechanism of Citrus Variety and Acid Treatment. J. Agric. Food Chem. 2018, 66, 12978–12988. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, R.; Xie, F.; Zhai, Q.; Sun, W.; Wen, X.; Li, J. Separation of sphalerite and dolomite using sodium alginate as an environmentally friendly depressant in a carbonate-hosted Pb-Zn ore system. J. Clean. Prod. 2022, 380, 135107. [Google Scholar] [CrossRef]
- Tian, F.; Li, P.; Cao, Y.; Hao, H.; Peng, W.; Fan, G. Selective depression of low-molecular-weight carboxylated starch in flotation separation of forsterite and ilmenite. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129080. [Google Scholar] [CrossRef]
- Lin, S.; Liu, R.; Hu, Y.; Sun, W.; Shi, Z.; Han, H.; Li, W. Optimize flotation process of Mo–Bi sulfide ore for cleaner production. J. Clean. Prod. 2021, 291, 125236. [Google Scholar] [CrossRef]
- Zhang, C.; Li, P.; Cao, Y.; Hao, H.; Peng, W.; Teng, D.; Fan, G. Synthesis of sodium oleate hydroxamate and its application as a novel flotation collector on the ilmenite-forsterite separation. Sep. Purif. Technol. 2022, 284, 120283. [Google Scholar] [CrossRef]
- XinXia, Y. The Study on Extraction, Purification of Pectin and Gelling Properties of Different Molecular Weight Pectin from Apple Pomace. Ph.D. Thesis, Shaanxi Normal University, Xi’an, China, 2008. (In Chinese). [Google Scholar]
- You, X.-X.; Qiu, N.-X. Study on pectin content in apple pomace by Carbazole Spectrophotometric Determination method. Sichuan Food Ferment. 2007, 43, 19–22. [Google Scholar]
- Cui, S.W.; Phillips, G.O.; Blackwell, B.; Nikiforuk, J. Characterisation and properties of Acacia senegal (L.) Willd. var. senegal with enhanced properties (Acacia (sen) SUPERGUM™): Part 4. Spectroscopic characterisation of Acacia senegal var. senegal and Acacia (sen) SUPERGUM™ arabic. Food Hydrocoll. 2007, 21, 347–352. [Google Scholar] [CrossRef]
- Monsoor, M.A. Effect of drying methods on the functional properties of soy hull pectin. Carbohydr. Polym. 2005, 61, 362–367. [Google Scholar] [CrossRef]
- Pagarra, H.; Hartati, H.; Purnamasari, A.B.; Muhammad, N. Characterization and qualitative analysis of pectin from kepok banana peels. AIP Conf. Proc. 2020, 2291, 020044. [Google Scholar]
- Grassino, A.N.; Brncic, M.; Vikic-Topic, D.; Roca, S.; Dent, M.; Brncic, S.R. Ultrasound assisted extraction and characterization of pectin from tomato waste. Food Chem. 2016, 198, 93–100. [Google Scholar] [CrossRef]
- Martińez, A.L.; Uribe, A.S. Interfacial properties of celestite and strontianite in aqueous solutions. Miner. Eng. 1995, 8, 1009–1022. [Google Scholar] [CrossRef]
- Chen, W.; Feng, Q.; Zhang, G.; Yang, Q.; Zhang, C. The effect of sodium alginate on the flotation separation of scheelite from calcite and fluorite. Miner. Eng. 2017, 113, 1–7. [Google Scholar] [CrossRef]
- Ren, L.; Qiu, H.; Qin, W.; Zhang, M.; Li, Y.; Wei, P. Inhibition mechanism of Ca2+, Mg2+ and Fe3+ in fine cassiterite flotation using octanohydroxamic acid. R. Soc. Open Sci. 2018, 5, 180158. [Google Scholar] [CrossRef]
- Wu, X.Q.; Zhu, J.G. Selective flotation of cassiterite with benzohydroxamic acid. Miner. Eng. 2006, 19, 1410–1417. [Google Scholar] [CrossRef]
- Chen, W.; Feng, Q.; Zhang, G.; Yang, Q. Investigations on flotation separation of scheelite from calcite by using a novel depressant: Sodium phytate. Miner. Eng. 2018, 126, 116–122. [Google Scholar] [CrossRef]
- Cui, Y.; Jiao, F.; Wei, Q.; Wang, X.; Dong, L. Flotation separation of fluorite from calcite using sulfonated lignite as depressant. Sep. Purif. Technol. 2020, 242, 116698. [Google Scholar] [CrossRef]
- Dong, L.; Jiao, F.; Qin, W.; Liu, W. Selective flotation of scheelite from calcite using xanthan gum as depressant. Miner. Eng. 2019, 138, 14–23. [Google Scholar] [CrossRef]
- Feng, Q.; Wen, S.; Zhao, W.; Chen, Y. Effect of calcium ions on adsorption of sodium oleate onto cassiterite and quartz surfaces and implications for their flotation separation. Sep. Purif. Technol. 2018, 200, 300–306. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, C.; Li, Y.; Li, P.; Che, X.; Li, G.; Zhang, F.; Peng, W.; Wu, B.; Fan, G. Flotation Separation of Cassiterite from Calcite Using Low-Molecular-Weight Citrus Pectin as Depressant. Separations 2024, 11, 95. https://doi.org/10.3390/separations11040095
Yao C, Li Y, Li P, Che X, Li G, Zhang F, Peng W, Wu B, Fan G. Flotation Separation of Cassiterite from Calcite Using Low-Molecular-Weight Citrus Pectin as Depressant. Separations. 2024; 11(4):95. https://doi.org/10.3390/separations11040095
Chicago/Turabian StyleYao, Chenyang, Yachao Li, Peng Li, Xiaokui Che, Guosheng Li, Fanfan Zhang, Weijun Peng, Bozeng Wu, and Guixia Fan. 2024. "Flotation Separation of Cassiterite from Calcite Using Low-Molecular-Weight Citrus Pectin as Depressant" Separations 11, no. 4: 95. https://doi.org/10.3390/separations11040095
APA StyleYao, C., Li, Y., Li, P., Che, X., Li, G., Zhang, F., Peng, W., Wu, B., & Fan, G. (2024). Flotation Separation of Cassiterite from Calcite Using Low-Molecular-Weight Citrus Pectin as Depressant. Separations, 11(4), 95. https://doi.org/10.3390/separations11040095