Multiplex Detection of Seven Staphylococcal Enterotoxins Using Liquid Chromatography–Mass Spectrometry Combined with a Novel Capture Molecule
Abstract
:1. Introduction
2. Materials and Methods
2.1. Safety Precautions
2.2. Chemicals and Reagents
2.3. Protein Sequence Information
2.4. Screening of Specific Marker Peptides for Staphylococcal aureus Enterotoxin
2.5. Induced Expression and Purification of the Target Protein
2.6. Optimization of Trypsin Digestion Conditions
2.7. The Ability of Recombinant Antibodies to Bind to Toxins
2.8. SEs Extraction from Complex Matrices
2.9. Multiplex Immunocapture of SEs
2.10. Liquid Chromatography–Mass Spectrometry Analysis
2.11. Method Evaluation
2.11.1. Specificity
2.11.2. Linearity Range and Sensitivity
2.11.3. Immunocapture Recovery and Precision (RSD)
3. Results and Discussion
3.1. Sequence Characterization of Toxin Standards and Selection of Proteotypic Peptides
3.2. Optimization of Digestion Conditions
3.3. The Ability of Capture Molecules to Bind Toxins
3.4. UPLC-MS/MS (MRM) Method Development
3.5. Method Validation
3.5.1. Specificity
3.5.2. Linearity Range and Sensitivity
3.5.3. Immunocapture Recovery and Precision (RSD)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balaban, N.; Rasooly, A. Staphylococcal enterotoxins. J. Food Microbiol. 2000, 61, 1–10. [Google Scholar] [CrossRef]
- Attien, P.; Sina, H.; Moussaoui, W.; Zimmermann-Meisse, G.; Dadié, T.; Keller, D.; Riegel, P.; Edoh, V.; Kotchoni, S.O.; Djè, M.; et al. Mass spectrometry and multiplex antigen assays to assess microbial quality and toxin production of Staphylococcus aureus strains isolated from clinical and food samples. BioMed Res. Int. 2014, 2014, 485620. [Google Scholar] [CrossRef] [PubMed]
- Kadariya, J.; Smith, T.C.; Thapaliya, D. Staphylococcus aureus and staphylococcal food-borne disease: An ongoing challenge in public health. BioMed Res. Int. 2014, 2014, 827965. [Google Scholar] [CrossRef] [PubMed]
- Bao, K.D.; Letellier, A.; Beaudry, F. Analysis of Staphylococcus enterotoxin B using differential isotopic tags and liquid chromatography quadrupole ion trap mass spectrometry. Biomed. Chromatogr. BMC 2012, 26, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, D.; Blanco-Valle, K.; Hennekinne, J.A.; Simon, S.; Fenaille, F.; Becher, F.; Nia, Y. Multiplex Detection of 24 Staphylococcal Enterotoxins in Culture Supernatant Using Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Toxins 2022, 14, 249. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, D.; Blanco-Valle, K.; Feraudet-Tarisse, C.; Merda, D.; Simon, S.; Fenaille, F.; Hennekinne, J.A.; Nia, Y.; Becher, F. Quantitative Determination of Staphylococcus aureus Enterotoxins Types A to I and Variants in Dairy Food Products by Multiplex Immuno-LC-MS/MS. J. Agric. Food Chem. 2021, 69, 2603–2610. [Google Scholar] [CrossRef] [PubMed]
- Tonacini, J.; Stephan, D.; Vogel, G.; Avondet, M.A.; Kalman, F.; Crovadore, J.; Lefort, F.; Schnyder, B. Intact Staphylococcus Enterotoxin SEB from Culture Supernatant Detected by MALDI-TOF Mass Spectrometry. Toxins 2019, 11, 101. [Google Scholar] [CrossRef] [PubMed]
- Nia, Y.; Rodriguez, M.; Zeleny, R.; Herbin, S.; Auvray, F.; Fiebig, U.; Avondet, M.A.; Munoz, A.; Hennekinne, J.A. Organization and ELISA-Based Results of the First Proficiency Testing to Evaluate the Ability of European Union Laboratories to Detect Staphylococcal Enterotoxin Type B (SEB) in Buffer and Milk. Toxins 2016, 8, 268. [Google Scholar] [CrossRef] [PubMed]
- Picard, G.; Lebert, D.; Louwagie, M.; Adrait, A.; Huillet, C.; Vandenesch, F.; Bruley, C.; Garin, J.; Jaquinod, M.; Brun, V. PSAQ™ standards for accurate MS-based quantification of proteins: From the concept to biomedical applications. J. Mass Spectrom. JMS 2012, 47, 1353–1363. [Google Scholar] [CrossRef]
- Dupré, M.; Gilquin, B.; Fenaille, F.; Feraudet-Tarisse, C.; Dano, J.; Ferro, M.; Simon, S.; Junot, C.; Brun, V.; Becher, F. Multiplex quantification of protein toxins in human biofluids and food matrices using immunoextraction and high-resolution targeted mass spectrometry. Anal. Chem. 2015, 87, 8473–8480. [Google Scholar] [CrossRef]
- Deacy, A.M.; Gan, S.K.; Derrick, J.P. Superantigen Recognition and Interactions: Functions, Mechanisms and Applications. Front. Immunol. 2021, 12, 731845. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Wang, N.; Kranz, D.M. Soluble T cell receptor Vβ domains engineered for high-affinity binding to staphylococcal or streptococcal superantigens. Toxins 2014, 6, 556–574. [Google Scholar] [CrossRef] [PubMed]
- Rödström, K.E.; Elbing, K.; Lindkvist-Petersson, K. Structure of the Superantigen Staphylococcal Enterotoxin B in Complex with TCR and Peptide–MHC Demonstrates Absence of TCR–Peptide Contacts. J. Immunol. 2014, 193, 1998–2004. [Google Scholar] [CrossRef] [PubMed]
- Buonpane, R.A.; Moza, B.; Sundberg, E.J.; Kranz, D.M. Characterization of T cell receptors engineered for high affinity against toxic shock syndrome toxin-1. J. Mol. Biol. 2005, 353, 308–321. [Google Scholar] [CrossRef] [PubMed]
- Mattis, D.M.; Spaulding, A.R.; Chuang-Smith, O.N.; Sundberg, E.J.; Schlievert, P.M.; Kranz, D.M. Engineering a soluble high-affinity receptor domain that neutralizes staphylococcal enterotoxin C in rabbit models of disease. Protein Eng. Des. Sel. 2013, 26, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Koike, H.; Kanda, M.; Hayashi, H.; Matsushima, Y.; Ohba, Y.; Nakagawa, Y.; Nagano, C.; Sekimura, K.; Hirai, A.; Shindo, T.; et al. Quantification of staphylococcal enterotoxin type A in cow milk by using a stable isotope-labelled peptide via liquid chromatography–tandem mass spectrometry. Food Addit. Contam. Part A 2019, 36, 1098–1108. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.H.; Yang, Y.; Geng, S.; Cheng, X.; Yu, H.L.; Liu, C.C.; Liu, S.L. Rapid Differential Detection of Abrin Isoforms by an Acetonitrile- and Ultrasound-Assisted On-Bead Trypsin Digestion Coupled with LC-MS/MS Analysis. Toxins 2021, 13, 358. [Google Scholar] [CrossRef] [PubMed]
- Oyler, J.M.; Tran, B.Q.; Kilgour, D.P. Rapid Denaturing Organic Digestion Method for Targeted Protein Identification and Characterization. Anal. Chem. 2021, 93, 5046–5053. [Google Scholar] [CrossRef] [PubMed]
- Ostin, A.; Bergström, T.; Fredriksson, S.A.; Nilsson, C. Solvent-assisted trypsin digestion of ricin for forensic identification by LC-ESI MS/MS. Anal. Chem. 2007, 79, 6271–6278. [Google Scholar] [CrossRef]
- Brown, K.A.; Chen, B.; Guardado-Alvarez, T.M.; Lin, Z.; Hwang, L.; Ayaz-Guner, S.; Jin, S.; Ge, Y. A photocleavable surfactant for top-down proteomics. Nat. Methods 2019, 16, 417–420. [Google Scholar] [CrossRef]
- Vesper, H.W.; Mi, L.; Enada, A.; Myers, G.L. Assessment of microwave-assisted enzymatic digestion by measuring glycated hemoglobin A1c by mass spectrometry. Rapid Commun. Mass Spectrom. RCM 2005, 19, 2865–2870. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.M.; Hsu, W.Y.; Hu, J.F.; Ho, Y.P. Digestion Completeness of Microwave-Assisted and Conventional Trypsin-Catalyzed Reactions. J. Am. Soc. Mass Spectrom. 2010, 21, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Taverna, D.; Norris, J.L.; Caprioli, R.M. Histology-directed microwave assisted enzymatic protein digestion for MALDI MS analysis of mammalian tissue. Anal. Chem. 2015, 87, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Lee, D.; Kim, J. Effects of incubation temperature and acetonitrile amount on microwave-assisted tryptic digestion of proteins. Anal. Biochem. 2019, 569, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Hansbauer, E.M.; Worbs, S.; Volland, H.; Simon, S.; Junot, C.; Fenaille, F.; Dorner, B.G.; Becher, F. Rapid Detection of Abrin Toxin and Its Isoforms in Complex Matrices by Immuno-Extraction and Quantitative High Resolution Targeted Mass Spectrometry. Anal. Chem. 2017, 89, 11719–11727. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Ferrer, D.; Petritis, K.; Robinson, E.W.; Hixson, K.K.; Tian, Z.; Lee, J.H.; Lee, S.W.; Tolic, N.; Weitz, K.K.; Belov, M.E.J.M.; et al. Pressurized pepsin digestion in proteomics: An automatable alternative to trypsin for integrated top-down bottom-up proteomics. Mol. Cell. Proteom. 2011, 10, S1–S11. [Google Scholar] [CrossRef] [PubMed]
- LoPez-Ferrer, D.; Petritis, K.; Hixson, K.K.; Heibeck, T.H.; Moore, R.J.; Belov, M.E.; Camp, D.G.; Smith, R.D. Application of Pressurized Solvents for Ultrafast Trypsin Hydrolysis in Proteomics: Proteomics on the Fly. J. Proteome Res. 2008, 7, 3276–3281. [Google Scholar] [CrossRef] [PubMed]
- Finehout, E.J.; Cantor, J.R.; Lee, K.H. Kinetic characterization of sequencing grade modified trypsin. Proteomics 2005, 5, 2319. [Google Scholar] [CrossRef]
- Francis, D.M.; Page, R. Strategies to optimize protein expression in E. coli. Curr. Protoc. Protein Sci. 2010, 61, 5–24. [Google Scholar] [CrossRef]
Capture Molecules | Protein | KD (M) | Kon (1/Ms) | Kdis (1/s) | R2 | X2 |
---|---|---|---|---|---|---|
MHCII | SEA | 3.47 × 10−8 | 5.60 × 104 | 1.94 × 10−3 | 0.9853 | 0.2332 |
MHCII | SEB | 3.34 × 10−9 | 3.39 × 105 | 1.13 × 10−3 | 0.9646 | 1.5755 |
MHCII | SEC | 9.47 × 10−9 | 2.53 × 105 | 2.40 × 10−3 | 0.9951 | 1.0342 |
MHCII | SED | 1.0 × 10−12 | 3.40 × 104 | 1.0 × 10−7 | 0.993 | 3.4625 |
MHCII | SEE | 1.43 × 10−8 | 1.47 × 105 | 2.10 × 10−3 | 0.9694 | 0.7162 |
MHCII | SEG | 6.48 × 10−9 | 9.98 × 104 | 6.47 × 10−4 | 0.9773 | 0.7921 |
MHCII | SEH | 4.45 × 10−8 | 1.49 × 104 | 6.64 × 10−4 | 0.9821 | 2.1512 |
MHCII-D10 | SEA | 3.89 × 10−9 | 2.27 × 105 | 8.82 × 10−4 | 0.9971 | 0.0083 |
MHCII-D10 | SEB | 2.62 × 10−9 | 4.84 × 105 | 1.27 × 10−3 | 0.9909 | 0.1127 |
MHCII-D10 | SEC | 3.38 × 10−9 | 3.98 × 105 | 1.35 × 10−3 | 0.9914 | 0.0527 |
MHCII-D10 | SED | 1.91 × 10−11 | 5.00 × 104 | 9.55 × 10−7 | 0.9326 | 3.8586 |
MHCII-D10 | SEE | 4.99 × 10−9 | 3.18 × 105 | 1.59 × 10−3 | 0.9947 | 0.045 |
MHCII-D10 | SEG | 4.42 × 10−9 | 1.54 × 105 | 6.80 × 10−4 | 0.9979 | 0.0347 |
MHCII-D10 | SEH | 9.19 × 10−9 | 1.79 × 105 | 1.65 × 10−3 | 0.9849 | 0.0224 |
pAb-SEA | SEA | 4.84 × 10−9 | 1.39 × 105 | 6.72 × 10−4 | 0.9984 | 0.0202 |
pAb-SEB | SEB | 1.76 × 10−9 | 2.94 × 105 | 5.18 × 10−4 | 0.9949 | 0.0991 |
pAb-SEC | SEC | 1.36 × 10−8 | 8.27 × 104 | 1.12 × 10−3 | 0.9600 | 0.4866 |
pAb-SED | SED | 1.0 × 10−12 | 1.56 × 104 | 1.0 × 10−7 | 0.9957 | 2.9424 |
pAb-SEE | SEE | 1.54 × 10−8 | 1.17 × 105 | 1.80 × 10−3 | 0.9483 | 0.2682 |
pAb-SEG | SEG | 1.41 × 10−8 | 3.13 × 103 | 4.40 × 10−5 | 0.9673 | 2.454 |
pAb-SEH | SEH | 7.00 × 10−8 | 1.01 × 104 | 7.05 × 10−4 | 0.9986 | 0.1528 |
Peptide | Amino Acid Sequences | Precursor Ion (m/z) | Product Ions (m/z) | Cone (V) | Collision Energy (V) |
---|---|---|---|---|---|
SEA3 | QNTVPLETVK | 565.00 (2+) | 686.30, 476.10, 380.20 | 35 | 15, 25, 20 |
SEA4 | NVTVQELDLQAR | 693.70 (2+) | 487.30, 396.10, 214.10 | 35 | 35, 20, 20 |
SEA3R* | QNTVPLETV | 569.00 (2+) | 560.00, 694.90, 894.60 | 35 | 20, 15, 20 |
SEB2 | VLYDDNHVSAINVK | 529.90 (3+) | 744.60, 687.90, 213.20 | 35 | 15, 15, 15 |
SEB4 | LGNYDNVR | 476.10 (2+) | 837.40, 503.25, 86.10 | 35 | 15, 15, 25 |
SEB6 | VTAQELDYLTR | 654.90 (2+) | 909.50, 780.50, 276.20 | 35 | 20, 20, 20 |
SEB6R* | VTAQELDYLT | 660.10 (2+) | 919.50, 562.40, 201.20 | 35 | 20, 30, 20 |
SEC1 | VLYDDHYVSATK | 471.20 (3+) | 656.60, 600.00, 461.00 | 35 | 15, 10, 15 |
SEC2 | TELLNEGLAK | 544.30 (2+) | 744.42, 631.34, 344.18 | 35 | 19, 19, 19 |
SEC3R* | FLAHDLIYNISD | 519.80 (3+) | 583.30, 469.60, 356.61 | 35 | 15, 15, 20 |
SED4 | NVDVYPIR | 488.60 (2+) | 762.50, 647.50, 548.30 | 35 | 15, 20, 15 |
SED5 | LYNNDTLGGK | 548.30 (2+) | 818.40, 249.20, 136.10 | 35 | 18, 18, 30 |
SED5R* | LYNNDTLGG | 552.10 (2+) | 989.50, 826.40, 249.20 | 35 | 20, 15, 20 |
SEE1 | NALSNLR | 394.40 (2+) | 602.30, 489.30, 299.20 | 35 | 10, 10, 10 |
SEE4 | QTTVPIDK | 451.40 (2+) | 472.30, 326.30, 262.10 | 35 | 15, 20, 20 |
SEE4R* | QTTVPID | 455.40 (2+) | 680.40, 480.50, 270.30 | 35 | 15, 15, 20 |
SEH1 | SDEISGEK | 432.90 (2+) | 662.30, 533.30, 420.40 | 35 | 15, 15, 15 |
SEH3 | FATADLAQK | 483.00 (2+) | 746.40, 473.90, 364.90 | 35 | 15, 10, 15 |
SEH5R* | NVTLQELDI | 591.40 (2+) | 867.40, 625.40, 214.40 | 35 | 20, 20, 15 |
SEG2 | TELENTELANNYK | 769.87 (2+) | 609.30, 538.26, 344.18 | 35 | 27, 27, 27 |
SEG4 | NMVTIQELDYK | 677.34 (2+) | 1108.59, 345.16, 310.18 | 35 | 20, 20, 20 |
SEG6 | FLNIYGDNK | 542.80 (2+) | 824.50, 596.40, 233.40 | 35 | 15, 15, 15 |
SEG6R* | FLNIYGDN | 546.60 (2+) | 831.40, 604.30, 233.30 | 35 | 15, 15, 15 |
Peptide | Matrices | Calibration Curve | R2 | LOD (fmol/µL) | LOQ (fmol/µL) | Range (fmol/µL) |
---|---|---|---|---|---|---|
SEA4 | PBS | Y = 0.005120X − 0.000189 | 0.997 | 1.5625 | 3.125 | 3.125–100 |
SEB2 | PBS | Y = 0.061606X − 0.049921 | 0.999 | 1.5625 | 3.125 | 3.125–100 |
SEC2 | PBS | Y = 0.000118X − 0.000156 | 0.981 | 1.5625 | 3.125 | 3.125–100 |
SED4 | PBS | Y = 0.170828X − 0.403331 | 0.951 | 1.5625 | 3.125 | 3.125–100 |
SEE4 | PBS | Y = 0.002636X + 0.001088 | 0.992 | 1.5625 | 3.125 | 3.125–100 |
SEH3 | PBS | Y = 0.009839X − 0.002605 | 0.990 | 3.125 | 6.25 | 6.25–100 |
SEG6 | PBS | Y = 0.155547X + 0.019418 | 0.990 | 3.125 | 6.25 | 6.25–100 |
Peptide | Matrices | Calibration Curve | R2 | LOD (fmol/µL) | LOQ (fmol/µL) | Range (fmol/µL) |
---|---|---|---|---|---|---|
SEA4 | Plasma | Y = 0.001202X − 0.000736 | 0.990 | 3.125 | 6.25 | 6.25–100 |
SEB2 | Plasma | Y = 0.020269X − 0.011634 | 0.995 | 1.5625 | 3.125 | 3.125–100 |
SEC2 | Plasma | Y = 0.004754X − 0.001350 | 0.990 | 3.125 | 6.25 | 6.25–100 |
SED4 | Plasma | Y = 0.050879X − 0.069610 | 0.944 | 1.5625 | 3.125 | 3.125–100 |
SEE4 | Plasma | Y = 0.001211X + 0.002182 | 0.997 | 3.125 | 6.25 | 6.25–100 |
SEH3 | Plasma | Y = 0.004225X − 0.004713 | 0.992 | 6.25 | 12.5 | 12.5–100 |
SEG4 | Plasma | Y = 0.157611X − 0.149189 | 0.987 | 1.5625 | 3.125 | 3.125–100 |
Peptide | Matrices | Calibration Curve | R2 | LOD (fmol/µL) | LOQ (fmol/µ) | Range (fmol/µL) |
---|---|---|---|---|---|---|
SEA4 | Milk | Y = 0.001729X − 0.000568 | 0.998 | 3.125 | 6.25 | 6.25–100 |
SEB2 | Milk | Y = 0.012888X + 0.004582 | 0.998 | 1.5625 | 3.125 | 3.125–100 |
SEC2 | Milk | Y = 0.003255X − 0.003341 | 0.965 | 1.5625 | 3.125 | 3.125–100 |
SED4 | Milk | Y = 0.019634X + 0.015828 | 0.956 | 1.5625 | 3.125 | 3.125–100 |
SEE4 | Milk | Y = 0.002358X − 0.001658 | 0.993 | 1.5625 | 3.125 | 3.125–100 |
SEH3 | Milk | Y = 0.15241X − 0.280831 | 0.980 | 3.125 | 6.25 | 6.25–100 |
SEG6 | Milk | Y = 0.001537X − 0.004049 | 0.956 | 3.125 | 6.25 | 6.25–100 |
Peptide | Matrices | Calibration Curve | R2 | LOD (fmol/µL) | LOQ (fmol/µL) | Range (fmol/µL) |
---|---|---|---|---|---|---|
SEA4 | PBS | Y = 0.041789X + 0.003444 | 0.974 | 0.78125 | 1.5625 | 1.5625–100 |
SEB2 | PBS | Y = 0.038587X + 0.005922 | 0.998 | 0.78125 | 1.5625 | 1.5625–100 |
SEC2 | PBS | Y = 0.000209X + 0.000238 | 0.977 | 0.78125 | 1.5625 | 1.5625–100 |
SED4 | PBS | Y = 0.1172X − 0.10204 | 0.993 | 0.78125 | 1.5625 | 1.5625–100 |
SEE4 | PBS | Y = 0.003741X − 0.000546 | 0.999 | 0.78125 | 1.5625 | 1.5625–100 |
SEH3 | PBS | Y = 0.033934X + 0.026944 | 0.964 | 6.25 | 12.5 | 12.5–100 |
SEG6 | PBS | Y = 0.24238X + 0.008165 | 0.953 | 0.78125 | 1.5625 | 1.5625–100 |
Peptide | Matrices | Calibration Curve | R2 | LOD (fmol/µL) | LOQ (fmol/µL) | Range (fmol/µL) |
---|---|---|---|---|---|---|
SEA4 | Plasma | Y = 0.003135X + 0.002139 | 0.960 | 3.125 | 6.25 | 6.25–100 |
SEB2 | Plasma | Y = 0.001340X + 0.000483 | 0.958 | 0.7825 | 1.5625 | 1.5625–100 |
SEC2 | Plasma | Y = 0.003198X + 0.000597 | 0.994 | 3.125 | 6.25 | 6.25–100 |
SED4 | Plasma | Y = 0.055135X + 0.004234 | 0.935 | 0.7825 | 1.5625 | 1.5625–100 |
SEE4 | Plasma | Y = 0.002209X + 0.001913 | 0.980 | 3.125 | 6.25 | 6.25–100 |
SEH3 | Plasma | Y = 0.120729X − 0.003764 | 0.997 | 6.25 | 12.5 | 12.5–100 |
SEG6 | Plasma | Y = 0.083461X − 0.040817 | 0.971 | 1.5625 | 3.125 | 3.125–100 |
Peptide | Matrices | Calibration Curve | R2 | LOD (fmol/µL) | LOQ (fmol/µL) | Range (fmol/µL) |
---|---|---|---|---|---|---|
SEA4 | Milk | Y = 0.002878X + 0.005775 | 0.973 | 3.125 | 6.25 | 6.25–100 |
SEB2 | Milk | Y = 0.008302X − 0.001616 | 0.986 | 3.125 | 6.25 | 6.25–100 |
SEC2 | Milk | Y = 0.008098X − 0.000650 | 0.984 | 3.125 | 6.25 | 6.25–100 |
SED4 | Milk | Y = 0.006779X − 0.005443 | 0.986 | 1.5625 | 3.125 | 3.125–100 |
SEE4 | Milk | Y = 0.000726X − 0.000004 | 0.963 | 3.125 | 6.25 | 6.25–100 |
SEH1 | Milk | Y = 0.223869X + 0.588802 | 0.967 | 6.25 | 12.5 | 12.5–100 |
SEG6 | Milk | Y = 0.027874X − 0.000883 | 0.943 | 3.125 | 6.25 | 6.25–100 |
Peptide | Matrices | Added (fmol/µL) | Found (fmol/µL) | Recovery (%) | RSD% |
---|---|---|---|---|---|
SEA4 | PBS | 3.125 | 2.1 ± 0.04 | 67.2% | 2.7% |
25 | 6.3 ± 0.8 | 25.2% | 17.1% | ||
100 | 41 ± 3 | 41% | 8.1% | ||
SEB2 | PBS | 3.125 | 0.6 ± 0.04 | 19.2% | 9.2% |
25 | 10 ± 0.05 | 40% | 0.7% | ||
100 | 30 ± 0.9 | 30% | 3.9% | ||
SEC2 | PBS | 3.125 | 2.2 ± 0.01 | 70.4% | 0.7% |
25 | 7.6 ± 0.6 | 30.4% | 10.3% | ||
100 | 43.7 ± 0.05 | 43.7% | 0.2% | ||
SED4 | PBS | 3.125 | 0.7 ± 0.01 | 22.4% | 2.2% |
25 | 6.8 ± 0.04 | 27.2% | 0.7% | ||
100 | 63 ± 0.5 | 63% | 0.9% | ||
SEE4 | PBS | 3.125 | 0.9 ± 0.1 | 28.8% | 17% |
25 | 5.7 ± 0.3 | 22.8% | 7.4% | ||
100 | 30 ± 0.7 | 30% | 2.9% | ||
SEH3 | PBS | 6.25 | 2.9 ± 0.4 | 46.4% | 15.2% |
25 | 11.5 ± 0.9 | 46% | 9.3% | ||
100 | 55.1 ± 0.05 | 55.1% | 0.1% | ||
SEG6 | PBS | 6.25 | 2.4 ± 0.01 | 38.4% | 0.7% |
25 | 7.6 ± 0.4 | 30.4% | 6.3% | ||
100 | 44.8 ± 3.2 | 44.8% | 8.8% |
Peptide | Matrices | Added (fmol/µL) | Found (fmol/µL) | Recovery (%) | RSD% |
---|---|---|---|---|---|
SEA4 | Plasma | 6.25 | 2.1 ± 0.01 | 33.6% | 0.8% |
25 | 6.7 ± 0.1 | 26.8% | 2% | ||
100 | 45.9 ± 5.0 | 45.9% | 13.6% | ||
SEB2 | Plasma | 3.125 | 0.9 ± 0.09 | 28.8% | 12.4% |
25 | 7.0 ± 0.8 | 28% | 14.5% | ||
100 | 32.3 ± 3.4 | 32.3% | 12.9% | ||
SEC2 | Plasma | 6.25 | 1.6 ± 0.1 | 25.6% | 9.7% |
25 | 7.9 ± 0.2 | 31.6% | 2.7% | ||
100 | 30.8 ± 1.6 | 30.8% | 6.4% | ||
SED4 | Plasma | 3.125 | 0.8 ± 0.01 | 25.6% | 2.2% |
25 | 6.0 ± 0.1 | 24% | 2.8% | ||
100 | 80 ± 0.7 | 80% | 1.1% | ||
SEE4 | Plasma | 6.25 | 2.6 ± 0.05 | 41.6% | 2.6% |
25 | 14.7 ± 1.4 | 58.8% | 11.4% | ||
100 | 30 ± 1.1 | 30% | 4.6% | ||
SEH3 | Plasma | 12.5 | 5 ± 0.1 | 40% | 2.6% |
25 | 9.1 ± 0.02 | 36.4% | 0.4% | ||
100 | 57.8 ± 0.1 | 57.8% | 0.2% | ||
SEG4 | Plasma | 6.25 | 1.4 ± 0.01 | 22.4% | 1.1% |
25 | 4.6 ± 0.01 | 18.4% | 0.4% | ||
100 | 27.4 ± 1.2 | 27.4% | 5.4% |
Peptide | Matrices | Added (fmol/µL) | Found (fmol/µL) | Recovery (%) | RSD% |
---|---|---|---|---|---|
SEA4 | Milk | 6.25 | 3.6 ± 0.1 | 57.6% | 4.9% |
25 | 9.2 ± 0.2 | 36.8% | 3.2% | ||
100 | 42.4 ± 4.8 | 42.4% | 13.9% | ||
SEB2 | Milk | 3.125 | 1.6 ± 0.1 | 52.1% | 12.2% |
25 | 11.6 ± 1.7 | 46.5% | 17.4% | ||
100 | 57.9 ± 6.9 | 57.9% | 14.6% | ||
SEC2 | Milk | 3.125 | 1.7 ± 0.02 | 54.4% | 1.9% |
25 | 8.1 ± 0.5 | 32.4% | 7.5% | ||
100 | 61.5 ± 0.08 | 61.5% | 0.1% | ||
SED4 | Milk | 3.125 | 3.0 ± 0.02 | 96% | 2% |
25 | 12.8 ± 0.03 | 51.2% | 3% | ||
100 | 89.1 ± 1.7 | 89.1% | 2.4% | ||
SEE4 | Milk | 3.125 | 2.3 ± 0.2 | 73.6% | 12% |
25 | 20 ± 2.2 | 80% | 13.2% | ||
100 | 41 ± 2.6 | 41% | 7.8% | ||
SEH3 | Milk | 6.25 | 1.6 ± 0.1 | 25.6% | 9.4% |
25 | 12 ± 1.6 | 48% | 16.4% | ||
100 | 55.2 ± 0.09 | 55.2% | 0.2% | ||
SEG6 | Milk | 6.25 | 1.2 ± 0.01 | 19.2% | 1.4% |
25 | 11.2 ± 0.8 | 44.8% | 9.3% | ||
100 | 37.1 ± 6.0 | 37.1% | 19.8% |
Peptide | Matrices | Added (fmol/µL) | Found (fmol/µL) | Recovery (%) | RSD% |
---|---|---|---|---|---|
SEA4 | PBS | 1.5625 | 0.4 ± 0.05 | 25.6% | 17.6% |
25 | 7.8 ± 0.9 | 31.2% | 14.6% | ||
100 | 66.4 ± 10.2 | 66.4% | 18.8% | ||
SEB2 | PBS | 1.5625 | 0.6 ± 0.09 | 38.4% | 18.7% |
25 | 9.4 ± 1.3 | 37.6% | 18.1% | ||
100 | 47.7 ± 1.8 | 47.7% | 4.6% | ||
SEC2 | PBS | 1.5625 | 0.5 ± 0.01 | 32.3% | 3.3% |
25 | 8.2 ± 1.3 | 32.8% | 19.5% | ||
100 | 49.6 ± 2.1 | 49.6% | 5.2% | ||
SED4 | PBS | 1.5625 | 0.4 ± 0.01 | 25.6% | 4.7% |
25 | 11.1 ± 1.2 | 44% | 13.6% | ||
100 | 44.7 ± 6 | 44.7% | 16.4% | ||
SEE4 | PBS | 1.5625 | 0.4 ± 0.06 | 25.6% | 18.4% |
25 | 4.8 ± 0.5 | 19.2% | 13.8% | ||
100 | 28.2 ± 1.1 | 28.2% | 4.6% | ||
SEH3 | PBS | 12.5 | 2.5 ± 0.3 | 20% | 14.5% |
25 | 7 ±0.2 | 28% | 4.1% | ||
100 | 75.1 ± 5.1 | 75.1% | 8.4% | ||
SEG6 | PBS | 1.5625 | 0.7 ± 0.04 | 44.8% | 6.9% |
25 | 7.6 ± 0.3 | 30.4% | 5.2% | ||
100 | 58.8 ± 2.4 | 58.8% | 5.02% |
Peptide | Matrices | Added (fmol/µL) | Found (fmol/µL) | Recovery (%) | RSD% |
---|---|---|---|---|---|
SEA4 | Plasma | 6.25 | 2.4 ± 0.3 | 38.4% | 0.7% |
25 | 8.2 ± 0.7 | 32.8% | 10.1% | ||
100 | 30.7 ± 0.6 | 30.7% | 2.4% | ||
SEB2 | Plasma | 1.5625 | 0.6 ± 0.09 | 38.4% | 18.2% |
25 | 9.4 ± 1.2 | 37.6% | 15.8% | ||
100 | 24.8 ± 1.2 | 24.8% | 6.1% | ||
SEC2 | Plasma | 6.25 | 2.8 ± 0.2 | 44.8% | 8.4% |
25 | 7.5 ± 1 | 30% | 17.1% | ||
100 | 52.7 ± 0.1 | 52.7% | 0.3% | ||
SED4 | Plasma | 1.5625 | 0.8 ± 0.1 | 51.2% | 19.7% |
25 | 11.5 ± 0.08 | 46% | 0.9% | ||
100 | 85.1 ± 0.1 | 85.1% | 0.1% | ||
SEE4 | Plasma | 6.25 | 1.2 ± 0.1 | 19.2% | 5.5% |
25 | 6.4 ± 0.2 | 25.6% | 2.9% | ||
100 | 23.2 ± 0.9 | 23.2% | 4.9% | ||
SEH3 | Plasma | 12.5 | 2.7 ± 0.04 | 21.6% | 2.1% |
25 | 5.2 ± 0.2 | 20.8% | 4.7% | ||
100 | 24.1 ± 0.9 | 24.1% | 4.4% | ||
SEG4 | Plasma | 3.125 | 2 ± 0.2 | 64% | 11.2% |
25 | 9.9 ± 0.6 | 39.6% | 7.3% | ||
100 | 32.4 ± 1.1 | 32.4% | 4.1% |
Peptide | Matrices | Added (fmol/µL) | Found (fmol/µL) | Recovery (%) | RSD% |
---|---|---|---|---|---|
SEA4 | Milk | 6.25 | 3.5 ± 0.3 | 56% | 9.3% |
25 | 8.6 ± 0.6 | 34.4% | 8.8% | ||
100 | 51.6 ± 1.9 | 51.6% | 4.46% | ||
SEB2 | Milk | 6.25 | 2.1 ± 0.3 | 33.6% | 15.1% |
25 | 10.9 ± 1.3 | 43.6% | 14.8% | ||
100 | 30 ± 0.1 | 30.0% | 0.6% | ||
SEC2 | Milk | 6.25 | 3.6 ± 0.5 | 57.6% | 15.8% |
25 | 14.8 ± 0.9 | 58% | 7.6% | ||
100 | 52.3 ± 0.7 | 52.3% | 1.57% | ||
SED4 | Milk | 3.125 | 0.9 ± 0.04 | 28.8% | 5.4% |
25 | 6.4 ± 0.3 | 25.6% | 4.8% | ||
100 | 29.8 ± 0.1 | 29.8% | 0.4% | ||
SEE4 | Milk | 6.25 | 3.2 ± 0.2 | 51.2% | 8.5% |
25 | 10.2 ± 0.7 | 40.8% | 8.1% | ||
100 | 27.7 ± 0.9 | 27.7% | 3.9% | ||
SEH1 | Milk | 12.5 | 7.4 ± 0.7 | 59.2% | 12.1% |
25 | 10.9 ± 0.2 | 43.6% | 2.1% | ||
100 | 49.1 ± 2 | 49.1% | 4.94% | ||
SEG6 | Milk | 6.25 | 1.4 ± 0.09 | 22.4% | 8.2% |
25 | 6.9 ± 0.3 | 27.6% | 4.6% | ||
100 | 23.3 ± 0.7 | 23.3% | 3.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, J.; Liu, T.; Fang, X.; Han, S.; Dong, L.; Li, J.; Wang, J.; Wang, J.; Gao, S.; Kang, L.; et al. Multiplex Detection of Seven Staphylococcal Enterotoxins Using Liquid Chromatography–Mass Spectrometry Combined with a Novel Capture Molecule. Separations 2024, 11, 136. https://doi.org/10.3390/separations11050136
Lv J, Liu T, Fang X, Han S, Dong L, Li J, Wang J, Wang J, Gao S, Kang L, et al. Multiplex Detection of Seven Staphylococcal Enterotoxins Using Liquid Chromatography–Mass Spectrometry Combined with a Novel Capture Molecule. Separations. 2024; 11(5):136. https://doi.org/10.3390/separations11050136
Chicago/Turabian StyleLv, Jing, Tingting Liu, Xinyu Fang, Songyang Han, Lina Dong, Jiaxin Li, Jing Wang, Jinglin Wang, Shan Gao, Lin Kang, and et al. 2024. "Multiplex Detection of Seven Staphylococcal Enterotoxins Using Liquid Chromatography–Mass Spectrometry Combined with a Novel Capture Molecule" Separations 11, no. 5: 136. https://doi.org/10.3390/separations11050136
APA StyleLv, J., Liu, T., Fang, X., Han, S., Dong, L., Li, J., Wang, J., Wang, J., Gao, S., Kang, L., & Xin, W. (2024). Multiplex Detection of Seven Staphylococcal Enterotoxins Using Liquid Chromatography–Mass Spectrometry Combined with a Novel Capture Molecule. Separations, 11(5), 136. https://doi.org/10.3390/separations11050136