Purifying High-Purity Copper via Semi-Continuous Directional Solidification: Insights from Numerical Simulations
Abstract
:1. Introduction
2. Numerical Simulation Method
2.1. Numerical Simulation Physical Model
- Thermal–solutal convection is described by the Boussinesq approximation, which considers density variations only in the buoyancy term while treating the remaining densities as constants.
- The melt flow during the semi-continuous directional solidification process is assumed to be laminar and incompressible.
- The solidification process is governed by the condition of local thermodynamic equilibrium.
- Physical properties, except for density, are considered invariant with respect to temperature.
- The solid phase is assumed to be non-deformable and free from internal stresses.
- The sum of the volume fractions of the solid and liquid phases in the mushy zone is unity.
2.2. Geometric Model and Boundary Conditions
3. Results and Discussion
3.1. Migration and Distribution of the Impurity Element Ag during the Semi-Continuous Directional Solidification Process
3.2. Impact of Process Parameters on Spatial Distribution during the Semi-Continuous Directional Solidification Process
3.3. Experimental Validation of High-Purity Copper Purification via the Semi-Continuous Directional Solidification Process
4. Conclusions
- Increasing the pulling rate and melt temperature causes a downward shift in the solid–liquid interface relative to the mold top. This shift, influenced by thermal gradients and flow dynamics, induces the formation of a secondary weak vortex in the melt near the sidewall region in addition to the primary clockwise vortex flow. This phenomenon facilitates the migration of the impurity element Ag toward the central axis of the ingot, leading to amplified radial fluctuations in the Ag content.
- A consistent trend is observed along the ingot’s height regarding the purification efficiency of high-purity copper through semi-continuous directional solidification. The average Ag content demonstrates a gradual increase, followed by stabilization and an eventual rapid ascent during the late stage of solidification. With an increased pulling rate and melt temperature, the stage of rapid ascent occurs earlier. This suggests that lower pulling rates and melt temperatures are advantageous for purifying high-purity copper.
- Experimental validation using 4N-grade recycled copper raw material in a small-scale semi-continuous directional solidification apparatus at a pulling rate of 25 μm/s demonstrated the feasibility of this method for high-purity copper production. Copper samples extracted at 1/4 and 3/4 ingot heights achieved a 5N purity level of 99.9994 wt.% and 99.9993 wt.%, respectively.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kato, M. The production of ultrahigh-purity copper for advanced applications. JOM 1995, 47, 44–46. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Tian, Y.H.; Wen, J.Y.; Hang, C.J.; Zheng, Z.; Huang, Y.L.; Ding, S.; Wang, C.X. High-efficiency extraction synthesis for high-purity copper nanowires and their applications in flexible transparent electrodes. Nano Mater. Sci. 2020, 2, 164–171. [Google Scholar] [CrossRef]
- Oishi, T.; Koyama, K.; Alam, S.; Tanaka, M.; Lee, J.C. Recovery of high purity copper cathode from printed circuit boards using ammoniacal sulfate or chloride solutions. Hydrometallurgy 2007, 89, 82–88. [Google Scholar] [CrossRef]
- Li, Z.J.; Wang, W.; Jiang, L.J.; Chang, Z.D.; Ma, X.P.; Luo, X. Effects of acid pretreatment on purity of copper foil recovered by electrolytic refining from waste printed circuit board. Waste Biomass Valorization 2024, 15, 1403–1410. [Google Scholar] [CrossRef]
- Randhawa, N.S.; Sau, D.C.; Kumar, M. Direct electrolytic refining of end-of-life industrial copper waste scraps for production of high purity copper powder. Russ. J. Non-Ferrous Met. 2016, 57, 367–373. [Google Scholar] [CrossRef]
- Fan, H.Q.; Zhu, X.; Zheng, H.X.; Lu, P.; Wu, M.Z.; Peng, J.B.; Zhang, H.S.; Qian, Q. Machine learning-based multi-objective parameter optimization for indium electrorefining. Sep. Purif. Technol. 2024, 328, 125092. [Google Scholar] [CrossRef]
- Ding, L.F.; Cheng, J.; Wang, T.; Zhao, J.L.; Chen, C.Y.; Niu, Y.L. Continuous electrolytic refining process of cathode copper with non-dissolving anode. Miner. Eng. 2019, 135, 21–28. [Google Scholar] [CrossRef]
- Wang, J.Q.; Chen, S.Y.; Zeng, X.F.; Huang, J.F.; Liang, Q.; Shu, J.C.; Chen, M.J.; Xiao, Z.X.; Zhao, H.B.; Sun, Z. Recovery of high purity copper from waste printed circuit boards of mobile phones by slurry electrolysis with ammonia-ammonium system. Sep. Purif. Technol. 2021, 275, 119180. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L.P.; Yu, H.S.; Tian, Y.; Yang, B.; Xu, B.Q.; Liang, D.; Ma, T.Z. Preparation of high-purity copper through vacuum distillation. Vacuum 2023, 218, 112566. [Google Scholar] [CrossRef]
- Liu, W.; Ma, B.Z.; Zhou, Z.G.; Zuo, Y.C.; Wang, L.; Chen, Y.Q.; Wang, C.Y. Efficient separation of impurities in scrap copper by sulfurization-vacuum distillation. Vacuum 2022, 202, 111145. [Google Scholar] [CrossRef]
- Guo, X.Y.; Zhou, Y.; Zha, G.Z.; Jiang, W.L.; Yang, B.; Ma, W.H. A novel method for extracting metal Ag and Cu from high value-added secondary resources by vacuum distillation. Sep. Purif. Technol. 2020, 242, 116787. [Google Scholar] [CrossRef]
- Zhan, L.; Qiu, Z.L.; Xu, Z.M. Separating zinc from copper and zinc mixed particles using vacuum sublimation. Sep. Purif. Technol. 2009, 68, 397–402. [Google Scholar] [CrossRef]
- Sun, J.L.; Zhang, J.; Wang, H.W.; Wang, T.M.; Cao, Z.Q.; Lu, Y.P.; Li, T.J. Purification of metallurgical grade silicon in an electron beam melting furnace. Surf. Coat. Technol. 2013, 228, S67–S71. [Google Scholar] [CrossRef]
- Long, L.P.; Liu, W.S.; Ma, Y.Z.; Liu, Y.; Liu, S.H. Refining tungsten purification by electron beam melting based on the thermal equilibrium calculation and tungsten loss control. High Temp. Mater. Process. 2015, 34, 605–610. [Google Scholar] [CrossRef]
- Vutova, K.; Donchev, V. Electron beam melting and refining of metals: Computational modeling and optimization. Materials 2013, 6, 4626–4640. [Google Scholar] [CrossRef] [PubMed]
- Dosmukhamedov, N.K.; Zholdasbay, E.E.; Nurlan, G.B. Ultra-pure Cu obtaining using zone melting: Influence of liquid zone width on impurities’ behavior. Russ. J. Non-Ferrous Met. 2017, 43, 15–20. [Google Scholar] [CrossRef]
- Wan, H.L.; Kong, L.X.; Yang, B.; Xu, B.Q.; Duan, M.P.; Dai, Y.N. Zone melting under vacuum purification method for high-purity aluminum. J. Mater. Res. Technol. 2022, 17, 802–808. [Google Scholar] [CrossRef]
- Zhang, X.X.; Friedrich, S.; Friedrich, B. Separation behavior of arsenic and lead from antimony during vacuum distillation and zone refining. J. Mater. Res. Technol. 2020, 9, 4386–4398. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Mimura, K.; Ishikawa, Y.; Isshiki, M. Effect of floating zone refining under reduced hydrogen pressure on copper Purification. Mater. Trans. 2002, 43, 2802–2807. [Google Scholar] [CrossRef]
- Fu, Y.B.; Chen, J.; Liu, N.; Lu, Y.P.; Li, T.J.; Yin, G.M. Study of ultrahigh-purity copper billets refined by vacuum melting and directional solidification. Rare Met. 2011, 30, 304–309. [Google Scholar] [CrossRef]
- Huang, F.; Chen, R.R.; Guo, J.J.; Ding, H.S.; Su, Y.Q. Removal of metal impurities in metallurgical grade silicon by cold crucible continuous melting and directional solidification. Sep. Purif. Technol. 2017, 188, 67–72. [Google Scholar] [CrossRef]
- Kazup, Á.; Kárpáti, V.; Hegedüs, B.; Gácsi, Z.; Ferenczi, T. High purity primary aluminum casting by INDUTHERM CC3000 semi-continuous casting equipment. In Proceedings of the MultiScience—XXXIII, microCAD International Multidisciplinary Scientific Conference, Miskolc, Hungary, 23–24 May 2019. [Google Scholar]
- Bennon, W.D.; Incropera, F.P. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—I. Model formulation. Int. J. Heat Mass Transfer 1987, 30, 2161–2170. [Google Scholar] [CrossRef]
- Bennon, W.D.; Incropera, F.P. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—II. Application to solidification in a rectangular cavity. Int. J. Heat Mass Transfer 1987, 30, 2171–2187. [Google Scholar] [CrossRef]
- Jeong, C.H.; Kang, K.; Park, U.J.; Lee, H.J.; Kim, H.S.; Park, J.Y.; Lee, S.H. Numerical investigation on the evolution of thin liquid layer and dynamic behavior of an electro-thermal drilling probe during close-contact heat transfer. Appl. Sci. 2021, 11, 3443. [Google Scholar] [CrossRef]
- Song, H.B.; Wang, Y.H.; Peng, J.P.; Liu, C.C. Study on the uniformity of temperature distribution of transverse flux induction heating based on a new magnetic pole. Energies 2022, 15, 7450. [Google Scholar] [CrossRef]
- Safa, Y.; Flueck, M.; Rappaz, J. Numerical simulation of thermal problems coupled with magnetohydrodynamic effects in aluminium cell. Appl. Math. Modell. 2009, 33, 1479–1492. [Google Scholar] [CrossRef]
- Jia, Y.H.; Zhao, D.Z.; Li, C.Y.; Bao, L.; Le, Q.C.; Wang, H.; Wang, X. Study on solidification structure evolution of direct-chill casting high purity copper billet using cellular automaton-finite element method. Metals 2020, 10, 1052. [Google Scholar] [CrossRef]
- Kawecki, A.M.; Knych, T.; Sieja-Smaga, E.; Mamala, A.; Kwaśniewski, P.; Kiesiewicz, G.; Smyrak, B.; Pacewicz, A. Fabrication, properties and microstructures of high strength and high conductivity copper-silver wires. Arch. Metall. Mater. 2012, 57, 1261–1270. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.F.; Yin, S.; Xu, S.L. Influence of particle initial temperature on high velocity impact process in cold spraying. Procedia Environ. Sci. 2012, 12, 298–304. [Google Scholar] [CrossRef]
- Huang, F.; Zhao, L.; Liu, L.; Hu, Z.L.; Chen, R.R.; Dong, Z.L. Separation and purification of Si from Sn-30Si alloy by electromagnetic semi-continuous directional solidification. Mater. Sci. Semicond. Process. 2019, 99, 54–61. [Google Scholar] [CrossRef]
- Luo, H.J.; Jie, W.Q.; Gao, Z.M.; Zheng, Y.J. Effects of casting parameters on macrosegregation in 2024 alloy during direct-chill casting based on numerical simulation. Rare Met. Mater. Eng. 2018, 48, 2759–2767. [Google Scholar]
- Chen, Q.P.; Li, H.X.; Shen, H.F. Transient modeling of grain structure and macrosegregation during direct chill casting of Al-Cu alloy. Processes 2019, 7, 333. [Google Scholar] [CrossRef]
- Li, M.X.; Tian, Q.L.; Wu, M.Z.; Peng, J.B.; Zhang, J.T.; Chen, L.S.; Lu, X.W.; Xu, Z.S.; Zheng, H.X. Numerical simulation analysis on solute redistribution of In–1 wt% Sn alloy during multipass vertical zone refining process. J. Cryst. Growth 2021, 565, 126156. [Google Scholar] [CrossRef]
- Prasad, D.; Munirathnam, N.; Rao, J.; Prakash, T. Effect of multi-pass, zone length and translation rate on impurity segregation during zone refining of tellurium. Mater. Lett. 2006, 60, 1875–1879. [Google Scholar] [CrossRef]
- Abrosimov, N.; Czupalla, M.; Dropka, N.; Fischer, J.; Gybin, A.; Irmscher, K.; Janicskó-Csáthy, J.; Juda, U.; Kayser, S.; Miller, W.; et al. Technology development of high purity germanium crystals for radiation detectors. J. Cryst. Growth 2020, 532, 125396. [Google Scholar] [CrossRef]
- Wang, G.J.; Mei, H.; Mei, D.M.; Guan, Y.T.; Yang, G. High purity germanium crystal growth at the University of South Dakota. J. Phys. Conf. Ser. 2015, 606, 012012. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Density at 293.15 K, ρ (kg·m−3) | 8920 | Liquid temperature, Tl (K) | 1348 |
Thermal conductivity, K (W·(m·K)−1) | 401 | Slope of the liquidus, m (K·(wt.%)−1) | −5.04 |
Latent heat, ΔHf (J·kg−1) | 2.05 × 105 | Thermal expansion coefficient, βT (K−1) | 1.66 × 10−5 |
Specific heat, CP (J·(kg·K)−1) | 385 | Solute expansion coefficient, βC (wt.%−1) | 3.2 × 10−3 |
Dynamic viscosity, μ (kg·(m·s)−1) | 3.20 × 10−3 | Diffusion coefficient, D (m2·s−1) | 3.6 × 10−9 |
Solid temperature, Ts (K) | 1351 | Equilibrium partition coefficient, k0 | 0.65 |
Impurity | Raw Material | Sample-1 | Sample-2 | Impurity | Raw Material | Sample-1 | Sample-2 |
---|---|---|---|---|---|---|---|
Ag | 0.37 | 0.02 | 0.031 | Fe | 4.64 | 0.18 | 0.18 |
Al | 1.15 | 0.033 | 0.032 | Mn | 0.09 | — | — |
As | 0.66 | — | — | Ni | 4.76 | 4.03 | 4.24 |
Bi | 1.04 | — | — | Pb | 0.04 | — | — |
Ca | 22.09 | 0.045 | 0.068 | Sb | 0.28 | — | — |
Cd | 0.04 | 0.018 | 0.01 | Sn | 0.29 | — | — |
Co | 0.05 | 0.017 | 0.019 | Zn | 2.55 | 0.016 | 0.008 |
Cr | 1.45 | 0.42 | 0.44 | Si | 3.20 | 1.62 | 2.02 |
Total content | 42.70 | 6.40 | 7.05 | “—” indicates content below the GDMS detection limit. | |||
Purity (wt.%) | 99.9957 | 99.9994 | 99.9993 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Zhang, Y.; Zeng, L.; Zheng, H. Purifying High-Purity Copper via Semi-Continuous Directional Solidification: Insights from Numerical Simulations. Separations 2024, 11, 176. https://doi.org/10.3390/separations11060176
Wu Y, Zhang Y, Zeng L, Zheng H. Purifying High-Purity Copper via Semi-Continuous Directional Solidification: Insights from Numerical Simulations. Separations. 2024; 11(6):176. https://doi.org/10.3390/separations11060176
Chicago/Turabian StyleWu, Yao, Yunhu Zhang, Long Zeng, and Hongxing Zheng. 2024. "Purifying High-Purity Copper via Semi-Continuous Directional Solidification: Insights from Numerical Simulations" Separations 11, no. 6: 176. https://doi.org/10.3390/separations11060176
APA StyleWu, Y., Zhang, Y., Zeng, L., & Zheng, H. (2024). Purifying High-Purity Copper via Semi-Continuous Directional Solidification: Insights from Numerical Simulations. Separations, 11(6), 176. https://doi.org/10.3390/separations11060176