Application of Portable Near-Infrared Instrument for Analysis of Spirulina platensis Aqueous Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algae and Chemicals
2.2. Methods
2.2.1. Preparation of Spirulina platensis Extracts
2.2.2. Extraction Yield Measurement
2.2.3. Total Phenolic Content of the Extracts Measurement
2.2.4. Antioxidant Activity of the Extracts Measurement
2.2.5. Measurement of Protein Concentrations in the Extracts
2.2.6. NIR Spectra Gathering
2.2.7. Basic Statistical Analysis and Correlation Matrix
2.2.8. Partial Least Square (PLS) Modeling
2.2.9. Artificial Neural Network (ANN) Modeling
- (1)
- Simultaneous Output ANN Model: In this model, all physicochemical properties of the Spirulina platensis extracts were used as outputs simultaneously. Each property, including extraction yield, total phenolic content, antioxidant activity measured by the DPPH method, antioxidant activity measured by the FRAP method, and protein concentration, was predicted together using the same ANN architecture.
- (2)
- Individual Output ANN Models: In these models, each physicochemical property of the Spirulina platensis extracts was used as the output individually. Separate ANN models were developed for each property, allowing for independent prediction of each property using dedicated ANN architectures.
3. Results and Discussion
3.1. Statistical Analysis of the Spirulina platensis Extracts’ Properties
3.2. NIR Spectra and PCA Analysis of the Spirulina platensis Extracts
3.3. PLS Modeling of the Spirulina platensis Extracts’ Properties Based on the NIR Spectra
3.4. ANN Modeling of the Spirulina platensis Extracts’ Properties Based on the NIR Spectra
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hachicha, R.; Elleuch, F.; Ben Hlima, H.; Dubessay, P.; de Baynast, H.; Delattre, C.; Pierre, G.; Hachicha, R.; Abdelkafi, S.; Michaud, P.; et al. Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Appl. Sci. 2022, 12, 1924. [Google Scholar] [CrossRef]
- ElFar, O.A.; Billa, N.; Lim, H.R.; Chew, K.W.; Cheah, W.Y.; Munawaroh, H.S.H.; Balakrishnan, D.; Show, P.L. Advances in delivery methods of Arthrospira platensis (spirulina) for enhanced therapeutic outcomes. Bioengineered 2022, 13, 14681–14718. [Google Scholar] [CrossRef] [PubMed]
- Nege, S.A.; Masithah, E.D.; Khotib, J. Trends in the Uses of Spirulina Microalga: A mini-review. J. Ilm. Perikan. Dan Kelaut. 2020, 12, 149–166. [Google Scholar] [CrossRef]
- Jung, F.; Krüger-Genge, A.; Waldeck, P.; Küpper, J.-H. Spirulina platensis, a super food? J. Cell. Biotechnol. 2019, 5, 43–45. [Google Scholar] [CrossRef]
- Doan, D.; The, D.P.; Le, T.T.H.; Nguyen, T.X.Q.; Nguyen, D.N. Protein Extraction from Spirulina Platensis with the Cellulase Enzyme Assistance. J. Technol. Educ. Sci. 2022, 17, 25–32. [Google Scholar] [CrossRef]
- Bertsch, P.; Böcker, L.; Mathys, A.; Fischer, P. Proteins from microalgae for the stabilization of fluid interfaces, emulsions, and foams. Trends Food Sci. Technol. 2021, 108, 326–342. [Google Scholar] [CrossRef]
- Mosibo, O.K.; Ferrentino, G.; Udenigwe, C.C. Microalgae Proteins as Sustainable Ingredients in Novel Foods: Recent Developments and Challenges. Foods 2024, 13, 733. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, L.; Zhuang, Y.; Gu, Y.; Cheng, G.; Fan, X.; Ding, Y.; Liu, H. Protein-Stabilized Emulsion Gels with Improved Emulsifying and Gelling Properties for the Delivery of Bioactive Ingredients: A Review. Foods 2023, 12, 2703. [Google Scholar] [CrossRef]
- Teuling, E.; Schrama, J.W.; Gruppen, H.; Wierenga, P.A. Characterizing emulsion properties of microalgal and cyanobacterial protein isolates. Algal Res. 2019, 39, 101471. [Google Scholar] [CrossRef]
- Ebert, S.; Grossmann, L.; Hirichs, J.; Wiss, J. Emulsifying properties of water-soluble proteins extracted from the microalgae Chlorella sorokiniana and Phaeodactylum tricornutum. Food Funct. 2019, 10, 754–764. [Google Scholar] [CrossRef]
- Fernandes da Silva, M.; Casazza, A.A.; Ferrari, P.F.; Aliakbarian, B.; Converti, A.; Bezerra, R.P.; Proto, A.L.F.; Perego, P. Recovery of phenolic compounds of food concern from Arthrospira platensis by green extraction techniques. Algal Res. 2017, 25, 391–401. [Google Scholar] [CrossRef]
- Corrêa, P.S.; Morais Júnior, W.G.; Martins, A.A.; Caetano, N.S.; Mata, T.M. Microalgae Biomolecules: Extraction, Separation and Purification Methods. Processes 2021, 9, 10. [Google Scholar] [CrossRef]
- De Sousa e Silva, A.; de Magalhaes, W.T.; Moreira, L.M.; Rocha, M.V.P.; Bastos, A.K.P. Microwave-assisted extraction of polysaccharides from Arthrospira (Spirulina) platensis using the concept of green chemistry. Algal Res. 2018, 35, 178–184. [Google Scholar] [CrossRef]
- Yücetepe, A.; Saroglu, O.; Daskaya-Dikmen, C.; Bildik, F.; Ozcelik, B. Optimisation of ultrasound-assisted extraction of protein from Spirulina platensis using RSM. Czech J. Food Sci. 2018, 36, 98–108. [Google Scholar] [CrossRef]
- Martins, R.; Mouro, C.; Pontes, R.; Nunes, J.; Gouveia, I. Ultrasound-assisted extraction of bioactive pigments from Spirulina platensis in natural deep eutectic solvents. Bioresour. Bioprocess. 2023, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Lozada-Ramírez, J.D.; Ortega-Regules, A.E.; Hernández, L.R.; Anaya de Parrodi, C. Spectroscopic and Spectrometric Applications for the Identification of Bioactive Compounds from Vegetal Extracts. Appl. Sci. 2021, 11, 3039. [Google Scholar] [CrossRef]
- Johnson, J.B.; Walsh, K.B.; Naiker, M.; Ameer, K. The Use of Infrared Spectroscopy for the Quantification of Bioactive Compounds in Food: A Review. Molecules 2023, 28, 3215. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Huck, C.W. Near-Infrared Spectroscopy in Bio-Applications. Molecules 2020, 25, 2948. [Google Scholar] [CrossRef] [PubMed]
- Manley, M. Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials. Chem. Soc. Rev. 2014, 43, 8200–8214. [Google Scholar] [CrossRef]
- Sadergaski, L.R.; Hager, T.J.; Andrews, H.B. Design of Experiments, Chemometrics, and Raman Spectroscopy for the Quantification of Hydroxylammonium, Nitrate, and Nitric Acid. ACS Omega 2022, 7, 7287–7296. [Google Scholar] [CrossRef]
- Balabin, R.M.; Safieva, R.Z.; Lomakina, E.I. Wavelet Neural Network (WNN) Approach for Calibration Model Building Based on Gasoline near Infrared (NIR) Spectra. Chemom. Intell. Lab. Syst. 2008, 93, 58–62. [Google Scholar] [CrossRef]
- Kundu, P.; Paul, V.; Kumar, V.; Mishra, I.M. Formulation Development, Modeling and Optimization of Emulsification Process Using Evolving RSM Coupled Hybrid ANN-GA Framework. Chem. Eng. Res. Des. 2015, 104, 773–790. [Google Scholar] [CrossRef]
- Valinger, D.; Jurina, T.; Šain, A.; Matešić, N.; Panić, M.; Benković, M.; Gajdoš Kljusurić, J.; Jurinjak Tušek, A. Development of ANN models based on combined UV-vis-NIR spectra for rapid quantification of physical and chemical properties of industrial hemp extracts. Phytochem. Anal. 2021, 32, 326–338. [Google Scholar] [CrossRef] [PubMed]
- Aghdamifar, E.; Rasooli Sharabiani, V.; Taghinezhad, E.; Fanaei, A.R.; Szymanek, M. Non-destructive method for identification and classification of varieties and quality of coffee beans based on soft computing models using VIS/NIR spectroscopy. Eur. Food Res. Technol. 2023, 249, 1599–1612. [Google Scholar] [CrossRef]
- Sharabiani, V.R.; Nazarloo, A.S.; Taghinezhad, E.; Vez, I.; Szumny, A.; Figiel, A. Prediction of winter wheat leaf chlorophyll content based on VIS/NIR spectroscopy using ANN and PLSR. Food Sci. Nutr. 2023, 11, 2166–2175. [Google Scholar] [CrossRef]
- Pissard, A.; Baeten, V.; Dardenne, P.; Dupont, P.; Lateur, M. Use of NIR spectroscopy on fresh apples to determine the phenolic compounds and dry matter content in peel and flesh. Biotechnol. Agron. Soc. Environ. 2018, 22, 3–12. [Google Scholar] [CrossRef]
- Yücetepe, A.; Saroğlu, Ö.; Özçelik, B. Response surface optimization of ultrasound-assisted protein extraction from Spirulina platensis: Investigation of the effect of extraction conditions on techno-functional properties of protein concentrates. J. Food Sci. Technol. 2019, 56, 3282–3292. [Google Scholar] [CrossRef]
- Costa, E.; Ribeiro, M.; Filipe-Ribeiro, L.; Cosme, F.; Nunes, F.M. Protein Extraction from Arthrospira platensis for Use in Food Processing. Med. Sci. Forum 2023, 23, 8. [Google Scholar] [CrossRef]
- AOAC Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA; Arlington, VA, USA, 1998.
- Pinelo, M.; Rubilar, M.; Jerez, M.; Sineiro, J.; Núñez, M.J. Effect of Solvent, Temperature, and Solvent-to-Solid Ratio on the Total Phenolic Content and Antiradical Activity of Extracts from Different Components of Grape Pomace. J. Agric. Food Chem. 2005, 53, 2111–2117. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Ernst, O.; Zor, T. Linearization of the Bradford Protein Assay. J. Vis. Exp. 2010, 38, e1918. [Google Scholar] [CrossRef] [PubMed]
- Fearn, T. Assessing calibrations: SEP, RPD, RER and R2. NIR News 2002, 13, 12. [Google Scholar] [CrossRef]
- Aouir, A.; Amiali, M.; Bitam, A.; Benchabane, A.; Raghavan, V.G. Comparison of the biochemical composition of different Arthrospira platensis strains from Algeria, Chad and the USA. Food Meas. 2017, 11, 913–923. [Google Scholar] [CrossRef]
- Alshuniaber, M.A.; Krishnamoorthy, R.; AlQhtani, W.H. Antimicrobial activity of polyphenolic compounds from Spirulina against food-borne bacterial pathogens. Saudi J. Biol. Sci. 2021, 28, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Ramamoorthy, D.; Verma, D.K.; Kumar, A.; Kumar, N.; Kanak, K.R.; Marwein, B.M.; Mohan, K. Antioxidant and phytonutrient activities of Spirulina platensis. Energy Nexus 2022, 6, 100070. [Google Scholar] [CrossRef]
- Chu, W.L.; Lim, Y.W.; Radhakrishnan, A.K.; Lim, P.E. Protective effect of aqueous extract from Spirulina platensis against cell death induced by free radicals. BMC Complement. Altern Med. 2010, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Monein, A.M.E.; El-Saadony, M.T.; Shehata, A.M.; Saad, A.M.; Ali Aldhumri, S.; Ouda, S.; Mesalam, N.M. Antioxidant and antimicrobial activities of Spirulina platensis extracts and biogenic selenium nanoparticles against selected pathogenic bacteria and fungi. Saudi. J. Biol. Sci. 2022, 29, 1197–1209. [Google Scholar] [CrossRef] [PubMed]
- Bleakley, S.; Hayes, M. Functional and Bioactive Properties of Protein Extracts Generated from Spirulina platensis and Isochrysis galbana T-Iso. Appl. Sci. 2021, 11, 3964. [Google Scholar] [CrossRef]
- Schwaninger, M.; Rodrigues, J.C.; Fackler, K.J. A review of band assignments in near infrared spectra of wood and wood components. Near Infrared Spectrosc. 2011, 19, 287–308. [Google Scholar] [CrossRef]
- Wu, D.; Ma, T.; Nie, P.; Wang, Z.; Qiu, Z.; He, Y. Use of In-Situ Visible and Near-Infrared Spectroscopy for Non-invasive Discrimination of Spirulina platensis. In Proceedings of the 2009 International Conference on Computational Intelligence and Security, Beijing, China, 11–14 December 2009; pp. 330–334. [Google Scholar] [CrossRef]
- Wu, D.; Nie, P.; Cuello, J.; He, Y.; Wang, Z.; Wu, H. Application of visible and near infrared spectroscopy for rapid and non-invasive quantification of common adulterants in Spirulina powder. J. Food Eng. 2011, 102, 278–286. [Google Scholar] [CrossRef]
- Lever, J.; Krzywinski, M.; Altman, N. Principal component analysis. Nat. Methods 2017, 14, 641–642. [Google Scholar] [CrossRef]
- Palou, A.; Jiménez, P.; Casals, J.; Masalo, I. Evaluation of the Near Infrared Spectroscopy (NIRS) to predict chemical composition in Ulva ohnoi. J. Appl. Phycol. 2023, 35, 2007–2015. [Google Scholar] [CrossRef]
- Helin, R.; Indahl, U.G.; Tomic, O.; Liland, K.H. On the possible benefits of deep learning for spectral preprocessing. J. Chemom. 2022, 36, e3374. [Google Scholar] [CrossRef]
- Mishra, P.; Rutledge, D.N.; Roger, J.M.; Wali, K.; Khan, H.A. Chemometric pre-processing can negatively affect the performance of near-infrared spectroscopy models for fruit quality prediction. Talanta 2021, 1, 229. [Google Scholar] [CrossRef] [PubMed]
- Lazim, S.S.R.M.; Nawi, N.M.; Chen, G.; Jensen, T.; Rasli, A.M.M. Influence of different pre-processing methods in predicting sugarcane quality from near-infrared (NIR) spectral data. Int. Food Res. J. 2016, 23, S231–S236. [Google Scholar]
- Shalev, N.T.; Ghermandi, A.; Tchernov, D.; Shemesh, E.; Israel, A.; Brook, A. NIR spectroscopy and artificial neural network for seaweed protein content assessment in-situ. Comput. Electron. Agric. 2022, 201, 107304. [Google Scholar] [CrossRef]
- Basile, T.; Marsico, A.D.; Perniola, R. Use of Artificial Neural Networks and NIR Spectroscopy for Non-Destructive Grape Texture Prediction. Foods 2022, 11, 281. [Google Scholar] [CrossRef] [PubMed]
- Dou, Y.; Zou, T.; Liu, T.; Qu, N.; Ren, Y. Calibration in non-linear NIR spectroscopy using principal component artificial neural networks. Spectrochim. Acta A 2007, 68, 1201–1206. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, H.; Wang, H.; Yan, T. Can machine learning algorithms perform better than multiple linear regression in predicting nitrogen excretion from lactating dairy cows. Sci. Rep. 2022, 12, 12478. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. Partial Least Squares Structural Equation Modeling: Rigorous Applications, Better Results and Higher Acceptance. Long Range Plan. 2013, 46, 1–12. [Google Scholar] [CrossRef]
- Chang, C.-W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef]
- Sim, J.; McGoverin, C.; Oey, I.; Frew, R.; Kebede, B. Near-infrared reflectance spectroscopy accurately predicted isotope and elemental compositions for origin traceability of coffee. Food Chem. 2023, 427, 136695. [Google Scholar] [CrossRef] [PubMed]
- Bataller, B.G.; Capareda, S.C. A rapid and non-destructive method for quantifying biomolecules in Spirulina platensis via Fourier transform infrared—Attenuated total reflectance spectroscopy. Algal Res. 2018, 32, 341–352. [Google Scholar] [CrossRef]
Exp. | S/L (g/L) | pH | T (°C) | t (min) |
---|---|---|---|---|
1. | 15 | 8.5 | 35 | 20 |
2. | 35 | 8.5 | 35 | 20 |
3. | 15 | 8.5 | 35 | 60 |
4. | 35 | 8.5 | 35 | 60 |
5. | 25 | 7 | 25 | 40 |
6. | 25 | 10 | 25 | 40 |
7. | 25 | 7 | 45 | 40 |
8. | 25 | 10 | 45 | 40 |
9. | 25 | 8.5 | 35 | 40 |
10. | 15 | 8.5 | 25 | 40 |
11. | 35 | 8.5 | 25 | 40 |
12. | 15 | 8.5 | 45 | 40 |
13. | 35 | 8.5 | 45 | 40 |
14. | 25 | 7 | 35 | 20 |
15. | 25 | 7 | 35 | 60 |
16. | 25 | 10 | 35 | 20 |
17. | 25 | 10 | 35 | 60 |
18. | 25 | 8.5 | 35 | 40 |
19. | 15 | 7 | 35 | 40 |
20. | 35 | 7 | 35 | 40 |
21. | 15 | 10 | 35 | 40 |
22. | 35 | 10 | 35 | 40 |
23. | 25 | 8.5 | 25 | 20 |
24. | 25 | 8.5 | 25 | 60 |
25. | 25 | 8.5 | 45 | 20 |
26. | 25 | 8.5 | 45 | 60 |
27. | 25 | 8.5 | 35 | 40 |
28. | 25 | 8.5 | 35 | 40 |
29. | 25 | 8.5 | 35 | 40 |
30. | 25 | 8.5 | 35 | 40 |
Calibration Set (105 Samples) | Prediction Set (45 Samples) | |||||
---|---|---|---|---|---|---|
Mean ± st.dev. | Range | CV (%) | Mean ± st.dev. | Range | CV (%) | |
EY (%) | 2.889 ± 2.454 | 0.043–9.178 | 84.944 | 2.873 ± 2.464 | 0.320–9.178 | 85.765 |
TPC (mgGAE/gdw) | 11.621 ± 4.354 | 4.548–30.051 | 37.467 | 12.765 ± 5.900 | 5.900–30.235 | 39.453 |
DPPH (mmolTrolox/gdw) | 0.016 ± 0.007 | 0.002–0.031 | 43.206 | 0.014 ± 0.006 | 0.003–0.030 | 42.660 |
FRAP (mmolFeSO4 7H2O/gdw) | 0.009 ± 0.006 | 0.002–0.035 | 59.165 | 0.010 ± 0.002 | 0.002–0.035 | 64.916 |
TP (mg/mL) | 43.100 ± 6.825 | 26.575–60.15 | 15.856 | 42.375 ± 7.125 | 32.05–60.150 | 16.797 |
S/L | t | pH | T | EY | TPC | DPPH | FRAP | TP | |
---|---|---|---|---|---|---|---|---|---|
S/L | 1.0000 | ||||||||
t | −0.0000 | 1.0000 | |||||||
pH | −0.0000 | 0.0000 | 1.0000 | ||||||
T | 0.0000 | 0.0000 | −0.0000 | 1.0000 | |||||
EY | −0.1911 | −0.4946 | 0.0889 | −0.4148 | 1.0000 | ||||
TPC | −0.0231 | 0.0573 | 0.2375 | −0.2181 | 0.0933 | 1.0000 | |||
DPPH | 0.3483 | 0.0099 | −0.0521 | 0.1070 | −0.0525 | 0.0019 | 1.0000 | ||
FRAP | 0.2930 | −0.2350 | 0.3218 | −0.1236 | 0.2877 | 0.0002 | 0.4019 | ||
TP | −0.0930 | −0.3947 | 0.3498 | −0.1780 | 0.2674 | 0.2433 | −0.0670 | 0.2430 | 1.0000 |
Calibration | Cross-Validation | Prediction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Rcal2 | RMSEC | SEC | Rval2 | RMSECV | SECV | Rpred2 | RMSEP | SEP | Bias | |
EY | 0.0091 | 2.3793 | 2.3912 | 0.0055 | 2.4292 | 2.4414 | 0.0016 | 2.5403 | 2.5569 | −0.2143 |
TPC | 0.1482 | 0.8381 | 0.8423 | 0.0821 | 0.8754 | 0.8798 | 0.1556 | 0.8484 | 0.8570 | 0.0046 |
DPPH | 0.0349 | 0.0063 | 0.0063 | 0.0041 | 0.0064 | 0.0064 | 0.0028 | 0.0067 | 0.0067 | −0.0001 |
FRAP | 0.4798 | 0.0041 | 0.0041 | 0.3501 | 0.0047 | 0.0047 | 0.3218 | 0.0049 | 0.0050 | −0.0004 |
TP | 0.0259 | 0.2407 | 0.2149 | 0.1699 | 0.2573 | 0.2586 | 0.2266 | 0.2338 | 0.2614 | −0.0065 |
Network | Calibration | Prediction | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Training Perf./Error | Test Perf./Error | Validation Perf./Error | Hidden Activation | Output Activation | Output | Rpred2 | Rpred2adj | RMSEP | SEP | RPD | RER | |
MLP 5-11-5 | 0.9649 1.0018 | 0.8709 2.1231 | 0.8674 3.0579 | Tanh | Identity | EY | 0.7607 | 0.7265 | 0.7091 | 0.1069 | 2.003 | 6.1439 |
TPC | 0.8266 | 0.8142 | 0.8714 | 0.1314 | 2.0237 | 8.8296 | ||||||
DPPH | 0.8476 | 0.8367 | 0.0012 | 0.0002 | 2.4848 | 9.5606 | ||||||
FRAP | 0.7480 | 0.7300 | 0.0020 | 0.0003 | 1.9072 | 8.2517 | ||||||
TP | 0.6146 | 0.5871 | 0.1635 | 0.0246 | 1.5289 | 5.1176 |
Calibration | Prediction | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Output | Network | Training Perf./Error | Test Perf./Error | Validation Perf./Error | Hidden Activation | Output Activation | Rpred2 | Rpred2adj | RMSEP | SEP | RPD | RER |
EY | MLP 5-6-1 | 0.9971 0.0276 | 0.9862 0.1019 | 0.9860 0.1654 | Logistic | Tanh | 0.8355 | 0.8238 | 0.5149 | 0.0776 | 2.1519 | 8.4175 |
TPC | MLP 5-6-1 | 0.9872 0.3191 | 0.9827 0.4683 | 0.9824 0.5152 | Logistic | Identity | 0.9287 | 0.9236 | 0.5439 | 0.0819 | 3.7687 | 14.1618 |
DPPH | MLP 5-7-1 | 0.9889 0.0001 | 0.9823 0.0001 | 0.9762 0.0002 | Logistic | Identity | 0.8399 | 0.8285 | 0.0011 | 0.0002 | 2.4046 | 9.8211 |
FRAP | MLP 5-10-1 | 0.9946 0.0001 | 0.9921 0.0001 | 0.9746 0.0002 | Logistic | Logistic | 0.8143 | 0.8011 | 0.0016 | 0.0002 | 2.3143 | 11.4033 |
TP | MLP 5-10-1 | 0.8156 0.0111 | 0.7647 0.0126 | 0.7442 0.0279 | Logistic | Exponential | 0.7155 | 0.6952 | 0.1440 | 0.0211 | 1.8339 | 6.9056 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marjanović, B.; Sokač Cvetnić, T.; Valinger, D.; Benković, M.; Jurina, T.; Gajdoš Kljusurić, J.; Jurinjak Tušek, A. Application of Portable Near-Infrared Instrument for Analysis of Spirulina platensis Aqueous Extracts. Separations 2024, 11, 190. https://doi.org/10.3390/separations11060190
Marjanović B, Sokač Cvetnić T, Valinger D, Benković M, Jurina T, Gajdoš Kljusurić J, Jurinjak Tušek A. Application of Portable Near-Infrared Instrument for Analysis of Spirulina platensis Aqueous Extracts. Separations. 2024; 11(6):190. https://doi.org/10.3390/separations11060190
Chicago/Turabian StyleMarjanović, Blaženko, Tea Sokač Cvetnić, Davor Valinger, Maja Benković, Tamara Jurina, Jasenka Gajdoš Kljusurić, and Ana Jurinjak Tušek. 2024. "Application of Portable Near-Infrared Instrument for Analysis of Spirulina platensis Aqueous Extracts" Separations 11, no. 6: 190. https://doi.org/10.3390/separations11060190
APA StyleMarjanović, B., Sokač Cvetnić, T., Valinger, D., Benković, M., Jurina, T., Gajdoš Kljusurić, J., & Jurinjak Tušek, A. (2024). Application of Portable Near-Infrared Instrument for Analysis of Spirulina platensis Aqueous Extracts. Separations, 11(6), 190. https://doi.org/10.3390/separations11060190