Photocatalytic Degradation of Ciprofloxacin: A Combined Experimental and Theoretical Study Using Curcumin and Hydrogen Peroxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hirshfeld Surface Analysis
2.2. Molecular Modeling
2.3. Photodegradation Process of Ciprofloxacin Using Curcumin as Catalyst
- G1: 9.43 mM ciprofloxacin
- G2: 9.43 mM ciprofloxacin + 1.16 M hydrogen peroxide
- G3: 9.43 mM ciprofloxacin + 4.71 mM curcumin
- G4: 9.43 mM ciprofloxacin + 9.43 mM curcumin
- G5: 9.43 mM ciprofloxacin + 1.16 M hydrogen peroxide + 4.71 mM curcumin
- G6: 9.43 mM ciprofloxacin + 1.16 M hydrogen peroxide + 9.43 mM curcumin
2.4. Chromatographic Analysis of Photodegradation Products
3. Results
3.1. Molecular Modeling Analysis
3.2. Molecular Modeling
3.3. Photodegradation Process of Ciprofloxacin Using Curcumin as Catalyst
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jia, W.-L.; Song, C.; He, L.-Y.; Wang, B.; Gao, F.-Z.; Zhang, M.; Ying, G.-G. Antibiotics in Soil and Water: Occurrence, Fate, and Risk. Curr. Opin. Environ. Sci. Health 2023, 32, 100437. [Google Scholar] [CrossRef]
- Eyler, R.F.; Shvets, K. Clinical Pharmacology of Antibiotics. Clin. J. Am. Soc. Nephrol. 2019, 14, 1080–1090. [Google Scholar] [CrossRef] [PubMed]
- Ruzsa, R.; Benkő, R.; Hambalek, H.; Papfalvi, E.; Csupor, D.; Nacsa, R.; Csatordai, M.; Soós, G.; Hajdú, E.; Matuz, M. Hospital Antibiotic Consumption before and during the COVID-19 Pandemic in Hungary. Antibiotics 2024, 13, 102. [Google Scholar] [CrossRef]
- Zeng, H.; Li, J.; Zhao, W.; Xu, J.; Xu, H.; Li, D.; Zhang, J. The Current Status and Prevention of Antibiotic Pollution in Groundwater in China. Int. J. Environ. Res. Public Health 2022, 19, 11256. [Google Scholar] [CrossRef]
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotics in the Soil Environment—Degradation and Their Impact on Microbial Activity and Diversity. Front. Microbiol. 2019, 10, 338. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.W.K.; Millar, B.C.; Moore, J.E. Antimicrobial Resistance (AMR). Br. J. Biomed. Sci. 2023, 80, 11387. [Google Scholar] [CrossRef] [PubMed]
- Sorooshian, S. The Sustainable Development Goals of the United Nations: A Comparative Midterm Research Review. J. Clean. Prod. 2024, 453, 142272. [Google Scholar] [CrossRef]
- Yamaguchi, N.U.; Bernardino, E.G.; Ferreira, M.E.C.; de Lima, B.P.; Pascotini, M.R.; Yamaguchi, M.U. Sustainable Development Goals: A Bibliometric Analysis of Literature Reviews. Environ. Sci. Pollut. Res. 2023, 30, 5502–5515. [Google Scholar] [CrossRef]
- Abejew, A.A.; Wubetu, G.Y.; Fenta, T.G. Relationship between Antibiotic Consumption and Resistance: A Systematic Review. Can. J. Infect. Dis. Med. Microbiol. 2024, 2024, 9958678. [Google Scholar] [CrossRef]
- Zay Ya, K.; Win, P.T.N.; Bielicki, J.; Lambiris, M.; Fink, G. Association Between Antimicrobial Stewardship Programs and Antibiotic Use Globally. JAMA Netw. Open 2023, 6, e2253806. [Google Scholar] [CrossRef]
- Llor, C.; Bjerrum, L. Antimicrobial Resistance: Risk Associated with Antibiotic Overuse and Initiatives to Reduce the Problem. Ther. Adv. Drug Saf. 2014, 5, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jing, J.; Zhou, M.; Dewil, R. Recent Advances in H2O2-Based Advanced Oxidation Processes for Removal of Antibiotics from Wastewater. Chin. Chem. Lett. 2023, 34, 107621. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, Z.; Bi, X.; Yao, N.; Zhao, P.; Meng, X. Mediated Electron Transfer Process in α-MnO2 Catalyzed Fenton-like Reaction for Oxytetracycline Degradation. Chin. Chem. Lett. 2024, 35, 109331. [Google Scholar] [CrossRef]
- Yao, N.; Wang, X.; Yang, Z.; Zhao, P.; Meng, X. Characterization of Solid and Liquid Carbonization Products of Polyvinyl Chloride (PVC) and Investigation of the PVC-Derived Adsorbent for the Removal of Organic Compounds from Water. J. Hazard. Mater. 2023, 456, 131687. [Google Scholar] [CrossRef]
- Bai, X.; Chen, W.; Wang, B.; Sun, T.; Wu, B.; Wang, Y. Photocatalytic Degradation of Some Typical Antibiotics: Recent Advances and Future Outlooks. Int. J. Mol. Sci. 2022, 23, 8130. [Google Scholar] [CrossRef]
- Wu, S.; Lin, Y.; Hu, Y.H. Strategies of Tuning Catalysts for Efficient Photodegradation of Antibiotics in Water Environments: A Review. J. Mater. Chem. A Mater. 2021, 9, 2592–2611. [Google Scholar] [CrossRef]
- Pretali, L.; Fasani, E.; Sturini, M. Current Advances on the Photocatalytic Degradation of Fluoroquinolones: Photoreaction Mechanism and Environmental Application. Photochem. Photobiol. Sci. 2022, 21, 899–912. [Google Scholar] [CrossRef]
- Calvete, M.J.F.; Piccirillo, G.; Vinagreiro, C.S.; Pereira, M.M. Hybrid Materials for Heterogeneous Photocatalytic Degradation of Antibiotics. Coord. Chem. Rev. 2019, 395, 63–85. [Google Scholar] [CrossRef]
- Djurišić, A.B.; He, Y.; Ng, A.M.C. Visible-Light Photocatalysts: Prospects and Challenges. APL Mater. 2020, 8, 030903. [Google Scholar] [CrossRef]
- Gurunathan, K. Photocatalytic Hydrogen Production Using Transition Metal Ions-Doped γ-Bi2O3 Semiconductor Particles. Int. J. Hydrogen Energy 2004, 29, 933–940. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Huo, P.; Yan, Y.; Guan, Q. Preparation of Ag2O/Ag2CO3/MWNTs Composite Photocatalysts for Enhancement of Ciprofloxacin Degradation. Appl. Surf. Sci. 2016, 366, 1–8. [Google Scholar] [CrossRef]
- Rozmyślak, M.; Walkowiak, A.; Frankowski, M.; Wolski, L. Copper(II) Phosphate as a Promising Catalyst for the Degradation of Ciprofloxacin via Photo-Assisted Fenton-like Process. Sci. Rep. 2024, 14, 7007. [Google Scholar] [CrossRef] [PubMed]
- Dias, I.M.; Mourão, L.C.; Andrade, L.A.; Souza, G.B.M.; Viana, J.C.V.; Oliveira, S.B.; Alonso, C.G. Degradation of Antibiotic Amoxicillin from Pharmaceutical Industry Wastewater into a Continuous Flow Reactor Using Supercritical Water Gasification. Water Res. 2023, 234, 119826. [Google Scholar] [CrossRef]
- Piccirillo, G.; Aroso, R.T.; Rodrigues, F.M.S.; Carrilho, R.M.B.; Pinto, S.M.A.; Calvete, M.J.F.; Pereira, M.M. Oxidative Degradation of Pharmaceuticals: The Role of Tetrapyrrole-Based Catalysts. Catalysts 2021, 11, 1335. [Google Scholar] [CrossRef]
- Piccirillo, G.; De Sousa, R.B.; Dias, L.D.; Calvete, M.J.F. Degradation of Pesticides Using Semiconducting and Tetrapyrrolic Macrocyclic Photocatalysts—A Concise Review. Molecules 2023, 28, 7677. [Google Scholar] [CrossRef] [PubMed]
- Piccirillo, G.; Maldonado-Carmona, N.; Marques, D.L.; Villandier, N.; Calliste, C.A.; Leroy-Lhez, S.; Eusébio, M.E.S.; Calvete, M.J.F.; Pereira, M.M. Porphyrin@Lignin Nanoparticles: Reusable Photocatalysts for Effective Aqueous Degradation of Antibiotics. Catal. Today 2023, 423, 113903. [Google Scholar] [CrossRef]
- Maldonado-Carmona, N.; Piccirillo, G.; Godard, J.; Heuzé, K.; Genin, E.; Villandier, N.; Calvete, M.J.F.; Leroy-Lhez, S. Bio-Based Matrix Photocatalysts for Photodegradation of Antibiotics. Photochem. Photobiol. Sci. 2024, 23, 587–627. [Google Scholar] [CrossRef]
- Dias, L.D.; Blanco, K.C.; Mfouo-Tynga, I.S.; Inada, N.M.; Bagnato, V.S. Curcumin as a Photosensitizer: From Molecular Structure to Recent Advances in Antimicrobial Photodynamic Therapy. J. Photochem. Photobiol. C Photochem. Rev. 2020, 45, 100384. [Google Scholar] [CrossRef]
- Silva, K.J.S.; Lima, A.R.; Dias, L.D.; Garbuio, M.; de Souza, M.; Correa, T.Q.; Blanco, K.C.; Sanches, E.A.; Bagnato, V.S.; Inada, N.M. Photodynamic Processes for Water and Wastewater Treatment: A Review. Laser Phys. Lett. 2024, 21, 053001. [Google Scholar] [CrossRef]
- Rodrigues, F.M.S.; Tavares, I.; Aroso, R.T.; Dias, L.D.; Domingos, C.V.; de Faria, C.M.G.; Piccirillo, G.; Maria, T.M.R.; Carrilho, R.M.B.; Bagnato, V.S.; et al. Photoantibacterial Poly(Vinyl)Chloride Films Applying Curcumin Derivatives as Bio-Based Plasticizers and Photosensitizers. Molecules 2023, 28, 2209. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From Visualization to Analysis, Design and Prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld Surface Analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Spek, A.L. Structure Validation in Chemical Crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009, 65, 148–155. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A Program for Hirshfeld Surface Analysis, Visualization and Quantitative Analysis of Molecular Crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Spackman, M.A.; Mitchell, A.S. Novel Tools for Visualizing and Exploring Intermolecular Interactions in Molecular Crystals. Acta Crystallogr. Sect. B Struct. Sci. 2004, 60, 627–668. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.D.; Britton, J.; Easun, T.L.; Blake, A.J.; Lewis, W.; Schröder, M. Hirshfeld Surface Investigation of Structure-Directing Interactions within Dipicolinic Acid Derivatives. Cryst. Growth Des. 2015, 15, 1697–1706. [Google Scholar] [CrossRef] [PubMed]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Becke, A.D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Goddard, W.A. The X3LYP Extended Density Functional for Accurate Descriptions of Nonbond Interactions, Spin States, and Thermochemical Properties. Proc. Natl. Acad. Sci. USA 2004, 101, 2673–2677. [Google Scholar] [CrossRef]
- Zhang, G.; Musgrave, C.B. Comparison of DFT Methods for Molecular Orbital Eigenvalue Calculations. J. Phys. Chem. A 2007, 111, 1554–1561. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, T. Efficient Evaluation of Electrostatic Potential with Computerized Optimized Code. Phys. Chem. Chem. Phys. 2021, 23, 20323–20328. [Google Scholar] [CrossRef] [PubMed]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView 6; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Pearson, R.G. The Electronic Chemical Potential and Chemical Hardness. J. Mol. Struct. 1992, 255, 261–270. [Google Scholar] [CrossRef]
- Pearson, R.G. Chemical Hardness and Density Functional Theory. J. Chem. Sci. 2005, 117, 369–377. [Google Scholar] [CrossRef]
- Parr, R.G.; Szentpály, L.V.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [Google Scholar] [CrossRef]
- Fukui, K. Role of Frontier Orbitals in Chemical Reactions. Science 1982, 218, 747–754. [Google Scholar] [CrossRef]
- Li, Y.; Evans, J.N.S. The Fukui Function: A Key Concept Linking Frontier Molecular Orbital Theory and the Hard-Soft-Acid-Base Principle. J. Am. Chem. Soc. 1995, 117, 7756–7759. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Bauernschmitt, R.; Ahlrichs, R. Treatment of Electronic Excitations within the Adiabatic Approximation of Time Dependent Density Functional Theory. Chem. Phys. Lett. 1996, 256, 454–464. [Google Scholar] [CrossRef]
- Bernstein, J.; Davis, R.E.; Shimoni, L.; Chang, N.-L. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. Angew. Chem. Int. Ed. Engl. 1995, 34, 1555–1573. [Google Scholar] [CrossRef]
- Foresman, J.B.; Frisch, A.E. Exploring Chemistry with Electronic Structure Methods, 3rd ed.; Gaussian, Inc.: Wallingford, CT, USA, 2015. [Google Scholar]
- Dias, L.D.; Aguiar, A.S.N.; de Melo, N.J.; Inada, N.M.; Borges, L.L.; de Aquino, G.L.B.; Camargo, A.J.; Bagnato, V.S.; Napolitano, H.B. Structural Basis of Antibacterial Photodynamic Action of Curcumin against S. Aureus. Photodiagnosis Photodyn. Ther. 2023, 43, 103654. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, C.; Zhao, J. Mechanism of Photodecomposition of H2O2 on TiO2 Surfaces under Visible Light Irradiation. Langmuir 2001, 17, 4118–4122. [Google Scholar] [CrossRef]
- Movaheditabar, P.; Javaherian, M.; Nobakht, V. Synthesis and Catalytic Application of a Curcumin-based Bio-MOF in One-pot Preparation of Tetrahydroquinazolinone Derivatives via Biginelli Reaction. Appl. Organomet. Chem. 2022, 36, e6602. [Google Scholar] [CrossRef]
- Dias, L.D.; Corrêa, T.Q.; Bagnato, V.S. Cooperative and Competitive Antimicrobial Photodynamic Effects Induced by a Combination of Methylene Blue and Curcumin. Laser Phys. Lett. 2021, 18, 075601. [Google Scholar] [CrossRef]
- Wolnicka-Glubisz, A.; Wisniewska-Becker, A. Dual Action of Curcumin as an Anti- and Pro-Oxidant from a Biophysical Perspective. Antioxidants 2023, 12, 1725. [Google Scholar] [CrossRef]
- Lima, A.R.; Silva, C.M.; da Silva, L.M.; Machulek, A.; de Souza, A.P.; de Oliveira, K.T.; Souza, L.M.; Inada, N.M.; Bagnato, V.S.; Oliveira, S.L.; et al. Environmentally Safe Photodynamic Control of Aedes Aegypti Using Sunlight-Activated Synthetic Curcumin: Photodegradation, Aquatic Ecotoxicity, and Field Trial. Molecules 2022, 27, 5699. [Google Scholar] [CrossRef]
CIP | D–H⋯A | D⋯H | D⋯A | H⋯A | D–H⋯A | Symmetry Code |
---|---|---|---|---|---|---|
Form I | N3–H3A⋯Cl1 | 0.88 | 2.993 | 2.17 | 156.00 | ½ − x, −½ + y, z |
N3–H3B⋯Cl1 | 0.88 | 3.197 | 2.41 | 149.00 | ½ + x, y, ½ − z | |
C17–H17B⋯Cl1 | 0.96 | 3.565 | 2.78 | 140.00 | ½ + x, y, ½ − z | |
C14–H14A⋯F1 | 0.96 | 3.181 | 2.41 | 137.00 | ½ − x, ½ + y, z | |
C12–H12B⋯O1 | 0.96 | 3.069 | 2.16 | 158.00 | ½ − x, −½ + y, z | |
C15–H15B⋯O3 | 0.96 | 3.452 | 2.55 | 158.00 | ½ − x, 1 − y, ½ +z | |
Form II | N3–H3A⋯Cl1 | 0.94 | 3.059 | 2.13 | 174.00 | 2 − x, 1 − y, −z |
N3–H3B⋯Cl1 | 0.96 | 3.069 | 2.11 | 175.00 | x, ½ − y, –½ + z | |
C12–H12A⋯O1 | 0.99 | 3.324 | 2.47 | 144.00 | − y, −½ + z | |
C14–H14B⋯O3 | 0.99 | 2.868 | 2.19 | 158.50 | 1 + x, y, z |
Descriptor | CIP | CIP-HCl |
---|---|---|
EH | –139.641 | –157.588 |
EL | –46.881 | –55.278 |
ΔEH-L | 92.759 | 102.310 |
Ionization Energy (I) | 139.641 | 157.588 |
Electronic Affinity (A) | 46.881 | 55.278 |
Electronegativity (χ) | 93.261 | 106.433 |
Chemical potential (μ) | –93.261 | –106.433 |
Chemical hardness (σ) | 92.759 | 102.310 |
Global Electrophilicity Index (σ) | 46.883 | 55.361 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Paiva, F.L.P.; Silva, M.V.C.; Mendonça, A.L.F.; Araújo, C.S.; Sallum, L.O.; de Aguiar, A.S.N.; Lima, A.R.; Napolitano, H.B.; Calvete, M.J.F.; Dias, L.D. Photocatalytic Degradation of Ciprofloxacin: A Combined Experimental and Theoretical Study Using Curcumin and Hydrogen Peroxide. Separations 2024, 11, 260. https://doi.org/10.3390/separations11090260
de Paiva FLP, Silva MVC, Mendonça ALF, Araújo CS, Sallum LO, de Aguiar ASN, Lima AR, Napolitano HB, Calvete MJF, Dias LD. Photocatalytic Degradation of Ciprofloxacin: A Combined Experimental and Theoretical Study Using Curcumin and Hydrogen Peroxide. Separations. 2024; 11(9):260. https://doi.org/10.3390/separations11090260
Chicago/Turabian Stylede Paiva, Flórida L. P., Maria Vivian C. Silva, Ana Lara F. Mendonça, Cristiane S. Araújo, Lóide O. Sallum, Antonio S. N. de Aguiar, Alessandra R. Lima, Hamilton B. Napolitano, Mário J. F. Calvete, and Lucas D. Dias. 2024. "Photocatalytic Degradation of Ciprofloxacin: A Combined Experimental and Theoretical Study Using Curcumin and Hydrogen Peroxide" Separations 11, no. 9: 260. https://doi.org/10.3390/separations11090260
APA Stylede Paiva, F. L. P., Silva, M. V. C., Mendonça, A. L. F., Araújo, C. S., Sallum, L. O., de Aguiar, A. S. N., Lima, A. R., Napolitano, H. B., Calvete, M. J. F., & Dias, L. D. (2024). Photocatalytic Degradation of Ciprofloxacin: A Combined Experimental and Theoretical Study Using Curcumin and Hydrogen Peroxide. Separations, 11(9), 260. https://doi.org/10.3390/separations11090260