Determining Carbohydrates for Increasing Safety: GC-FID Quantification of Lactose, Galactose, Glucose, Tagatose and Myo-Inositol in ‘Maturo’ PDO Pecorino Sardo Cheese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Chemicals and Reagents
2.3. Sample Preparation and Instrumentation
2.4. Statistic Analysis
3. Results and Discussion
3.1. Chromatographic Separation of the Analytes
3.2. Validation
3.3. Saccharides and Myo-Inositol in “Maturo” PDO Pecorino Sardo Cheese
3.4. Influence of the Seasonality
3.5. Influence of the Ripening Time
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Consorzio per la Tutela del Formaggio Pecorino Sardo, Dairy Season 2022. Available online: https://www.pecorinosardo.it/en (accessed on 18 July 2024).
- Panseri, S.; Pavlovic, R.; Castrica, M.; Nobile, M.; Di Cesare, F.; Chiesa, L.M. Determination of Carbohydrates in Lactose-Free Dairy Products to Support Food Labelling. Foods 2021, 10, 1219. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Xu, K.; Yan, M.; Peng, J.; Liu, H.; Huang, S.; Zhang, S.; Xu, Z.; Guo, X.; Wang, T. Preparation of sweet milk and yogurt containing D-tagatose by the L-arabinose isomerase derived from Lactobacillus rhamnosus. LWT—Food Sci. Technol. 2023, 187, 115355. [Google Scholar] [CrossRef]
- Caboni, P.; Murgia, A.; Porcu, A.; Manis, C.; Ibba, I.; Contu, M.; Scano, P. A metabolomics comparison between sheep’s and goat’s milk. Food Res. Int. 2019, 119, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Madrau, M.A.; Mangia, N.P.; Murgia, M.A.; Sanna, M.G.; Garau, G.; Leccis, L.; Caredda, M.; Deiana, P. Employment of autochthonous microflora in Pecorino Sardo cheese manufacturing and evolution of physicochemical parameters during ripening. Int. Dairy J. 2006, 16, 876–885. [Google Scholar] [CrossRef]
- Facioni, M.S.; Dominici, S.; Marescotti, F.; Covucci, R.; Taglieri, I.; Venturi, F.; Zinnai, A. Lactose Residual Content in PDO Cheeses: Novel Inclusions for Consumers with Lactose Intolerance. Foods 2021, 10, 2236. [Google Scholar] [CrossRef]
- Facioni, M.S.; Raspini, B.; Pivari, F.; Dogliotti, E.; Cena, H. Nutritional management of lactose intolerance: The importance of diet and food labelling. J. Transl. Med. 2020, 18, 260. [Google Scholar] [CrossRef]
- Dominici, S.; Marescotti, F.; Sanmartin, C.; Macaluso, M.; Taglieri, I.; Venturi, F.; Zinnai, A.; Facioni, M.S. Lactose: Characteristics, Food and Drug-Related Applications, and Its Possible Substitutions in Meeting the Needs of People with Lactose Intolerance. Foods 2022, 11, 1486. [Google Scholar] [CrossRef]
- Fassio, F.; Facioni, M.S.; Guagnini, F. Lactose Maldigestion, Malabsorption, and Intolerance: A Comprehensive Review with a Focus on Current Management and Future Perspectives. Nutrients 2018, 10, 1599. [Google Scholar] [CrossRef]
- Succoio, M.; Sacchettini, R.; Rossi, A.; Parenti, G.; Ruoppolo, M. Galactosemia: Biochemistry, Molecular Genetics, Newborn Screening, and Treatment. Biomolecules 2022, 12, 968. [Google Scholar] [CrossRef]
- Iwasawa, S.; Kikuchi, A.; Wada, Y.; Arai-Ichinoi, N.; Kamoto, O.; Tamiya, G.; Kure, S. The prevalence of GALM mutations that cause galactosemia: A database of functionally evaluated variants. Mol. Genet. Metab. 2019, 126, 362–367. [Google Scholar] [CrossRef]
- Gallo, A.; Pellegrino, S.; Lipari, A.; Pero, E.; Ibba, F.; Cacciatore, S.; Marzetti, E.; Landi, F.; Montalto, M. Lactose malabsorption and intolerance: What is the correct management in older adults? Clin. Nutr. 2023, 42, 2540–2545. [Google Scholar] [CrossRef] [PubMed]
- Dekker, P.J.T.; Koenders, D.; Bruins, M.J. Lactose-Free Dairy Products: Market Developments, Production, Nutrition and Health Benefits. Nutrients 2019, 11, 551. [Google Scholar] [CrossRef] [PubMed]
- European Union. Regulation (EU) n. 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers. Official Journal of the European Union, L 304/18 EN, 22.11.2011. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:304:0018:0063:en:PDF (accessed on 18 July 2024).
- European Union. Commission Delegated Regulation (EU) 2016/127 of 25 September 2015 supplementing Regulation (EU) No 609/2013 of the European Parliament and of the Council as Regards the Specific Compositional and Information Requirements for Infant Formula and Follow-on Formula and as Regards Requirements on Information Relating to Infant and Young Child Feeding. Official Journal of the European Union, L 25/12 EN, 2.2016. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0127 (accessed on 18 July 2024).
- European Food Safety Authority (EFSA), EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA), Parma, Italy. Scientific Opinion on lactose thresholds in lactose intolerance and galactosaemia. EFSA J. 2010, 8, 1777. [Google Scholar] [CrossRef]
- Gropper, S.S.; Weese, J.O.; West, P.A.; Gross, K.C. Free galactose content of fresh fruits and strained fruit and vegetable baby foods: More foods to consider for the galactose-restricted diet. J. Am. Diet. Assoc. 2000, 100, 573–575. [Google Scholar] [CrossRef] [PubMed]
- Welling, L.; Bernstein, L.E.; Berry, G.T.; Burlina, A.B.; Eyskens, F.; Gautschi, M.; Grünewald, S.; Gubbels, C.S.; Knerr, I.; Labrune, P.; et al. Galactosemia Network (GalNet). International clinical guideline for the management of classical galactosemia: Diagnosis, treatment, and follow-up. J. Inherit. Metab. Dis. 2017, 40, 171–176. [Google Scholar] [CrossRef]
- Italian Republic, Ministry of Health. Communication DGISAN Number 27673 of 07/07/2015. Updates Resulting from Regulatory Developments Related to the Entry into Force of EU Regulation 609/2013. Available online: https://www.aslvc.piemonte.it/images/downloads/strutture/SIAN/gluten_free/nota_MinSan_27673_del_07-07-2015_applicaz_Reg_609-2013.pdf (accessed on 18 July 2024). (In Italian).
- Italian Republic, Ministry of Health. Communication DGISAN Number 24708 of 16/06/2016. Guidelines for Analytical Tolerances for Official Control. Available online: https://www.agrar.it/upload/documenti/8-Circolare%20Ministero%20della%20Salute%20Giugno%202016%20-%20Estratti%20e%20titolazioni.pdf (accessed on 18 July 2024). (In Italian).
- Lina, B.A.R.; Kuper, C.F. Chronic Toxicity and Carcinogenicity Study with D-Tagatose and Fructose in Wistar Rats; TNO Nutrition and Food Research: Zeist, The Netherlands, 2002; Volume 4533. [Google Scholar]
- Armstrong, M.L.; Luecke, K.J.; Bell, L.N. Consumer evaluation of bakery product flavor as affected by incorporating the prebiotic tagatose. Int. J. Food Sci. Technol. 2009, 44, 815–819. [Google Scholar] [CrossRef]
- Levin, G.V.; Zehner, L.R.; Saunders, J.P.; Beadle, J.R. Sugar substitutes: Their energy values, bulk characteristics, and potential health benefits. Am. J. Clin. Nutr. 1995, 62, 1161S–1168S. [Google Scholar] [CrossRef]
- Hirst, E.L.; Hough, L.; Jones, J.K.N. The structure of Sterculla Setigera gum. Part 1: The investigation by the method of paper partition chromatography of the products of hydrolysis of the gum. J. Chem. Soc. 1949, 3145–3151. [Google Scholar] [CrossRef]
- Postma, P.W.; Lengeler, J.W.; Jacobson, G.R. Phosphoenolpyruvate: Carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 1993, 57, 543–594. [Google Scholar] [CrossRef]
- Scano, P.; Carta, P.; Ibba, I.; Manis, C.; Caboni, P. An Untargeted Metabolomic Comparison of Milk Composition from Sheep Kept Under Different Grazing Systems. Dairy 2020, 1, 4. [Google Scholar] [CrossRef]
- Indyk, H.E.; Woollard, D.C. Determination of free myo-inositol in milk and infant formula by high-performance liquid chromatography. Analyst 1994, 119, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Murgia, A.; Scano, P.; Cacciabue, R.; Dessì, D.; Caboni, P. GC-MS metabolomics comparison of yoghurts from sheep’s and goats’ milk. Int. Dairy J. 2019, 96, 44–49. [Google Scholar] [CrossRef]
- Croze, M.L.; Soulage, C.O. Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie 2013, 95, 1811–1827. [Google Scholar] [CrossRef] [PubMed]
- Woollard, D.C.; Macfadzean, C.; Indyk, H.E.; McMahon, A.; Christiansen, S. Determination of myo-inositol in infant formulae and milk powders using capillary gas chromatography with flame ionisation detection. Int. Dairy J. 2014, 37, 74–81. [Google Scholar] [CrossRef]
- Cui, S.W. (Ed.) Food Carbohydrates: Chemistry, Physical Properties, and Applications; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2005; ISBN 978-0-8493-1574-9. [Google Scholar]
- Idda, I.; Spano, N.; Ciulu, M.; Nurchi, V.M.; Panzanelli, A.; Pilo, M.I.; Sanna, G. Gas chromatography analysis of major free mono- and disaccharides in milk: Method assessment, validation, and application to real samples. J. Sep. Sci. 2016, 39, 4577–4584. [Google Scholar] [CrossRef]
- Pulinas, L.; Spanu, C.; Idda, I.; Ibba, I.; Nieddu, G.; Virdis, S.; Scarano, C.; Piras, F.; Spano, N.; Sanna, G.; et al. Production of Farmstead Lactose-Free Pecorino Di Osilo and Ricotta Cheeses from Sheep’s Milk. Ital. J. Food Saf. 2017, 6, 6353. [Google Scholar] [CrossRef]
- Idda, I.; Spano, N.; Addis, M.; Galistu, G.; Ibba, I.; Nurchi, V.M.; Pilo, M.I.; Scintu, M.F.; Piredda, G.; Sanna, G. Optimization of a newly established gas-chromatographic method for determining lactose and galactose traces: Application to Pecorino Romano cheese. J. Food Compos. Anal. 2018, 74, 89–94. [Google Scholar] [CrossRef]
- Production Specification of the Protected Designation of Origin “Pecorino Sardo”. Official Bulletin of Italian Republic, General Series, n.88 of 15.04.2014. Available online: https://ifcq.it/wp-content/uploads/pecorino-sardo/Disciplinare-Pecorino-Sardo-Dop.pdf (accessed on 18 July 2024). (In Italian).
- Larráyoz, P.; Addis, M.; Gauch, R.; Bosset, J.O. Comparison of Dynamic Headspace and Simultaneous Distillation Extraction Techniques Used for the Analysis of the Volatile Components in Three European PDO Ewes’ Milk Cheeses. Int. Dairy J. 2001, 11, 911–926. [Google Scholar] [CrossRef]
- International Conference on Harmonization, 2023. ICH Q2(R2) Guideline of Validation of Analytical Procedures. Step 5. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q2r2-guideline-validation-analytical-procedures-step-5-revision-1_en.pdf (accessed on 18 July 2024).
- Horwitz, W. Evaluation of analytical methods used for regulation of foods and drugs. Anal. Chem. 1982, 54, 67A–76A. [Google Scholar] [CrossRef]
- Monti, L.; Negri, S.; Meucci, A.; Stroppa, A.; Galli, A.; Contarini, G. Lactose, Galactose and Glucose Determination in Naturally “Lactose Free” Hard Cheese: HPAEC-PAD Method Validation. Food Chem. 2017, 220, 18–24. [Google Scholar] [CrossRef]
- Shakerdi, L.A.; Wallace, L.; Smyth, G.; Madden, N.; Clark, A.; Hendroff, U.; McGovern, M.; Connellan, S.; Gillman, B.; Treacy, E.P. Determination of the Lactose and Galactose Content of Common Foods: Relevance to Galactosemia. Food Sci. Nutr. 2022, 10, 3789–3800. [Google Scholar] [CrossRef] [PubMed]
- Ellefree Srl. Available online: https://www.ellefree.com/eng/ (accessed on 18 July 2024).
- Mannu, L.; Riu, G.; Comunian, R.; Fozzi, M.C.; Scintu, M.F. A preliminary study of lactic acid bacteria in whey starter culture and industrial Pecorino Sardo ewes’ milk cheese: PCR-identification and evolution during ripening. Int. Dairy J. 2002, 12, 17–26. [Google Scholar] [CrossRef]
- Mannu, L.; Paba, A.; Pes, M.; Scintu, M.F. Genotypic and phenotypic heterogeneity among lactococci isolated from traditional Pecorino Sardo cheese Get access Arrow. J. Appl. Microbiol. 2000, 89, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Zheng, J.; Han, X.; Jiang, Z.; Yang, B.; Yang, S.; Zhou, W.; Li, C.; Sun, M. Health implication of lactose intolerance and updates on its dietary management. Int. Dairy J. 2023, 140, 105608. [Google Scholar] [CrossRef]
- Iskandar, C.F.; Cailliez-Grimal, C.; Borges, F.; Revol-Junelles, A.M. Review of lactose and galactose metabolism in Lactic Acid Bacteria dedicated to expert genomic annotation. Trends Food Sci. Technol. 2019, 88, 121–132. [Google Scholar] [CrossRef]
- Wu, Q.; Cheung, C.K.W.; Shah, N.P. Towards Galactose Accumulation in Dairy Foods Fermented by Conventional Starter Cultures: Challenges and Strategies. Trends Food Sci. Technol. 2015, 41, 24–36. [Google Scholar] [CrossRef]
- Zhang, S.S.; Xu, Z.S.; Qin, L.H.; Kong, J. Low-sugar yogurt making by the co-cultivation of Lactobacillus plantarum WCFS1 with yogurt starter cultures. J. Dairy Sci. 2020, 103, 3045–3054. [Google Scholar] [CrossRef]
- Igoshi, A.; Sato, Y.; Kameyama, K.; Murata, M. Galactose Is the Limiting Factor for the Browning or Discoloration of Cheese during Storage. J. Nutr. Sci. Vitaminol. 2017, 63, 412–418. [Google Scholar] [CrossRef]
- Vitoria, I.; Melendreras, F.; Vázquez-Palazón, A.; Rausell, D.; Correcher, P.; González-Lamuño, D.; García-Peris, M. Lactose and Galactose Content in Spanish Cheeses: Usefulness in the Dietary Treatment of Patients with Galactosaemia. Nutrients 2023, 15, 594. [Google Scholar] [CrossRef]
- McSweeney, P.L.H. Biochemistry of Cheese Ripening. Int. J. Dairy Technol. 2004, 57, 127–144. [Google Scholar] [CrossRef]
- Papagianni, M. Metabolic engineering of lactic acid bacteria for the production of industrially important compounds. Comput. Struct. Biotechnol. J. 2012, 3, e201210003. [Google Scholar] [CrossRef] [PubMed]
- Parvez, S.; Malik, K.A.; Ah Kang, S.; Kim, H.-Y. Probiotics and Their Fermented Food Products Are Beneficial for Health. J. Appl. Microbiol. 2006, 100, 1171–1185. [Google Scholar] [CrossRef]
- Muddada, S. Tagatose: The multifunctional food ingredient and potential drug. J. Pharm. Res. 2012, 5, 626–631. [Google Scholar]
- Kandler, O. Carbohydrate Metabolism in Lactic Acid Bacteria. Antonie Leeuwenhoek 1983, 49, 209–224. [Google Scholar] [CrossRef] [PubMed]
- Troyano, E.; Villamiel, M.; Olano, A.; Sanz, J.; Martínez-Castro, I. Monosaccharides and myo-inositol in commercial milks. J. Agric. Food Chem. 1996, 44, 815–817. [Google Scholar] [CrossRef]
- Fu, B.; Huang, X.; Ma, J.; Chen, Q.; Zhang, Q.; Yu, P. Characterization of an inositol-producing Lactobacillus plantarum strain and the assessment of its probiotic potential and antibacterial activity. LWT 2022, 153, 112553. [Google Scholar] [CrossRef]
- Cheese and Processed Cheese-Determination of The Total Solids Content. 2004. Available online: https://www.iso.org/standard/35249.html (accessed on 18 July 2024).
- Soxhlet, F. Die gewichtsanalytische Bestimmung des Milchfettes. Polytech. J. 1879, 232, 461–465. [Google Scholar]
- Milk and Milk Products-Determination of Nitrogen Content—Part 1: Kjeldahl Principle and Crude Protein Calculation. 2014. Available online: https://www.iso.org/standard/61020.html (accessed on 18 July 2024).
- Cheese and Processed Cheese Products-Determination of Chloride Content-Potentiometric Titration Method. 2006. Available online: https://www.iso.org/standard/43922.html (accessed on 18 July 2024).
Intermediate Precision a | Bias b | ||||
---|---|---|---|---|---|
Analytes | LoD (mg kg−1) | LoQ (mg kg−1) | CVIp (%) | HorRatIp | Recovery (% ± SD c) |
Lactose | 0.3 | 1.0 | 12 | 1.3 | 97 ± 4 |
Galactose | 0.8 | 2.6 | 15 | 1.4 | 96 ± 6 |
Glucose | 0.4 | 1.3 | 10 | 1.1 | 93 ± 4 |
Tagatose | 0.7 | 2.3 | 13 | 1.3 | 99 ± 6 |
Myo-inositol | 0.45 | 1.5 | 14 | 1.4 | 100 ± 3 |
Dairies | SEM | p | |||||||
---|---|---|---|---|---|---|---|---|---|
Analytes | A | B | C | D | E | F | G | ||
Lactose | 90 | 4 | 5 | 4 | 8 | 70 | 5 | 10 | NS |
Galactose | 80 ab | 40 ab | 160 ab | 20 ab | 10 b | 200 a | 20 ab | 20 | ** |
Glucose | 9 | 15 | 21 | 25 | 18 | 49 | 26 | 4 | NS |
Tagatose | 9 | 25 | 24 | 2 | 10 | 52 | 3 | 5 | NS |
Myo-inositol | 40 | 35 | 38 | 34 | 47 | 47 | 50 | 2 | NS |
Production Month | SEM | p | |||
---|---|---|---|---|---|
Analytes | January | April | June | ||
Lactose | 30 | 20 | 30 | 10 | NS |
Galactose | 140 a | 50 b | 30 b | 20 | ** |
Glucose | 26 | 20 | 24 | 4 | NS |
Tagatose | 14 | 24 | 15 | 5 | NS |
Myo-inositol | 42 | 43 | 40 | 2 | NS |
Ripening Time | SEM | p | ||
---|---|---|---|---|
Analytes | Two Months | Four Months | ||
Lactose | 30 | 20 | 50 | NS |
Galactose | 100 | 100 | 100 | NS |
Glucose | 20 | 20 | 20 | NS |
Tagatose | 20 | 10 | 30 | NS |
Myo-inositol | 42 | 38 | 12 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dedola, A.S.; Caredda, M.; Addis, M.; Lai, G.; Fiori, M.; Pes, M.; Mara, A.; Sanna, G. Determining Carbohydrates for Increasing Safety: GC-FID Quantification of Lactose, Galactose, Glucose, Tagatose and Myo-Inositol in ‘Maturo’ PDO Pecorino Sardo Cheese. Separations 2024, 11, 265. https://doi.org/10.3390/separations11090265
Dedola AS, Caredda M, Addis M, Lai G, Fiori M, Pes M, Mara A, Sanna G. Determining Carbohydrates for Increasing Safety: GC-FID Quantification of Lactose, Galactose, Glucose, Tagatose and Myo-Inositol in ‘Maturo’ PDO Pecorino Sardo Cheese. Separations. 2024; 11(9):265. https://doi.org/10.3390/separations11090265
Chicago/Turabian StyleDedola, Alessio Silvio, Marco Caredda, Margherita Addis, Giacomo Lai, Myriam Fiori, Massimo Pes, Andrea Mara, and Gavino Sanna. 2024. "Determining Carbohydrates for Increasing Safety: GC-FID Quantification of Lactose, Galactose, Glucose, Tagatose and Myo-Inositol in ‘Maturo’ PDO Pecorino Sardo Cheese" Separations 11, no. 9: 265. https://doi.org/10.3390/separations11090265
APA StyleDedola, A. S., Caredda, M., Addis, M., Lai, G., Fiori, M., Pes, M., Mara, A., & Sanna, G. (2024). Determining Carbohydrates for Increasing Safety: GC-FID Quantification of Lactose, Galactose, Glucose, Tagatose and Myo-Inositol in ‘Maturo’ PDO Pecorino Sardo Cheese. Separations, 11(9), 265. https://doi.org/10.3390/separations11090265