Microextraction-Based Techniques for the Determination of Beta-Blockers in Biological Fluids: A Review
Abstract
:1. Introduction
2. Liquid-Phase Microextraction
2.1. Theoretical Considerations
2.2. Liquid–Liquid Microextraction
Analyte 1 | Sample | LPME Type/Extraction Solvent 2 | Analytical Technique 3 | LOD/LOQ (ng/mL) | Recovery (%) | Reference |
---|---|---|---|---|---|---|
ATE, MET, PRO | Human plasma | DLLME/1-butyl-3-methyl imidazolium hexa fluoro phosphate | HPLC–DAD | 2.6–3.0/8.9–9.9 | 99.37–100.21 | [27] |
CAR, MET, PRO and others | Human plasma | DLLME/Dichloromethane | HPLC–UV | 2–6/7–19 | 94–104 | [28] |
MET and others | Rat plasma | UA–DLLME/Chloroform | HPLC–UV | 13–31/43–103 | 94–104 | [29] |
PRO | Human plasma | SFOD–DLLME/1-undecanol | HPLC–FLD | 0.15/0.5 | 90–96.6 | [30] |
MET, PRO | Human plasma | TDLLME | HPLC–UV | 0.8–1/2.5–3 | 90–91 | [31] |
ATE, MET, PRO | Human plasma | DLLME/tetramethylammonium chloride-terpineol | GC–MS | 0.13–0.205/0.435–0.692 | 72–86 | [32] |
MET, PRO and others | Human urine | HF-LPME/methyl benzol | GC–MS | 0.05–0.08/0.25 | 93.79–109.04 | [33] |
ATE, BET, PRO | Human saliva | EME/mixture of di-(2-ethylhexyl) phosphate, tris-(2-ethylhexyl) phosphate and 2-nitro phenyl octyl ether | HPLC–UV | 2/10 | 94.8–102.7 | [34] |
PRO and others | Human urine, plasma | HF-LPME coupled to EME/1-octanol | HPLC–UV | 0.12/2.5 | 65.1 | [35] |
PRO | Human urine, plasma | EME/2-nitro phenyl octyl ether | CE–UV | 7/20 | 54–67 | [36] |
ATE, MET | Human urine | EME/thymol, coumarin, camphor | HPLC–DAD | 8–9/24–29 | 72.6–78.6 | [37] |
CAR, MET, PRO and others | Human urine | MS-LLLME/toluene, acetic acid | CE–UV | 0.02–0.82/0.2–0.5 | 91.1–114 | [38] |
CART, BIS, PRO, SOT | Human urine | CM-LPME/toluene | HPLC–UV | 5–10/50 | 91.1–109.4 | [39] |
BIS | Human plasma | TPSBME/n-octanol | HPLC–UV | 3/10 | 61.4–66.7 | [40] |
2.3. Dispersive Liquid–Liquid Microextraction
2.4. Hollow Fiber Liquid-Phase Microextraction
2.5. Electromembrane Extraction
2.6. Other Liquid-Phase Microextraction
3. Sorbent-Based Microextraction
3.1. Theoretical Considerations
3.2. Solid-Phase Microextraction
3.3. Microextraction by Packed Sorbent
3.4. Dispersive Solid-Phase (Micro)extraction
3.5. Other Sorbent-Based Microextraction Techniques
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 4 November 2024).
- Kumar, V.; Prasad, B.; Singh, S. Pharmaceutical Issues in the Development of a Polypill for the Treatment of Cardiovascular Diseases. Drug. Discov. Today Ther. Strateg. 2008, 5, 63–71. [Google Scholar] [CrossRef]
- Szentmiklosi, A.J.; Szentandrassy, N.; Hegyi, B.; Horvath, B.; Magyar, J.; Banyasz, T.; Nanasi, P.P. Chemistry, Physiology, and Pharmacology of β-Adrenergic Mechanisms in the Heart. Why Are β-Blocker Antiarrhythmics Superior? Curr. Pharm. Des. 2015, 21, 1030–1041. [Google Scholar] [CrossRef]
- Fici, F.; Robles, N.R.; Tengiz, I.; Grassi, G. Beta-Blockers and Hypertension: Some Questions and Answers. High Blood Press. Cardiovasc. Prev. 2023, 30, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Shrivastav, P.S.; Buha, S.M.; Sanyal, M. Detection and Quantitation of β-Blockers in Plasma and Urine. Bioanalysis 2010, 2, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Clément, K.; Vaisse, C.; Manning, B.S.J.; Basdevant, A.; Guy-Grand, B.; Ruiz, J.; Silver, K.D.; Shuldiner, A.R.; Froguel, P.; Strosberg, A.D. Genetic Variation in the β3-Adrenergic Receptor and an Increased Capacity to Gain Weight in Patients with Morbid Obesity. N. Engl. J. Med. 1995, 333, 352–354. [Google Scholar] [CrossRef] [PubMed]
- Freemantle, N.; Cleland, J.; Young, P.; Mason, J.; Harrison, J. β Blockade after Myocardial Infarction: Systematic Review and Meta Regression Analysis. Br. Med. J. 1999, 318, 1730–1737. [Google Scholar] [CrossRef] [PubMed]
- Yıldırım, S.; Erkmen, C.; Uslu, B. Novel Trends in Analytical Methods for β-Blockers: An Overview of Applications in the Last Decade. Crit Rev Anal Chem 2022, 52, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Ong, H.T. β Blockers in Hypertension and Cardiovascular Disease. Br. Med. J. 2007, 334, 946. [Google Scholar] [CrossRef]
- USADA. World Anti-Doping Agency (WADA) Prohibited List. Available online: https://www.usada.org/athletes/substances/prohibited-list/ (accessed on 2 December 2024).
- Ingle, R.G.; Zeng, S.; Jiang, H.; Fang, W.J. Current Developments of Bioanalytical Sample Preparation Techniques in Pharmaceuticals. J. Pharm. Anal. 2022, 12, 517–529. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, M.; Kabir, A.; Perrucci, M.; Ibrahim Ulusoy, H.; Ulusoy, S.; Manousi, N.; Samanidou, V.; Ali, I.; Irem Kaya, S.; Mansour, F.R.; et al. Recent Trends in Sampling and Sorbent-Based Sample Preparation Procedures for Bioanalytical Applications. Microchem. J. 2024, 207, 111903. [Google Scholar] [CrossRef]
- Li, N.; Zhang, Z.; Li, G. Recent Advance on Microextraction Sampling Technologies for Bioanalysis. J. Chromatogr. A 2024, 1720, 464775. [Google Scholar] [CrossRef]
- Arthur, C.L.; Pawliszyn, J. Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Sevgen, S.; Kara, G.; Kir, A.S.; Şahin, A.; Boyaci, E. A Critical Review of Bioanalytical and Clinical Applications of Solid Phase Microextraction. J. Pharm. Biomed. Anal. 2025, 252, 116487. [Google Scholar] [CrossRef] [PubMed]
- Boyaci, E.; Rodríguez-Lafuente, Á.; Gorynski, K.; Mirnaghi, F.; Souza-Silva, É.A.; Hein, D.; Pawliszyn, J. Sample Preparation with Solid Phase Microextraction and Exhaustive Extraction Approaches: Comparison for Challenging Cases. Anal. Chim. Acta 2015, 873, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Hu, C.; Li, H.; Liu, H.; Xiang, Y.; Wu, G.; Li, Y. Nanomaterial-Based Magnetic Solid-Phase Extraction in Pharmaceutical and Biomedical Analysis. J. Pharm. Biomed. Anal. 2025, 253, 116543. [Google Scholar] [CrossRef] [PubMed]
- Castañeda, F.N.; Prince, D.L.; Peirano, S.R.; Giovannoni, S.; Echevarría, R.N.; Keunchkarian, S.; Reta, M. New Sorbents for Sample Pretreatment: Development and Applications. Trends Anal. Chem. 2024, 180, 117924. [Google Scholar] [CrossRef]
- Sarvestani, M.R.J.; Madrakian, T.; Afkhami, A. Developed Electrochemical Sensors for the Determination of Beta-Blockers: A Comprehensive Review. J. Electroanal. Chem. 2021, 899, 115666. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, H.; Chen, H.; Chen, X. Recent Developments in Chiral Analysis of β-Blocker Drugs by Capillary Electromigration Techniques. Electrophoresis 2014, 35, 3345–3354. [Google Scholar] [CrossRef] [PubMed]
- Rutkowska, M.; Płotka-Wasylka, J.; Sajid, M.; Andruch, V. Liquid–Phase Microextraction: A Review of Reviews. Microchem. J. 2019, 149, 103989. [Google Scholar] [CrossRef]
- Sarafraz-Yazdi, A.; Amiri, A. Liquid-Phase Microextraction. Trends Anal. Chem. 2010, 29, 1–14. [Google Scholar] [CrossRef]
- Mohamed, A.M.I.; Abdel-Wadood, H.M.; Mousa, H.S. Simultaneous Determination of Dorzolomide and Timolol in Aqueous Humor: A Novel Salting out Liquid–Liquid Microextraction Combined with HPLC. Talanta 2014, 130, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.M.I.; Abdel-Wadood, H.M.; Mousa, H.S. Dual Design Spaces for Micro-Extraction Together with the Core–Shell Chromatographic Determination of Dorzolamide and Timolol in Rabbit Plasma: An Example of Quality by Design Method Development. New J. Chem. 2016, 40, 8424–8437. [Google Scholar] [CrossRef]
- Farahmand, F.; Ghasemzadeh, B.; Naseri, A. Air-Assisted Liquid–Liquid Microextraction Using Floating Organic Droplet Solidification for Simultaneous Extraction and Spectrophotometric Determination of Some Drugs in Biological Samples through Chemometrics Methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 188, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.A.C.E.; Reis, N.F.A.; de Oliveira Pacheco, I.C.P.; Martins, M.A.P.; Gloria, M.B.A.; Pianetti, G.A.; Fernandes, C. Vortex-Assisted Liquid-Liquid Microextraction Combined with Liquid Chromatography Tandem Mass Spectrometry for Simultaneous Determination of Cardiovascular Drugs in Human Plasma. J. Pharm. Biomed. Anal. 2022, 217, 114845. [Google Scholar] [CrossRef]
- Raoufi, A.; Ebrahimi, M.; Bozorgmehr, M.R. Application of Response Surface Modeling and Chemometrics Methods for the Determination of Atenolol, Metoprolol and Propranolol in Blood Sample Using Dispersive Liquid-Liquid Microextraction Combined with HPLC-DAD. J. Chromatogr. B 2019, 1132, 121823. [Google Scholar] [CrossRef] [PubMed]
- Jouyban, A.; Sorouraddin, M.H.; Farajzadeh, M.A.; Somi, M.H.; Fazeli-Bakhtiyari, R. Determination of Five Antiarrhythmic Drugs in Human Plasma by Dispersive Liquid–Liquid Microextraction and High-Performance Liquid Chromatography. Talanta 2015, 134, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Atia, N.N.; Bakr Ali, M.F. Ultrasound Assisted Dispersive Liquid-Liquid Microextraction Coupled with High Performance Liquid Chromatography Designated for Bioavailability Studies of Felodipine Combinations in Rat Plasma. J. Chromatogr. B 2017, 1046, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Farhadi, K.; Hatami, M.; Forough, M.; Molaei, R. Dispersive Liquid-Liquid Microextraction of Propranolol Enantiomers from Human Plasma Based on the Solidification of a Floating Organic Droplet. Bioanalysis 2013, 5, 701–710. [Google Scholar] [CrossRef]
- Hemmati, M.; Asghari, A.; Bazregar, M.; Rajabi, M. Rapid Determination of Some Beta-Blockers in Complicated Matrices by Tandem Dispersive Liquid-Liquid Microextraction Followed by High Performance Liquid Chromatography. Anal. Bioanal. Chem. 2016, 408, 8163–8176. [Google Scholar] [CrossRef]
- Jouyban, A.; Ali Farajzadeh, M.; Afshar Mogaddam, M.R.; Khodadadeian, F.; Nemati, M.; Khoubnasabjafari, M. In-Situ Formation of a Hydrophobic Deep Eutectic Solvent Based on Alpha Terpineol and Its Application in Liquid-Liquid Microextraction of Three β-Blockers from Plasma Samples. Microchem. J. 2021, 170, 106687. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, L.; Wei, Z.; Chen, S.; Chen, G. Analysis of β-Agonists and β-Blockers in Urine Using Hollow Fibre-Protected Liquid-Phase Microextraction with in Situ Derivatization Followed by Gas Chromatography/Mass Spectrometry. J. Chromatogr. A 2009, 1216, 5340–5346. [Google Scholar] [CrossRef] [PubMed]
- Seidi, S.; Yamini, Y.; Rezazadeh, M. Electrically Enhanced Microextraction for Highly Selective Transport of Three β-Blocker Drugs. J. Pharm. Biomed. Anal. 2011, 56, 859–866. [Google Scholar] [CrossRef]
- Rahimi, A.; Nojavan, S.; Maghsoudi, M. Analysis of Basic Drugs in Biological Samples Using Dynamic Single-Interface Hollow Fiber Liquid-Phase Microextraction Combined with Fast Electromembrane Extraction. Microchem. J. 2020, 157, 105001. [Google Scholar] [CrossRef]
- Tabani, H.; Fakhari, A.R.; Shahsavani, A.; Gharari Alibabaou, H. Electrically Assisted Liquid-Phase Microextraction Combined with Capillary Electrophoresis for Quantification of Propranolol Enantiomers in Human Body Fluids. Chirality 2014, 26, 260–267. [Google Scholar] [CrossRef]
- Abbasi, H.; Abbasi, S.; Haeri, S.A.; Rezayati, S.; Kalantari, F.; Heravi, M.R.P. Electromembrane Extraction Using Biodegradable Deep Eutectic Solvents and Agarose Gel as Green and Organic Solvent-Free Strategies for the Determination of Polar and Non-Polar Bases Drugs from Biological Samples: A Comparative Study. Anal. Chim. Acta 2022, 1222, 339986. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; He, M.; Chen, B.; Yang, Q.; Hu, B. Membrane Supported Liquid-Liquid-Liquid Microextraction Combined with Field-Amplified Sample Injection CE-UV for High-Sensitivity Analysis of Six Cardiovascular Drugs in Human Urine Sample. Electrophoresis 2016, 37, 1201–1211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Su, X.; Zhang, C.; Ouyang, L.; Xie, Q.; Ma, M.; Yao, S. Extraction and Preconcentration of β-Blockers in Human Urine for Analysis with High Performance Liquid Chromatography by Means of Carrier-Mediated Liquid Phase Microextraction. Talanta 2010, 82, 984–992. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Q.; Ji, W.; Jiang, S.; Ma, C.; Wang, C.; Ye, J.; Cui, Y.; Liu, W.; Bi, K.; et al. Three-Phase Solvent Bar Microextraction Combined with HPLC for Extraction and Determination of Plasma Protein Binding of Bisoprolol. Chromatographia 2011, 73, 897–903. [Google Scholar] [CrossRef]
- Rezaee, M.; Assadi, Y.; Milani Hosseini, M.R.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of Organic Compounds in Water Using Dispersive Liquid–Liquid Microextraction. J. Chromatogr. A 2006, 1116, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Faraji, H. Advancements in Overcoming Challenges in Dispersive Liquid-Liquid Microextraction: An Overview of Advanced Strategies. Trends Anal. Chem. 2024, 170, 117429. [Google Scholar] [CrossRef]
- Edgar, B.; Lundborg, P.; Regårdh, C.G. Clinical Pharmacokinetics of Felodipine: A Summary. Drugs 1987, 34, 16–27. [Google Scholar] [CrossRef]
- Lee, J.; Lee, H.K.; Rasmussen, K.E.; Pedersen-Bjergaard, S. Environmental and Bioanalytical Applications of Hollow Fiber Membrane Liquid-Phase Microextraction: A Review. Anal. Chim. Acta 2008, 624, 253–268. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.-F.; Ma, H.-Y.; Yi, L.-X.; Liu, Y.-F. Determination of the Concentration of Metoprolol Tartrate in Human Plasma by HPLC Coupled with Hollow Fiber Liquid Phase Microextraction Method. Pharm. Care Res. 2012, 12, 374–377. [Google Scholar] [CrossRef]
- Gjelstad, A.; Rasmussen, K.E.; Pedersen-Bjergaard, S. Electrokinetic Migration across Artificial Liquid Membranes. Tuning the Membrane Chemistry to Different Types of Drug Substances. J. Chromatogr. A 2006, 1124, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.O.; de Araújo, G.L.; Simas, R.C.; Chaves, A.R. Electromembrane Extraction (EME): Fundamentals and Applications. Talanta Open 2023, 7, 100200. [Google Scholar] [CrossRef]
- Vargas Medina, D.A.; Cardoso, A.T.; Maciel, E.V.S.; Lanças, F.M. Current Materials for Miniaturized Sample Preparation: Recent Advances and Future Trends. Trends Anal. Chem. 2023, 165, 117120. [Google Scholar] [CrossRef]
- Zheng, J.; Kuang, Y.; Zhou, S.; Gong, X.; Ouyang, G. Latest Improvements and Expanding Applications of Solid-Phase Microextraction. Anal. Chem. 2023, 95, 218–237. [Google Scholar] [CrossRef]
- Carasek, E.; Morés, L.; Merib, J. Basic Principles, Recent Trends and Future Directions of Microextraction Techniques for the Analysis of Aqueous Environmental Samples. Trends Environ. Anal. Chem. 2018, 19, e00060. [Google Scholar] [CrossRef]
- Carasek, E.; Morés, L.; Huelsmann, R.D. Disposable Pipette Extraction: A Critical Review of Concepts, Applications, and Directions. Anal. Chim. Acta 2022, 1192, 339383. [Google Scholar] [CrossRef]
- Firoozichahak, A.; Soleymani-ghoozhdi, D.; Alizadeh, S.; Rahimpoor, R. Microextraction by Packed Sorbents (MEPS): Fundamental Principles and Nanomaterial-Based Adsorbents. Trends Anal. Chem. 2024, 181, 118043. [Google Scholar] [CrossRef]
- He, M.; Wang, Y.; Zhang, Q.; Zang, L.; Chen, B.; Hu, B. Stir Bar Sorptive Extraction and Its Application. J. Chromatogr. A 2021, 1637, 461810. [Google Scholar] [CrossRef] [PubMed]
- Elattar, R.H.; El-Deen, A.K. Porous Material-Based QuEChERS: Exploring New Horizons in Sample Preparation. Trends Anal. Chem. 2024, 172, 117571. [Google Scholar] [CrossRef]
- Capriotti, A.L.; Cavaliere, C.; Giansanti, P.; Gubbiotti, R.; Samperi, R.; Laganà, A. Recent Developments in Matrix Solid-Phase Dispersion Extraction. J. Chromatogr. A 2010, 1217, 2521–2532. [Google Scholar] [CrossRef]
- Chisvert, A.; Cárdenas, S.; Lucena, R. Dispersive Micro-Solid Phase Extraction. Trends Anal. Chem. 2019, 112, 226–233. [Google Scholar] [CrossRef]
- Ma, X.; Wang, L.; He, Q.; Sun, Q.; Yin, D.; Zhang, Y. A Review on Recent Developments and Applications of Green Sorbents-Based Solid Phase Extraction Techniques. Adv. Sample Prep. 2023, 6, 100065. [Google Scholar] [CrossRef]
- Yahaya, N.; Zain, N.N.M.; Mohamed, A.H.; Kamaruzaman, S.; Miskam, M.; Jain, R.; Raoov, M.; Abdullah, W.N.W. Nanosorbents in Solid-Phase Extraction Techniques for Bioanalysis: A Review. Microchem. J. 2024, 207, 112170. [Google Scholar] [CrossRef]
- Vuckovic, D.; Shirey, R.; Chen, Y.; Sidisky, L.; Aurand, C.; Stenerson, K.; Pawliszyn, J. In Vitro Evaluation of New Biocompatible Coatings for Solid-Phase Microextraction: Implications for Drug Analysis and in Vivo Sampling Applications. Anal. Chim. Acta 2009, 638, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Boyaci, E.; Gorynski, K.; Rodriguez-Lafuente, A.; Bojko, B.; Pawliszyn, J. Introduction of Solid-Phase Microextraction as a High-Throughput Sample Preparation Tool in Laboratory Analysis of Prohibited Substances. Anal. Chim. Acta 2014, 809, 69–81. [Google Scholar] [CrossRef]
- Vuckovic, D. High-Throughput Solid-Phase Microextraction in Multi-Well-Plate Format. Trends Anal. Chem. 2013, 45, 136–153. [Google Scholar] [CrossRef]
- Liu, W.; Yan, Z.; Huang, X.; Chen, J.; Lu, M.; Zhang, L.; Chen, G. Simultaneous Determination of Blockers and Agonists by On-Fiber Derivatization in Self-Made Solid-Phase Microextraction Coating Fiber. Talanta 2015, 132, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, L.; Chen, S.; Duan, H.; Chen, X.; Wei, Z.; Chen, G. A Method by Homemade OH/TSO-PMHS Fibre Solid-Phase Microextraction Coupling with Gas Chromatography–Mass Spectrometry for Analysis of Antiestrogens in Biological Matrices. Anal. Chim. Acta 2009, 631, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Goryński, K.; Kiedrowicz, A.; Bojko, B. Development of SPME-LC–MS Method for Screening of Eight Beta-Blockers and Bronchodilators in Plasma and Urine Samples. J. Pharm. Biomed. Anal. 2016, 127, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Baker, D.; Murnane, D.; Spooner, N.; Gerhard, U. Solid-Phase Microextraction for Assessment of Plasma Protein Binding, a Complement to Rapid Equilibrium Dialysis. Bioanalysis 2021, 13, 1101–1111. [Google Scholar] [CrossRef]
- Wang, J.; Li, C.; Li, P. A Small Footprint and Robust Interface for Solid Phase Microextraction and Mass Spectrometry Based on Vibrating Sharp-Edge Spray Ionization. J. Am. Soc. Mass Spectrom. 2022, 33, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Thirukumaran, M.; Singh, V.; Arao, Y.; Fujito, Y.; Nishimura, M.; Ogura, T.; Pawliszyn, J. Solid-Phase Microextraction- Probe Electrospray Ionization Devices for Screening and Quantitating Drugs of Abuse in Small Amounts of Biofluids. Talanta 2021, 231, 122317. [Google Scholar] [CrossRef] [PubMed]
- Moosavi, N.S.; Yamini, Y.; Ghaemmaghami, M. MXene Nanosheets Woven in Polyacrylonitrile Nanofiber Yarns Aligned Spider Web as a Highly Efficient Sorbent for In-Tube Solid Phase Microextraction of Beta-Blockers from Biofluids. J. Chromatogr. A 2023, 1706, 464232. [Google Scholar] [CrossRef] [PubMed]
- Rosa, M.A.; De Faria, H.D.; Carvalho, D.T.; Figueiredo, E.C. Biological Sample Preparation by Using Restricted-Access Nanoparticles Prepared from Bovine Serum Albumin: Application to Liquid Chromatographic Determination of β-Blockers. Microchim. Acta 2019, 186, 647. [Google Scholar] [CrossRef]
- Abdel-Rehim, M. New Trend in Sample Preparation: On-Line Microextraction in Packed Syringe for Liquid and Gas Chromatography Applications: I. Determination of Local Anaesthetics in Human Plasma Samples Using Gas Chromatography–Mass Spectrometry. J. Chromatogr. B 2004, 801, 317–321. [Google Scholar] [CrossRef]
- Šrámková, I.; Chocholouš, P.; Sklenářová, H.; Šatínský, D. On-Line Coupling of Micro-Extraction by Packed Sorbent with Sequential Injection Chromatography System for Direct Extraction and Determination of Betaxolol in Human Urine. Talanta 2015, 143, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Šatínský, D.; Sobek, V.; Lhotská, I.; Solich, P. Micro-Extraction by Packed Sorbent Coupled On-Line to a Column-Switching Chromatography System—A Case Study on the Determination of Three Beta-Blockers in Human Urine. Microchem. J. 2019, 147, 60–66. [Google Scholar] [CrossRef]
- Abuzooda, T.; Amini, A.; Abdel-Rehim, M. Graphite-Based Microextraction by Packed Sorbent for Online Extraction of β-Blockers from Human Plasma Samples. J. Chromatogr. B 2015, 992, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Elmongy, H.; Ahmed, H.; Wahbi, A.A.; Amini, A.; Colmsjö, A.; Abdel-Rehim, M. Determination of Metoprolol Enantiomers in Human Plasma and Saliva Samples Utilizing Microextraction by Packed Sorbent and Liquid Chromatography-Tandem Mass Spectrometry. Biomed. Chromatogr. 2016, 30, 1309–1317. [Google Scholar] [CrossRef]
- Mompó-Roselló, O.; Ribera-Castelló, A.; Simó-Alfonso, E.F.; Ruiz-Angel, M.J.; García-Alvarez-Coque, M.C.; Herrero-Martínez, J.M. Extraction of β-Blockers from Urine with a Polymeric Monolith Modified with 1-Allyl-3-Methylimidazolium Chloride in Spin Column Format. Talanta 2020, 214, 120860. [Google Scholar] [CrossRef]
- Elmongy, H.; Ahmed, H.; Wahbi, A.A.; Koyi, H.; Abdel-Rehim, M. Online Post-Column Solvent Assisted and Direct Solvent-Assisted Electrospray Ionization for Chiral Analysis of Propranolol Enantiomers in Plasma Samples. J. Chromatogr. A 2015, 1418, 110–118. [Google Scholar] [CrossRef]
- Hemmati, M.; Rajabi, M.; Asghari, A. Ultrasound-Promoted Dispersive Micro Solid-Phase Extraction of Trace Anti-Hypertensive Drugs from Biological Matrices Using a Sonochemically Synthesized Conductive Polymer Nanocomposite. Ultrason. Sonochem. 2017, 39, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Farhadi, B.; Ebrahimi, M.; Morsali, A. Pre-Concentration and Sensitive Determination of Propranolol and Metoprolol Using Dispersive Solid-Phase Microextraction and High-Performance Liquid Chromatography in Biological, Wastewater, and Pharmaceutical Samples. Chem. Methodol. 2022, 6, 750–761. [Google Scholar] [CrossRef]
- Jamshidi, S.; Rofouei, M.K.; Thorsen, G. Using Magnetic Core-Shell Nanoparticles Coated with an Ionic Liquid Dispersion Assisted by Effervescence Powder for the Micro-Solid-Phase Extraction of Four Beta Blockers from Human Plasma by Ultra High Performance Liquid Chromatography with Mass Spectrometry Detection. J. Sep. Sci. 2019, 42, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Abadi, M.A.A.; Masrournia, M.; Abedi, M.R. Simultaneous Extraction and Preconcentration of Three Beta (β)-Blockers in Biological Samples with an Efficient Magnetic Dispersive Micro-Solid Phase Extraction Procedure Employing in Situ Sorbent Modification. Microchem. J. 2021, 163, 105937. [Google Scholar] [CrossRef]
- Tu, X.; Shi, X.; Zhao, M.; Zhang, H. Molecularly Imprinted Dispersive Solid-Phase Microextraction Sorbents for Direct and Selective Drug Capture from the Undiluted Bovine Serum. Talanta 2021, 226, 122142. [Google Scholar] [CrossRef]
- Ballesteros-Esteban, T.; Reyes-Gallardo, E.M.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Determination of Propranolol and Carvedilol in Urine Samples Using a Magnetic Polyamide Composite and LC–MS/MS. Bioanalysis 2016, 8, 2115–2123. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Wang, Y.; Liu, X.; Fu, R.; Yang, L. Rapid and Sensitive Tapered-Capillary Microextraction Combined to on-Line Sample Stacking-Capillary Electrophoresis for Extraction and Quantification of Two Beta-Blockers in Human Urine. Talanta 2018, 180, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Mazaraki, K.; Kabir, A.; Furton, K.G.; Fytianos, K.; Samanidou, V.F.; Zacharis, C.K. Fast Fabric Phase Sorptive Extraction of Selected β-Blockers from Human Serum and Urine Followed by UHPLC-ESI-MS/MS Analysis. J. Pharm. Biomed. Anal. 2021, 199, 114053. [Google Scholar] [CrossRef] [PubMed]
- Kabir, A.; Furton, K.G. Fabric Phase Sorptive Extractor (FPSE). U.S. Patent 20140274660A1, 15 March 2016. [Google Scholar]
- Ali, I.; Hussain, A.; Alajmi, M.F. SPMMTE and Q-TOF–UPLC–MS for Monitoring of Atenolol and Atorvastatin in Human Plasma Using Pentafluoro Phenyl Column. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 751–757. [Google Scholar] [CrossRef]
- Farhadi, K.; Firuzi, M.; Hatami, M. Stir Bar Sorptive Extraction of Propranolol from Plasma Samples Using a Steel Pin Coated with a Polyaniline and Multiwall Carbon Nanotube Composite. Microchim. Acta 2015, 182, 323–330. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nisyriou, S.; Zacharis, C.K. Microextraction-Based Techniques for the Determination of Beta-Blockers in Biological Fluids: A Review. Separations 2025, 12, 14. https://doi.org/10.3390/separations12010014
Nisyriou S, Zacharis CK. Microextraction-Based Techniques for the Determination of Beta-Blockers in Biological Fluids: A Review. Separations. 2025; 12(1):14. https://doi.org/10.3390/separations12010014
Chicago/Turabian StyleNisyriou, Styliani, and Constantinos K. Zacharis. 2025. "Microextraction-Based Techniques for the Determination of Beta-Blockers in Biological Fluids: A Review" Separations 12, no. 1: 14. https://doi.org/10.3390/separations12010014
APA StyleNisyriou, S., & Zacharis, C. K. (2025). Microextraction-Based Techniques for the Determination of Beta-Blockers in Biological Fluids: A Review. Separations, 12(1), 14. https://doi.org/10.3390/separations12010014