Production of Algae-Derived Biochar and Its Application in Pollutants Adsorption—A Mini Review
Abstract
:1. Introduction
2. Algae Biomasses
2.1. Classification of Algae
2.2. Components of Algae
3. Preparation and Modification of Algal Biochar
3.1. Preparation of Algal Biochar
3.2. Modification of Algae Biochar
4. Physical and Chemical Characteristics of Algal Biochar
4.1. Physical Properties of Algal Biochar
4.2. Chemical Properties of Algal Biochar
5. Adsorption Applications of Algal Biochar in Water Treatment
5.1. Adsorption of Nutrients (Nitrogen, Phosphorus)
5.2. Adsorption of Heavy Metals
5.3. Adsorption of Organic Pollutants
6. Environmental Implications of Algal Biochar
7. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karthik, V.; Kumar, P.S.; Vo, D.V.N.; Sindhu, J.; Sneka, D.; Subhashini, B.; Saravanan, K.; Jeyanthi, J. Hydrothermal production of algal biochar for environmental and fertilizer applications: A review. Environ. Chem. Lett. 2021, 19, 1025–1042. [Google Scholar] [CrossRef]
- Farghali, M.; Mohamed, I.M.A.; Osman, A.I.; Rooney, D.W. Seaweed for climate mitigation, wastewater treatment, bioenergy, bioplastic, biochar, food, pharmaceuticals, and cosmetics: A review. Environ. Chem. Lett. 2023, 21, 97–152. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Sun, Y.; Rathour, R.; Pandey, A.; Thakur, I.S.; Tsang, D.C.W. Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. Sci. Total Environ. 2020, 716, 137116–137132. [Google Scholar] [CrossRef]
- Rajak, R.C.; Jacob, S.; Kim, B.S. A holistic zero waste biorefinery approach for macroalgal biomass utilization: A review. Sci. Total Environ. 2020, 716, 137067. [Google Scholar] [CrossRef]
- Chen, Y.D.; Liu, F.; Ren, N.Q.; Ho, S.H. Revolutions in algal biochar for different applications:State-of-the-art techniques and future scenarios. Chin. Chem. Lett. 2020, 31, 2591–2602. [Google Scholar] [CrossRef]
- Gobler, C.J. Climate Change and Harmful Algal Blooms: Insights and perspective. Harmful Algae 2020, 91, 101731–101734. [Google Scholar] [CrossRef]
- Gu, H.; Wu, Y.; Lu, S.; Lu, D.; Tang, Y.Z.; Qi, Y. Emerging harmful algal bloom species over the last four decades in China. Harmful Algae 2022, 111, 102059–102068. [Google Scholar] [CrossRef]
- Aguilera, A.; Almanza, V.; Haakonsson, S.; Palacio, H.; Rodas, G.A.B.; Barros, M.U.G.; Capelo-Neto, J.; Urrutia, R.; Aubriot, L.; Bonilla, S. Cyanobacterial bloom monitoring and assessment in Latin America. Harmful Algae 2023, 125, 102429–102441. [Google Scholar] [CrossRef]
- Hallegraeff, G.M.; Anderson, D.M.; Belin, C.; Bottein, M.-Y.D.; Bresnan, E.; Chinain, M.; Enevoldsen, H.; Iwataki, M.; Karlson, B.; McKenzie, C.H.; et al. Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts. Commun. Earth Environ. 2021, 2, 117. [Google Scholar] [CrossRef]
- Griffith, A.W.; Gobler, C.J. Harmful algal blooms: A climate change co-stressor in marine and freshwater ecosystems. Harmful Algae 2020, 91, 101590–101601. [Google Scholar] [CrossRef]
- Ramesh, B.; Saravanan, A.; Kumar, P.S.; Yaashikaa, P.R.; Thamarai, P.; Shaji, A.; Rangasamy, G. A review on algae biosorption for the removal of hazardous pollutants from wastewater: Limiting factors, prospects and recommendations*. Environ. Pollut. 2023, 327, 121572. [Google Scholar] [CrossRef] [PubMed]
- Aghoghovwia, M.P.; Hardie, A.G.; Rozanov, A.B. Characterisation, adsorption and desorption of ammonium and nitrate of biochar derived from different feedstocks. Environ. Technol. 2022, 43, 774–787. [Google Scholar] [CrossRef] [PubMed]
- Razzak, S.A. Municipal solid and plastic waste derived high-performance biochar production: A comprehensive review. J. Anal. Appl. Pyrolysis 2024, 181, 106622. [Google Scholar] [CrossRef]
- Cay, A.; Yanik, J.; Akduman, C.; Duman, G.; Ertas, H. Application of textile waste derived biochars onto cotton fabric for improved performance and functional properties. J. Clean. Prod. 2020, 251, 119664. [Google Scholar] [CrossRef]
- Al Masud, M.A.; Shin, W.S.; Sarker, A.; Septian, A.; Das, K.; Deepo, D.M.; Iqbal, M.A.; Islam, A.R.M.T.; Malafaia, G. A critical review of sustainable application of biochar for green remediation: Research uncertainty and future directions. Sci. Total Environ. 2023, 904, 166813. [Google Scholar] [CrossRef]
- Martiny, T.R.; Avila, L.B.; Rodrigues, T.L.; Tholozan, L.V.; Meili, L.; de Almeida, A.R.F.; da Rosa, G.S. From waste to wealth: Exploring biochar’s role in environmental remediation and resource optimization. J. Clean. Prod. 2024, 453, 142237. [Google Scholar] [CrossRef]
- Kusuma, H.S.; Az-Zahra, K.D.; Saputri, R.W.; Utomo, M.D.P.; Jaya, D.E.C.; Amenaghawon, A.N.; Darmokoesoemo, H. Unlocking the potential of agricultural waste as biochar for sustainable biodiesel production: A comprehensive review. Bioresour. Technol. Rep. 2024, 26, 101848. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Meca, S.; Zhang, S.; Clarens, F.; Hu, X. Understanding the dependence of biochar properties on different types of biomass. Waste Manag. 2024, 182, 142–163. [Google Scholar] [CrossRef]
- Mahari, W.A.W.; Waiho, K.; Azwar, E.; Fazhan, H.; Peng, W.; Ishak, S.D.; Tabatabaei, M.; Yek, P.N.Y.; Almomani, F.; Aghbashlo, M.; et al. A state-of-the-art review on producing engineered biochar from shellfish waste and its application in aquaculture wastewater treatment. Chemosphere 2022, 288, 132559. [Google Scholar] [CrossRef]
- Uday, V.; Harikrishnan, P.S.; Deoli, K.; Zitouni, F.; Mahlknecht, J.; Kumar, M. Current trends in production, morphology, and real-world environmental applications of biochar for the promotion of sustainability. Bioresour. Technol. 2022, 359, 127467. [Google Scholar] [CrossRef]
- Corral-Bobadilla, M.; Lostado-Lorza, R.; Somovilla-Gomez, F.; Escribano-Garcia, R. Biosorption of Cu(II) ions as a method for the effective use of activated carbon from grape stalk waste: RMS optimization and kinetic studies. Energ. Source Part A 2022, 44, 4706–4726. [Google Scholar] [CrossRef]
- Chacon, F.J.; Cayuela, M.L.; Sanchez-Monedero, M.A. Paracetamol degradation pathways in soil after biochar addition*. Environ. Pollut. 2022, 307, 119546. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Zhang, J.; Peng, C.; Cai, Z. Synthesis of modified sludge biochar for flue gas denitration: Biochar properties, synergistic efficiency and mechanism. Waste Manag. 2023, 170, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Neogi, S.; Sharma, V.; Khan, N.; Chaurasia, D.; Ahmad, A.; Chauhan, S.; Singh, A.; You, S.; Pandey, A.; Bhargava, P.C. Sustainable biochar: A facile strategy for soil and environmental restoration, energy generation, mitigation of global climate change and circular bioeconomy. Chemosphere 2022, 293, 133474. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Jadhav, S.; Selvam, S.M.; Krishnamoorthy, N.; Balasubramanian, P. Biochar-based materials for sustainable energy applications: A comprehensive review. J. Environ. Chem. Eng. 2024, 12, 114553. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Preparation, modification and environmental application of biochar: A review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Haris, M.; Hamid, Y.; Usman, M.; Wang, L.; Saleem, A.; Su, F.; Guo, J.; Li, Y. Crop-residues derived biochar: Synthesis, properties, characterization and application for the removal of trace elements in soils. J. Hazard. Mater. 2021, 416, 126212–126232. [Google Scholar] [CrossRef]
- Kamali, M.; Appels, L.; Kwon, E.E.; Aminabhavi, T.M.; Dewil, R. Biochar in water and wastewater treatment-a sustainability assessment. Chem. Eng. J. 2021, 420, 129946–129966. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, L.; Li, H.; Westholm, L.J.; Carvalho, L.; Thorin, E.; Yu, Z.; Yu, X.; Skreiberg, Ø. A critical review on production, modification and utilization of biochar. J. Anal. Appl. Pyrolysis 2022, 161, 105405. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, S.; Liu, T.; Fu, W.; Li, B. A review of biochar prepared by microwave-assisted pyrolysis of organic wastes. Sustain. Energy Technol. Assess. 2022, 50, 101873. [Google Scholar] [CrossRef]
- Fu, Z.; Zhao, J.; Guan, D.; Wang, Y.; Xie, J.; Zhang, H.; Sun, Y.; Zhu, J.; Guo, L. A comprehensive review on the preparation of biochar from digestate sources and its application in environmental pollution remediation. Sci. Total Environ. 2024, 912, 168822. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.J.; Hameed, B.H. Insight into the co-pyrolysis of different blended feedstocks to biochar for the adsorption of organic and inorganic pollutants: A review. J. Clean. Prod. 2020, 265, 121762. [Google Scholar] [CrossRef]
- Rajapaksha, A.U.; Chen, S.S.; Tsang, D.C.W.; Zhang, M.; Vithanage, M.; Mandal, S.; Gao, B.; Bolan, N.S.; Ok, Y.S. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere 2016, 148, 276–291. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Sharma, R.; Pant, D.; Malaviya, P. Engineered algal biochar for contaminant remediation and electrochemical applications. Sci. Total Environ. 2021, 774, 145676–145700. [Google Scholar] [CrossRef]
- Ravindiran, G.; Rajamanickam, S.; Janardhan, G.; Hayder, G.; Alagumalai, A.; Mahian, O.; Lam, S.S.; Sonne, C. Production and modifications of biochar to engineered materials and its application for environmental sustainability: A review. Biochar 2024, 6, 62. [Google Scholar] [CrossRef]
- Huang, W.-H.; Lee, D.-J.; Huang, C. Modification on biochars for applications: A research update. Bioresour. Technol. 2021, 319, 124100–124110. [Google Scholar] [CrossRef]
- Liang, L.; Xi, F.; Tan, W.; Meng, X.; Hu, B.; Wang, X. Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar 2021, 3, 255. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Liu, X.; Sheng, L. Preparation of straw activated carbon and its application in wastewater treatment: A review. J. Clean. Prod. 2021, 283, 124671–124689. [Google Scholar] [CrossRef]
- Patel, A.K.; Katiyar, R.; Chen, C.-W.; Singhania, R.R.; Awasthi, M.K.; Bhatia, S.; Bhaskar, T.; Dong, C.-D. Antibiotic bioremediation by new generation biochar: Recent updates. Bioresour. Technol. 2022, 358, 127384–127395. [Google Scholar] [CrossRef]
- Aziz, K.H.H.; Mustafa, F.S.; Hassan, M.A.; Omer, K.M.; Hama, S. Biochar as green adsorbents for pharmaceutical pollution in aquatic environments: A review. Desalination 2024, 583, 117725. [Google Scholar] [CrossRef]
- Sun, J.; Norouzi, O.; Masek, O. A state-of-the-art review on algae pyrolysis for bioenergy and biochar production. Bioresour. Technol. 2022, 346, 126258–126271. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, A. Use of algae as biofuel sources. Energy Convers. Manag. 2010, 51, 2738–2749. [Google Scholar] [CrossRef]
- Ariede, M.B.; Candido, T.M.; Morocho Jacome, A.L.; Robles Velasco, M.V.; de Carvalho, J.C.M.; Baby, A.R. Cosmetic attributes of algae—A review. Algal Res. 2017, 25, 483–487. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G. Composition, properties and challenges of algae biomass for biofuel application: An overview. Fuel 2016, 181, 1–33. [Google Scholar] [CrossRef]
- Bharathiraja, B.; Chakravarthy, M.; Kumar, R.R.; Yogendran, D.; Yuvaraj, D.; Jayamuthunagai, J.; Kumar, R.P.; Palani, S. Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products. Renew. Sust. Energ. Rev. 2015, 47, 634–653. [Google Scholar] [CrossRef]
- Lee, X.J.; Ong, H.C.; Gan, Y.Y.; Chen, W.-H.; Mahlia, T.M.I. State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production. Energy Convers. Manag. 2020, 210, 112707–112740. [Google Scholar] [CrossRef]
- Yang, C.; Li, R.; Zhang, B.; Qiu, Q.; Wang, B.; Yang, H.; Ding, Y.; Wang, C. Pyrolysis of microalgae: A critical review. Fuel Process. Technol. 2019, 186, 53–72. [Google Scholar] [CrossRef]
- Nautiyal, P.; Subramanian, K.A.; Dastidar, M.G. Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: Alternate use of waste of biodiesel industry. J. Environ. Manag. 2016, 182, 187–197. [Google Scholar] [CrossRef]
- Ying, H.; Jia, C.; Zeng, G.; Ai, N. Turn Waste Golden Tide into Treasure: Bio-Adsorbent Synthesis for CO2 Capture with K2FeO4 as Catalytic Oxidative Activator. Molecules 2024, 29, 1345. [Google Scholar] [CrossRef]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang, S.; Li, H.; Huang, H. An overview on engineering the surface area and porosity of biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef]
- Satpati, G.G.; Devi, A.; Kundu, D.; Dikshit, P.K.; Saravanabhupathy, S.; Rajlakshmi; Banerjee, R.; Rajak, R.C.; Kamli, M.R.; Lee, S.-Y.; et al. Synthesis, delineation and technological advancements of algae biochar for sustainable remediation of the emerging pollutants from wastewater-a review. Environ. Res. 2024, 258, 119408. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Kumar, M.; Mishra, G.; Sahoo, D. Multivariate analysis of fatty acid and biochemical constitutes of seaweeds to characterize their potential as bioresource for biofuel and fine chemicals. Bioresour. Technol. 2017, 226, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Jacob, A.; Ashok, B.; Alagumalai, A.; Chyuan, O.H.; Phung Thi Kim, L. Critical review on third generation micro algae biodiesel production and its feasibility as future bioenergy for IC engine applications. Energy Convers. Manag. 2021, 228, 113665. [Google Scholar] [CrossRef]
- Onwezen, M.C.; Bouwman, E.P.; Reinders, M.J.; Dagevos, H. A systematic review on consumer acceptance of alternative proteins: Pulses, algae, insects, plant-based meat alternatives, and cultured meat. Appetite 2021, 159, 105058. [Google Scholar] [CrossRef]
- Debiagi, P.E.A.; Trinchera, M.; Frassoldati, A.; Faravelli, T.; Vinu, R.; Ranzi, E. Algae characterization and multistep pyrolysis mechanism. J. Anal. Appl. Pyrolysis 2017, 128, 423–436. [Google Scholar] [CrossRef]
- de Melo, N.S.M.; Cardoso, L.G.; de Castro Nunes, J.M.; Brito, G.B.; Caires, T.A.; de Souza, C.O.; Portz, L.; Druzian, J.I. Effects of dry and rainy seasons on the chemical composition of Ulva fasciata, Crassiphycus corneus and Sargassum vulgare seaweeds in tropical environment. Braz. J. Bot. 2021, 44, 331–344. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, M.; Alalawy, A.I.; Almutairi, F.M.; Al-Duais, M.A.; Wang, J.; Salama, E.-S. Identification and characterization of marine seaweeds for biocompounds production. Environ. Technol. Innov. 2021, 24, 101848–101859. [Google Scholar] [CrossRef]
- Parsa, M.; Jalilzadeh, H.; Pazoki, M.; Ghasemzadeh, R.; Abduli, M. Hydrothermal liquefaction of Gracilaria gracilis and Cladophora glomerata macro-algae for biocrude production. Bioresour. Technol. 2018, 250, 26–34. [Google Scholar] [CrossRef]
- Hong, Y.; Chen, W.; Luo, X.; Pang, C.; Lester, E.; Wu, T. Microwave-enhanced pyrolysis of macroalgae and microalgae for syngas production. Bioresour. Technol. 2017, 237, 47–56. [Google Scholar] [CrossRef]
- Xu, S.; Cao, B.; Uzoejinwa, B.B.; Odey, E.A.; Wang, S.; Shang, H.; Li, C.; Hu, Y.; Wang, Q.; Nwakaire, J.N. Synergistic effects of catalytic co-pyrolysis of macroalgae with waste plastics. Process Saf. Environ. 2020, 137, 34–48. [Google Scholar] [CrossRef]
- Kostas, E.T.; Williams, O.S.A.; Duran-Jimenez, G.; Tapper, A.J.; Cooper, M.; Meehan, R.; Robinson, J.P. Microwave pyrolysis of Laminaria digitata to produce unique seaweed-derived bio-oils. Biomass Bioenerg. 2019, 125, 41–49. [Google Scholar] [CrossRef]
- Dixit, D.C.; Reddy, C.R.K.; Balar, N.; Suthar, P.; Gajaria, T.; Gadhavi, D.K. Assessment of the Nutritive, Biochemical, Antioxidant and Antibacterial Potential of Eight Tropical Macro algae Along Kachchh Coast, India as Human Food Supplements. J. Aquat. Food Prod. Technol. 2018, 27, 61–79. [Google Scholar] [CrossRef]
- Tang, Z.; Chen, W.; Hu, J.; Li, S.; Chen, Y.; Yang, H.; Chen, H. Co-pyrolysis of microalgae with low-density polyethylene (LDPE) for deoxygenation and denitrification. Bioresour. Technol. 2020, 311, 123502. [Google Scholar] [CrossRef] [PubMed]
- Nejati, B.; Adami, P.; Bozorg, A.; Tavasoli, A.; Mirzahosseini, A.H. Catalytic pyrolysis and bio-products upgrading derived from Chlorella vulgaris over its biochar and activated biochar-supported Fe catalysts. J. Anal. Appl. Pyrolysis 2020, 152, 104799. [Google Scholar] [CrossRef]
- Lopez-Gonzalez, D.; Fernandez-Lopez, M.; Valverde, J.L.; Sanchez-Silva, L. Pyrolysis of three different types of microalgae: Kinetic and evolved gas analysis. Energy 2014, 73, 33–43. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, B.; Tang, X.; Yang, X. Comparison of direct and indirect pyrolysis of micro-algae Isochrysis. Bioresour. Technol. 2015, 179, 58–62. [Google Scholar] [CrossRef]
- Kim, S.W.; Koo, B.S.; Lee, D.H. A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed. Bioresour. Technol. 2014, 162, 96–102. [Google Scholar] [CrossRef]
- Sukarni, S. Thermogravimetric analysis of the combustion of marine microalgae Spirulina platensis and its blend with synthetic waste. Heliyon 2020, 6, e04902. [Google Scholar] [CrossRef]
- Chua, E.T.; Schenk, P.M. A biorefinery for Nannochloropsis: Induction, harvesting, and extraction of EPA-rich oil and high-value protein. Bioresour. Technol. 2017, 244, 1416–1424. [Google Scholar] [CrossRef]
- Anand, V.; Gautam, R.; Vinu, R. Non-catalytic and catalytic fast pyrolysis of Schizochytrium limacinum microalga. Fuel 2017, 205, 1–10. [Google Scholar] [CrossRef]
- Ansah, E.; Wang, L.; Zhang, B.; Shahbazi, A. Catalytic pyrolysis of raw and hydrothermally carbonized Chlamydomonas debaryana microalgae for denitrogenation and production of aromatic hydrocarbons. Fuel 2018, 228, 234–242. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G.; Morgan, T.J. An overview of the organic and inorganic phase composition of biomass. Fuel 2012, 94, 1–33. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G.; Vassilev, V.S. Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel 2015, 158, 330–350. [Google Scholar] [CrossRef]
- Enaime, G.; Bacaoui, A.; Yaacoubi, A.; Luebken, M. Biochar for Wastewater Treatment-Conversion Technologies and Applications. Appl. Sci. 2020, 10, 3492. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, Z.; Shen, B.; Liu, L. Insights into biochar and hydrochar production and applications: A review. Energy 2019, 171, 581–598. [Google Scholar] [CrossRef]
- Dissanayake, P.D.; You, S.; Igalavithana, A.D.; Xia, Y.; Bhatnagar, A.; Gupta, S.; Kua, H.W.; Kim, S.; Kwon, J.-H.; Tsang, D.C.W.; et al. Biochar-based adsorbents for carbon dioxide capture: A critical review. Renew. Sust. Energ. Rev. 2020, 119, 109582. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, F.; Wang, H.; Ho, S.-H. The magic of algae-based biochar: Advantages, preparation, and applications. Bioengineered 2023, 14, 2252157. [Google Scholar] [CrossRef]
- Safar, M.; Chen, W.-H.; Raclavska, H.; Juchelkova, D.; Prokopova, N.; Rachmadona, N.; Khoo, K.S. Overview of the use of additives in biomass torrefaction processes: Their impact on products and properties. Fuel 2024, 374, 132419. [Google Scholar] [CrossRef]
- Lin, S.-L.; Zhang, H.; Chen, W.-H.; Song, M.; Kwon, E.E. Low-temperature biochar production from torrefaction for wastewater treatment: A review. Bioresour. Technol. 2023, 387, 129588. [Google Scholar] [CrossRef]
- Yek, P.N.Y.; Cheng, Y.W.; Liew, R.K.; Mahari, W.A.W.; Ong, H.C.; Chen, W.-H.; Peng, W.; Park, Y.-K.; Sonne, C.; Kong, S.H.; et al. Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review. Renew. Sust. Energ. Rev. 2021, 151, 111645. [Google Scholar] [CrossRef]
- Thengane, S.K.; Kung, K.S.; Gomez-Barea, A.; Ghoniem, A.F. Advances in biomass torrefaction: Parameters, models, reactors, applications, deployment, and market. Prog. Energy Combust. Sci. 2022, 93, 101040. [Google Scholar] [CrossRef]
- Phusunti, N.; Phetwarotai, W.; Tekasakul, S. Effects of torrefaction on physical properties, chemical composition and reactivity of microalgae. Korean J. Chem. Eng. 2018, 35, 503–510. [Google Scholar] [CrossRef]
- Uemura, Y.; Matsumoto, R.; Saadon, S.; Matsumura, Y. A study on torrefaction of Laminaria japonica. Fuel Process. Technol. 2015, 138, 133–138. [Google Scholar] [CrossRef]
- Gan, Y.Y.; Ong, H.C.; Show, P.L.; Ling, T.C.; Chen, W.-H.; Yu, K.L.; Abdullah, R. Torrefaction of microalgal biochar as potential coal fuel and application as bio-adsorbent. Energy Convers. Manag. 2018, 165, 152–162. [Google Scholar] [CrossRef]
- Osman, A.I.; Farghali, M.; Ihara, I.; Elgarahy, A.M.; Ayyad, A.; Mehta, N.; Ng, K.H.; El-Monaem, E.M.A.M.; Eltaweil, A.S.; Hosny, M.; et al. Materials, fuels, upgrading, economy, and life cycle assessment of the pyrolysis of algal and lignocellulosic biomass: A review. Environ. Chem. Lett. 2023, 21, 1419–1476. [Google Scholar] [CrossRef]
- Raza, M.; Inayat, A.; Ahmed, A.; Jamil, F.; Ghenai, C.; Naqvi, S.R.; Shanableh, A.; Ayoub, M.; Waris, A.; Park, Y.-K. Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing. Sustainability 2021, 13, 11061. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sust. Energ. Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Safar, M.; Lin, B.-J.; Chen, W.-H.; Langauer, D.; Chang, J.-S.; Raclavska, H.; Petrissans, A.; Rousset, P.; Petrissans, M. Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction. Appl. Energy 2019, 235, 346–355. [Google Scholar] [CrossRef]
- Ren, X.; Ghazani, M.S.; Zhu, H.; Ao, W.; Zhang, H.; Moreside, E.; Zhu, J.; Yang, P.; Zhong, N.; Bi, X. Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review. Appl. Energy 2022, 315, 118970. [Google Scholar] [CrossRef]
- Chen, W.-H.; Chu, Y.-S.; Liu, J.-L.; Chang, J.-S. Thermal degradation of carbohydrates, proteins and lipids in microalgae analyzed by evolutionary computation. Energy Convers. Manag. 2018, 160, 209–219. [Google Scholar] [CrossRef]
- Shen, W.; He, S.; Mu, M.; Cao, B.; Wang, S.; Naqvi, S.R.; Hanelt, D.; Abomohra, A. A comprehensive review on the intricate processes involved in algae pyrolysis mechanism and possible migration of undesirable chemical elements. J. Anal. Appl. Pyrolysis 2024, 177, 106365. [Google Scholar] [CrossRef]
- Maher, K.D.; Bressler, D.C. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresour. Technol. 2007, 98, 2351–2368. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Shan, R.; Zhao, F.; Gu, J.; Zhang, Y.; Yuan, H.; Chen, Y. A review on the NOx precursors release during biomass pyrolysis. Chem. Eng. J. 2023, 451, 138979. [Google Scholar] [CrossRef]
- Ren, Q.; Zhao, C. Evolution of fuel-N in gas phase during biomass pyrolysis. Renew. Sust. Energ. Rev. 2015, 50, 408–418. [Google Scholar] [CrossRef]
- Xu, J.; Long, F.; Jiang, J.; Li, F.; Zhai, Q.; Wang, F.; Liu, P.; Li, J. Integrated catalytic conversion of waste triglycerides to liquid hydrocarbons for aviation biofuels. J. Clean. Prod. 2019, 222, 784–792. [Google Scholar] [CrossRef]
- Titirici, M.-M.; White, R.J.; Falco, C.; Sevilla, M. Black perspectives for a green future: Hydrothermal carbons for environment protection and energy storage. Energy Environ. Sci. 2012, 5, 6796–6822. [Google Scholar] [CrossRef]
- Tekin, K.; Karagoz, S.; Bektas, S. A review of hydrothermal biomass processing. Renew. Sust. Energ. Rev. 2014, 40, 673–687. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.-J.; Hao, X.; Peng, P.; Shi, J.-Y.; Peng, F.; Sun, R.-C. Hydrothermal synthesis and applications of advanced carbonaceous materials from biomass: A review. Adv. Compos. Hybrid Mater. 2020, 3, 267–284. [Google Scholar] [CrossRef]
- Heilmann, S.M.; Davis, H.T.; Jader, L.R.; Lefebvre, P.A.; Sadowsky, M.J.; Schendel, F.J.; von Keitz, M.G.; Valentas, K.J. Hydrothermal carbonization of microalgae. Biomass Bioenerg. 2010, 34, 875–882. [Google Scholar] [CrossRef]
- Broch, A.; Jena, U.; Hoekman, S.K.; Langford, J. Analysis of Solid and Aqueous Phase Products from Hydrothermal Carbonization of Whole and Lipid-Extracted Algae. Energies 2014, 7, 62–79. [Google Scholar] [CrossRef]
- Heilmann, S.M.; Jader, L.R.; Harned, L.A.; Sadowsky, M.J.; Schendel, F.J.; Lefebvre, P.A.; von Keitz, M.G.; Valentas, K.J. Hydrothermal carbonization of microalgae II. Fatty acid, char, and algal nutrient products. Appl. Energy 2011, 88, 3286–3290. [Google Scholar] [CrossRef]
- Kambo, H.S.; Dutta, A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sust. Energ. Rev. 2015, 45, 359–378. [Google Scholar] [CrossRef]
- Oni, B.A.; Oziegbe, O.; Olawole, O.O. Significance of biochar application to the environment and economy. Ann. Agric. Sci. 2019, 64, 222–236. [Google Scholar] [CrossRef]
- Nguyen, T.-B.; Nguyen, V.-T.; Hoang, H.-G.; Cao, N.-D.-T.; Nguyen, T.-T.; Vo, T.-D.-H.; Nguyen, N.-K.-Q.; Pham, M.-D.-T.; Nghiem, D.-L.; Vo, T.-K.-Q.; et al. Recent Development of Algal Biochar for Contaminant Remediation and Energy Application: A State-of-the Art Review. Curr. Pollut. Rep. 2023, 9, 73–89. [Google Scholar] [CrossRef]
- Anto, S.; Sudhakar, M.P.; Ahamed, T.S.; Samuel, M.S.; Mathimani, T.; Brindhadevi, K.; Pugazhendhi, A. Activation strategies for biochar to use as an efficient catalyst in various applications. Fuel 2021, 285, 119205. [Google Scholar] [CrossRef]
- Sajjadi, B.; Chen, W.-Y.; Egiebor, N.O. A comprehensive review on physical activation of biochar for energy and environmental applications. Rev. Chem. Eng. 2019, 35, 735–776. [Google Scholar] [CrossRef]
- Venkatachalam, C.D.; Sekar, S.; Sengottian, M.; Ravichandran, S.R.; Bhuvaneshwaran, P. A critical review of the production, activation, and morphological characteristic study on functionalized biochar. J. Energy Storage 2023, 67, 107525. [Google Scholar] [CrossRef]
- Ates, A. The effect of microwave and ultrasound activation on the characteristics of biochar produced from tea waste in the presence of H3PO4 and KOH. Biomass Convers. Biorefin. 2023, 13, 9075–9094. [Google Scholar] [CrossRef]
- Benis, K.Z.; Minaei, S.; Soltan, J.; McPhedran, K.N. Adsorption of lincomycin on microwave activated biochar: Batch and dynamic adsorption. Chem. Eng. Res. Des. 2022, 187, 140–150. [Google Scholar] [CrossRef]
- Yi, Y.; Huang, Z.; Lu, B.; Xian, J.; Tsang, E.P.; Cheng, W.; Fang, J.; Fang, Z. Magnetic biochar for environmental remediation: A review. Bioresour. Technol. 2020, 298, 122468. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.; Zhang, J.; Liu, J.; Liu, B.; Chen, G. Preparation and application of magnetic biochar in water treatment: A critical review. Sci. Total Environ. 2020, 711, 134847. [Google Scholar] [CrossRef] [PubMed]
- Hang, J.; Guo, Z.; Zhong, C.; Sun, A.; He, K.; Liu, X.; Song, H.; Li, J. A super magnetic porous biochar manufactured by potassium ferrate-accelerated hydrothermal carbonization for removal of tetracycline. J. Clean. Prod. 2024, 435, 140470. [Google Scholar] [CrossRef]
- Son, E.-B.; Poo, K.-M.; Chang, J.-S.; Chae, K.-J. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Sci. Total Environ. 2018, 615, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Xiong, X.; Wan, Z.; Sun, Y.; Tsang, D.C.W.; Gupta, J.; Gao, B.; Cao, X.; Tang, J.; Ok, Y.S. Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresour. Technol. 2020, 312, 123613. [Google Scholar] [CrossRef]
- Harindintwali, J.D.; He, C.; Xiang, L.; Dou, Q.; Liu, Y.; Wang, M.; Wen, X.; Fu, Y.; Ul Islam, M.; Chang, S.X.; et al. Effects of ball milling on biochar adsorption of contaminants in water: A meta-analysis. Sci. Total Environ. 2023, 882, 163643. [Google Scholar] [CrossRef]
- Qiu, B.; Shao, Q.; Shi, J.; Yang, C.; Chu, H. Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Sep. Purif. Technol. 2022, 300, 121925. [Google Scholar] [CrossRef]
- Panwar, N.L.; Pawar, A. Influence of activation conditions on the physicochemical properties of activated biochar: A review. Biomass Convers. Biorefin. 2022, 12, 925–947. [Google Scholar] [CrossRef]
- Yameen, M.Z.; Naqvi, S.R.; Juchelkova, D.; Khan, M.N.A. Harnessing the power of functionalized biochar: Progress, challenges, and future perspectives in energy, water treatment, and environmental sustainability. Biochar 2024, 6, 25. [Google Scholar] [CrossRef]
- Ding, K.; Zhou, X.; Hadiatullah, H.; Lu, Y.; Zhao, G.; Jia, S.; Zhang, R.; Yao, Y. Removal performance and mechanisms of toxic hexavalent chromium (Cr (VI)) with ZnCl2 enhanced acidic vinegar residue biochar. J. Hazard. Mater. 2021, 420, 126551. [Google Scholar] [CrossRef]
- Verdida, R.A.A.; Caparanga, A.R.R.; Chang, C.-T. Facile Synthesis of Metal-Impregnated Sugarcane-Derived Catalytic Biochar for Ozone Removal at Ambient Temperature. Catalysts 2023, 13, 388. [Google Scholar] [CrossRef]
- Lan, W.; Zhao, X.; Wang, Y.; Jin, X.; Ji, J.; Cheng, Z.; Yang, G.; Li, H.; Chen, G. Research progress of biochar modification technology and its application in environmental remediation. Biomass Bioenerg. 2024, 184, 107178. [Google Scholar] [CrossRef]
- Igalavithana, A.D.; Mandal, S.; Niazi, N.K.; Vithanage, M.; Parikh, S.J.; Mukome, F.N.D.; Rizwan, M.; Oleszczuk, P.; Al-Wabel, M.; Bolan, N.; et al. Advances and future directions of biochar characterization methods and applications. Crit. Rev. Env. Sci. Tec. 2017, 47, 2275–2330. [Google Scholar] [CrossRef]
- Liu, M.; Almatrafi, E.; Zhang, Y.; Xu, P.; Song, B.; Zhou, C.; Zeng, G.; Zhu, Y. A critical review of biochar-based materials for the remediation of heavy metal contaminated environment: Applications and practical evaluations. Sci. Total Environ. 2022, 806, 150531. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.L.; Lau, B.F.; Show, P.L.; Ong, H.C.; Ling, T.C.; Chen, W.-H.; Ng, E.P.; Chang, J.-S. Recent developments on algal biochar production and characterization. Bioresour. Technol. 2017, 246, 2–11. [Google Scholar] [CrossRef]
- Jung, K.-W.; Kim, K.; Jeong, T.-U.; Ahn, K.-H. Influence of pyrolysis temperature on characteristics and phosphate adsorption capability of biochar derived from waste-marine macroalgae (Undaria pinnatifida roots). Bioresour. Technol. 2016, 200, 1024–1028. [Google Scholar] [CrossRef]
- Sewu, D.D.; Lee, D.S.; Hai Nguyen, T.; Woo, S.H. Effect of bentonite-mineral co-pyrolysis with macroalgae on physicochemical property and dye uptake capacity of bentonite/biochar composite. J. Taiwan Inst. Chem. Eng. 2019, 104, 106–113. [Google Scholar] [CrossRef]
- Cardenas-Aguiar, E.; Gasco, G.; Lado, M.; Mendez, A.; Paz-Ferreiro, J.; Paz-Gonzalez, A. Characterization of biochar from beach-cast seaweed and its use for amelioration of acid soils. Land 2024, 13, 881. [Google Scholar] [CrossRef]
- Lin, S.; Shen, Z.; Pan, D.; Ji, R.; Bian, Y.; Han, J.; Jiang, X.; Song, Y.; Cheng, H.; Xue, J. Marine macroalgae-derived multielement-doped porous biochars for efficient removal of sulfamethoxazole from aqueous solution: Sorption performance and governing mechanisms. J. Anal. Appl. Pyrolysis 2023, 171, 105963. [Google Scholar] [CrossRef]
- Yao, X.; Ji, L.; Guo, J.; Ge, S.; Lu, W.; Chen, Y.; Cai, L.; Wang, Y.; Song, W. An abundant porous biochar material derived from wakame (Undaria pinnatifida) with high adsorption performance for three organic dyes. Bioresour. Technol. 2020, 318, 124082. [Google Scholar] [CrossRef]
- Dou, Z.; Chen, H.; Liu, Y.; Huang, R.; Pan, J. Removal of gaseous H2S using microalgae porous carbons synthesized by thermal/microwave KOH activation. J. Energy Inst. 2022, 101, 45–55. [Google Scholar] [CrossRef]
- Yang, Z.; Hou, J.; Wu, J.; Miao, L. The effect of carbonization temperature on the capacity and mechanisms of Pb(II) adsorption by microalgae residue-derived biochar. Ecotox. Environ. Safe. 2021, 225, 112750. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-K.; Choi, T.-R.; Gurav, R.; Bhatia, S.K.; Park, Y.-L.; Kim, H.J.; Kan, E.; Yang, Y.-H. Adsorption behavior of tetracycline onto Spirulina sp. (microalgae)-derived biochars produced at different temperatures. Sci. Total Environ. 2020, 710, 136282. [Google Scholar] [CrossRef] [PubMed]
- Saber, M.; Takahashi, F.; Yoshikawa, K. Characterization and application of microalgae hydrochar as a low-cost adsorbent for Cu(II) ion removal from aqueous solutions. Environ. Sci. Pollut. Res. 2018, 25, 32721–32734. [Google Scholar] [CrossRef] [PubMed]
- Chu, Q.; Xue, L.; Cheng, Y.; Liu, Y.; Feng, Y.; Yu, S.; Meng, L.; Pan, G.; Hou, P.; Duan, J.; et al. Microalgae-derived hydrochar application on rice paddy soil: Higher rice yield but increased gaseous nitrogen loss. Sci. Total Environ. 2020, 717, 137127. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, G.; Zhu, L.; Wang, S. Green Conversion of Microalgae into High-Performance Sponge-Like Nitrogen-Enriched Carbon. Chemelectrochem 2019, 6, 646–652. [Google Scholar] [CrossRef]
- Ho, S.-H.; Chen, Y.-d.; Li, R.; Zhang, C.; Ge, Y.; Cao, G.; Ma, M.; Duan, X.; Wang, S.; Ren, N.-q. N-doped graphitic biochars from C-phycocyanin extracted Spirulina residue for catalytic persulfate activation toward nonradical disinfection and organic oxidation. Water Res. 2019, 159, 77–86. [Google Scholar] [CrossRef]
- Qin, J.; Ji, R.; Sun, Q.; Li, W.; Cheng, H.; Han, J.; Jiang, X.; Song, Y.; Xue, J. Self-activation of potassium/iron citrate-assisted production of porous carbon/porous biochar composites from macroalgae for high-performance sorption of sulfamethoxazole. Bioresour. Technol. 2023, 369, 128361. [Google Scholar] [CrossRef]
- Roberts, D.A.; Paul, N.A.; Dworjanyn, S.A.; Bird, M.I.; de Nys, R. Biochar from commercially cultivated seaweed for soil amelioration. Sci. Rep. 2015, 5, 9665. [Google Scholar] [CrossRef]
- Yang, F.; Zuo, X.; Zhou, Y.; Wu, S.; Wang, M. Stability of biochar in five soils: Effects from soil property. Environ. Prog. Sustain. Energy 2022, 41, e13775. [Google Scholar] [CrossRef]
- He, M.; Xiong, X.; Wang, L.; Hou, D.; Bolan, N.S.; Ok, Y.S.; Rinklebe, J.; Tsang, D.C.W. A critical review on performance indicators for evaluating soil biota and soil health of biochar-amended soils. J. Hazard. Mater. 2021, 414, 125378. [Google Scholar] [CrossRef]
- Kapoor, R.T.; Zdarta, J. Fabrication of engineered biochar for remediation of toxic contaminants in soil matrices and soil valorization. Chemosphere 2024, 358, 142101. [Google Scholar] [CrossRef] [PubMed]
- Law, X.N.; Cheah, W.Y.; Chew, K.W.; Ibrahim, M.F.; Park, Y.-K.; Ho, S.-H.; Show, P.L. Microalgal-based biochar in wastewater remediation: Its synthesis, characterization and applications. Environ. Res. 2022, 204, 111966. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.; Lee, Y.-J.; Choi, M.-Y.; Lee, C.-G.; Park, S.-J. Adsorption of heavy metals and bisphenol A from wastewater using Spirulina sp.-based biochar as an effective adsorbent: A preliminary study. J. Appl. Phycol. 2023, 35, 2257–2269. [Google Scholar] [CrossRef]
- Katiyar, R.; Patel, A.K.; Thanh-Binh, N.; Singhania, R.R.; Chen, C.-W.; Dong, C.-D. Adsorption of copper (II) in aqueous solution using biochars derived from Ascophyllum nodosum seaweed. Bioresour. Technol. 2021, 328, 124829. [Google Scholar] [CrossRef]
- Peng, X.; Li, Y.; Zhu, K.; An, Q.; Hao, J.; Xiao, Z.; Dong, X.; Zhai, S. CoSx produced in Porphyra biochar by exogenous Co and endogenous S doping to enhance peroxymonosulfate activation for carbamazepine degradation. J. Environ. Chem. Eng. 2023, 11, 110988. [Google Scholar] [CrossRef]
- Yin, Q.; Yan, H.; Liang, Y.; Wang, H.; Duan, P.; Lai, B. Nitrogen doped biochar derived from algae as persulfate activator for the degradation of tetracycline: Role of exogenous N doping and electron transfer pathway. Sep. Purif. Technol. 2023, 318, 123970. [Google Scholar] [CrossRef]
- Wang, C.; Lin, X.; Zhang, X.; Show, P.L. Research advances on production and application of algal biochar in environmental remediation. Environ. Pollut. 2024, 348, 123860. [Google Scholar] [CrossRef]
- Zhang, M.; Song, G.; Gelardi, D.L.; Huang, L.; Khan, E.; Masek, O.; Parikh, S.J.; Ok, Y.S. Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water Res. 2020, 186, 116303. [Google Scholar] [CrossRef]
- Yin, Q.; Zhang, B.; Wang, R.; Zhao, Z. Biochar as an adsorbent for inorganic nitrogen and phosphorus removal from water: A review. Environ. Sci. Pollut. Res. 2017, 24, 26297–26309. [Google Scholar] [CrossRef]
- Wu, X.; Quan, W.; Chen, Q.; Gong, W.; Wang, A. Efficient Adsorption of Nitrogen and Phosphorus in Wastewater by Biochar. Molecules 2024, 29, 1005. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, B.; Feng, Q.; Chen, M.; Zhang, X.; Zhao, R. Recovery of nitrogen and phosphorus in wastewater by red mud-modified biochar and its potential application. Sci. Total Environ. 2023, 860, 160289. [Google Scholar] [CrossRef]
- Liu, X.; Shen, F.; Qi, X. Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw. Sci. Total Environ. 2019, 666, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Zhai, X.; Dai, K.; Lian, J.; Cheng, L.; Wang, G.; Li, J.; Yang, C.; Yin, Z.; Li, H.; et al. Synthesis of acidified magnetic sludge-biochar and its role in ammonium nitrogen removal: Perception on effect and mechanism. Sci. Total Environ. 2022, 832, 154780. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Luo, Y.; He, Q.; Zhao, D.; Zhang, K.; Shen, S.; Wang, F. Performance and mechanism of a biochar-based Ca-La composite for the adsorption of phosphate from water. J. Environ. Chem. Eng. 2021, 9, 105241. [Google Scholar] [CrossRef]
- Jung, K.-W.; Jeong, T.-U.; Kang, H.-J.; Ahn, K.-H. Characteristics of biochar derived from marine macroalgae and fabrication of granular biochar by entrapment in calcium-alginate beads for phosphate removal from aqueous solution. Bioresour. Technol. 2016, 211, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.-W.; Ahn, K.-H. Fabrication of porosity-enhanced MgO/biochar for removal of phosphate from aqueous solution: Application of a novel combined electrochemical modification method. Bioresour. Technol. 2016, 200, 1029–1032. [Google Scholar] [CrossRef]
- Jung, K.-W.; Jeong, T.-U.; Kang, H.-J.; Chang, J.-S.; Ahn, K.-H. Preparation of modified-biochar from Laminaria japonica: Simultaneous optimization of aluminum electrode-based electro-modification and pyrolysis processes and its application for phosphate removal. Bioresour. Technol. 2016, 214, 548–557. [Google Scholar] [CrossRef]
- Zhu, J.; Rui, T.; You, Y.; Shen, D.; Liu, T. Magnetic biochar with Mg/La modification for highly effective phosphate adsorption and its potential application as an algaecide and fertilizer. Environ. Res. 2023, 231, 116252. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Lu, H.-H.; Liu, Y.-X.; Yang, S.-M. Removal of phosphate from aqueous solution by SiO2-biochar nanocomposites prepared by pyrolysis of vermiculite treated algal biomass. RSC Adv. 2016, 6, 83534–83546. [Google Scholar] [CrossRef]
- Tran, T.-K.; Huynh, L.; Nguyen, H.-L.; Nguyen, M.-K.; Lin, C.; Hoang, T.-D.; Hung, N.T.Q.; Nguyen, X.H.; Chang, S.W.; Nguyen, D.D. Applications of engineered biochar in remediation of heavy metal(loid)s pollution from wastewater: Current perspectives toward sustainable development goals. Sci. Total Environ. 2024, 926, 171859. [Google Scholar] [CrossRef]
- Phiri, Z.; Moja, N.T.; Nkambule, T.T.I.; de Kock, L.-A. Utilization of biochar for remediation of heavy metals in aqueous environments: A review and bibliometric analysis. Heliyon 2024, 10, e25785. [Google Scholar] [CrossRef] [PubMed]
- Biswal, B.K.; Balasubramanian, R. Use of biochar as a low-cost adsorbent for removal of heavy metals from water and wastewater: A review. J. Environ. Chem. Eng. 2023, 11, 110986. [Google Scholar] [CrossRef]
- Gupta, S.; Sireesha, S.; Sreedhar, I.; Patel, C.M.; Anitha, K.L. Latest trends in heavy metal removal from wastewater by biochar based sorbents. J. Water Process Eng. 2020, 38, 101561. [Google Scholar] [CrossRef]
- Alsawy, T.; Rashad, E.; El-Qelish, M.; Mohammed, R.H. A comprehensive review on the chemical regeneration of biochar adsorbent for sustainable wastewater treatment. NPJ Clean Water 2022, 5, 29. [Google Scholar] [CrossRef]
- Araya, M.; Rivas, J.; Sepulveda, G.; Espinoza-Gonzalez, C.; Lira, S.; Meynard, A.; Blanco, E.; Escalona, N.; Ginocchio, R.; Garrido-Ramirez, E.; et al. Effect of Pyrolysis Temperature on Copper Aqueous Removal Capability of Biochar Derived from the Kelp Macrocystis pyrifera. Appl. Sci. 2021, 11, 9223. [Google Scholar] [CrossRef]
- Khanzada, A.K.; Rizwan, M.; Al-Hazmi, H.E.; Majtacz, J.; Kurniawan, T.A.; Makinia, J. Removal of Arsenic from Wastewater Using Hydrochar Prepared from Red Macroalgae: Investigating Its Adsorption Efficiency and Mechanism. Water 2023, 15, 3886. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.; Wu, W.; Chen, G.; Tao, J. Removal of cadmium in water by potassium hydroxide activated biochar produced from Enteromorpha prolifera. J. Water Process Eng. 2021, 42, 102201. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.; Tian, J.; Liu, J.; Chen, G. Comparison of adsorption properties for cadmium removal from aqueous solution by Enteromorpha prolifera biochar modified with different chemical reagents. Environ. Res. 2020, 186, 109502. [Google Scholar] [CrossRef]
- Kumar, P.; Patel, A.K.; Singhania, R.R.; Chen, C.-W.; Saratale, R.G.; Dong, C.-D. Enhanced copper (II) bioremediation from wastewater using nano magnetite (Fe3O4) modified biochar of Ascophyllum nodosum. Bioresour. Technol. 2023, 388, 129654. [Google Scholar] [CrossRef]
- Govindaraju, K.; Vinu, R.; Gautam, R.; Vasantharaja, R.; Niranjan, M.; Sundar, I. Microwave-assisted torrefaction of biomass Kappaphycus alvarezii-based biochar and magnetic biochar for removal of hexavalent chromium [Cr(VI)] from aqueous solution. Biomass Convers. Biorefin. 2024, 14, 3643–3653. [Google Scholar] [CrossRef]
- Poo, K.-M.; Son, E.-B.; Chan, J.-S.; Ren, X.; Choi, Y.-J.; Chae, K.-J. Biochars derived from wasted marine macro-algae (Saccharina japonica and Sargassum fusiforme) and their potential for heavy metal removal in aqueous solution. J. Environ. Manag. 2018, 206, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Nie, Y.; Chang, H.; Zhu, L.; Guo, K.; Ran, X.; Zhong, N.; Zhong, D.; Xu, Y.; Ho, S.-H. Adsorption performance of Ni(II) by KOH-modified biochar derived from different microalgae species. Bioresour. Technol. 2024, 394, 130287–130295. [Google Scholar] [CrossRef] [PubMed]
- Bordoloi, N.; Goswami, R.; Kumar, M.; Kataki, R. Biosorption of Co (II) from aqueous solution using algal biochar: Kinetics and isotherm studies. Bioresour. Technol. 2017, 244, 1465–1469. [Google Scholar] [CrossRef]
- Amin, M.; Chetpattananondh, P. Biochar from extracted marine Chlorella sp. residue for high efficiency adsorption with ultrasonication to remove Cr(VI), Zn(II) and Ni(II). Bioresour. Technol. 2019, 289, 121578. [Google Scholar] [CrossRef]
- Wang, L.; Luo, D.; Hamdaoui, O.; Vasseghian, Y.; Momotko, M.; Boczkaj, G.; Kyzas, G.Z.; Wang, C. Bibliometric analysis and literature review of ultrasound-assisted degradation of organic pollutants. Sci. Total Environ. 2023, 876, 162551. [Google Scholar] [CrossRef]
- Luo, Z.; Yao, B.; Yang, X.; Wang, L.; Xu, Z.; Yan, X.; Tian, L.; Zhou, H.; Zhou, Y. Novel insights into the adsorption of organic contaminants by biochar: A review. Chemosphere 2022, 287, 132113. [Google Scholar] [CrossRef]
- Amin, M.; Chetpattananondh, P.; Khan, M.N. Ultrasound assisted adsorption of reactive dye-145 by biochars from marine Chlorella sp. extracted solid waste pyrolyzed at various temperatures. J. Environ. Chem. Eng. 2020, 8, 104403. [Google Scholar] [CrossRef]
- Xu, J.; Fu, M.; Ma, Q.; Zhang, X.; You, C.; Shi, Z.; Lin, Q.; Wang, X.; Feng, W. Modification of biochar by phosphoric acid via wet pyrolysis and using it for adsorption of methylene blue. RSC Adv. 2023, 13, 15327–15333. [Google Scholar] [CrossRef]
- Gumus, F. Utilization of Algal Waste Biomass-Derived Biochar Prepared by a Microwave-Assisted Method for Aniline Green Adsorption. Water Air Soil Poll. 2022, 233, 364. [Google Scholar] [CrossRef]
- Maged, A.; Elgarahy, A.M.; Hlawitschka, M.W.; Haneklaus, N.H.; Gupta, A.K.; Bhatnagar, A. Synergistic mechanisms for the superior sorptive removal of aquatic pollutants via functionalized biochar-clay composite. Bioresour. Technol. 2023, 387, 129593. [Google Scholar] [CrossRef]
- Yu, K.L.; Lee, X.J.; Ong, H.C.; Chen, W.-H.; Chang, J.-S.; Lin, C.-S.; Show, P.L.; Ling, T.C. Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: Equilibrium, kinetic and mechanism modeling. Environ. Pollut. 2021, 272, 115986. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Zhu, S.; Show, P.L.; Qi, H.; Ho, S.-H. Sorption of ionized dyes on high-salinity microalgal residue derived biochar: Electron acceptor-donor and metal-organic bridging mechanisms. J. Hazard. Mater. 2020, 393, 122435. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zou, H. Characterization of algae residue biochar and its application in methyl orange wastewater treatment. Water Sci. Technol. 2021, 84, 3716–3725. [Google Scholar] [CrossRef] [PubMed]
- Sewu, D.D.; Woo, S.H.; Lee, D.S. Biochar from the co-pyrolysis of Saccharina japonica and goethite as an adsorbent for basic blue 41 removal from aqueous solution. Sci. Total Environ. 2021, 797, 149160. [Google Scholar] [CrossRef] [PubMed]
- Thanh-Binh, N.; Quoc-Minh, T.; Chen, C.-W.; Chen, W.-H.; Dong, C.-D. Pyrolysis of marine algae for biochar production for adsorption of Ciprofloxacin from aqueous solutions. Bioresour. Technol. 2022, 351, 127043. [Google Scholar]
- Wu, Y.; Cheng, H.; Pan, D.; Zhang, L.; Li, W.; Song, Y.; Bian, Y.; Jiang, X.; Han, J. Potassium hydroxide-modified algae-based biochar for the removal of sulfamethoxazole: Sorption performance and mechanisms. J. Environ. Manag. 2021, 293, 112912. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, C.; Zafar, F.F.; Wei, M.; Marrakchi, F.; Cao, B.; Fu, Y. Facile synthesis of chlorella-derived autogenous N-doped porous biochar for adsorption on tetracycline. Environ. Pollut. 2023, 330, 121717. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Y.; Zhang, S.; Chen, Y.-d.; Wang, R.; Ho, S.-H. Tailoring a novel hierarchical cheese-like porous biochar from algae residue to boost sulfathiazole removal. Environ. Sci. Ecotechnol. 2022, 10, 100168. [Google Scholar] [CrossRef]
- Yang, C.; Miao, S.; Li, T. Influence of water washing treatment on Ulva prolifera-derived biochar properties and sorption characteristics of ofloxacin. Sci. Rep. 2021, 11, 1791. [Google Scholar] [CrossRef]
- Cheng, H.; Ji, R.; Bian, Y.; Jiang, X.; Song, Y. From macroalgae to porous graphitized nitrogen-doped biochars—Using aquatic biota to treat polycyclic aromatic hydrocarbons-contaminated water. Bioresour. Technol. 2020, 303, 122947. [Google Scholar] [CrossRef]
- Zheng, H.; Guo, W.; Li, S.; Chen, Y.; Wu, Q.; Feng, X.; Yin, R.; Ho, S.-H.; Ren, N.; Chang, J.-S. Adsorption of p-nitrophenols (PNP) on microalgal biochar: Analysis of high adsorption capacity and mechanism. Bioresour. Technol. 2017, 244, 1456–1464. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Lu, J.; Wu, J. One-step green preparation of magnetic seaweed biochar/sulfidated Fe0 composite with strengthen adsorptive removal of tetrabromobisphenol A through in situ reduction. Bioresour. Technol. 2020, 307, 123170. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Jiang, M.; He, L.; Zhang, Z.; Gustave, W.; Vithanage, M.; Niazi, N.K.; Chen, B.; Zhang, X.; Wang, H.; et al. Challenges in safe environmental applications of biochar: Identifying risks and unintended consequence. Biochar 2025, 7, 12. [Google Scholar] [CrossRef]
- Ji, M.; Wang, X.; Usman, M.; Liu, F.; Dan, Y.; Zhou, L.; Campanaro, S.; Luo, G.; Sang, W. Effects of different feedstocks-based biochar on soil remediation: A review. Environ. Pollut. 2022, 294, 118655. [Google Scholar] [CrossRef]
- Perendija, J.; Cvetkovic, S.; Manic, N.; Andrejic, G.; Vukasinovic, I.; Cvetinovic, D.; Jankovic, B. A comparative study on the slow pyrolysis of Miscanthus (Miscanthus x giganteus Greef et Deu.) cultivated on agricultural and contaminated soils: Assessment of distribution of final products. Ind. Crops Prod. 2024, 222, 119452. [Google Scholar] [CrossRef]
- Hu, Y.; Tong, K.; Guo, Q.; Zhang, B.; Jiao, L.; Li, M.; Zhang, Z. Effect of controlled temperature and biomass addition on the formed environmental persistent free radicals (EPFRs) in sewage sludge-based biochar from pyrolysis treatment. J. Anal. Appl. Pyrolysis 2022, 162, 105460. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, K.; Han, L.; Chen, Y.; Liu, J.; Xing, B. Biochar stability and impact on soil organic carbon mineralization depend on biochar processing, aging and soil clay content. Soil Biol. Biochem 2022, 169, 108657. [Google Scholar] [CrossRef]
- Mutabazi, E.; Qiu, X.; Song, Y.; Li, C.; Jia, X.; Hakizimana, I.; Niu, J.; Nuramkhaan, M.; Zhao, Y. Cr(VI) adsorption on activated carbon, sludge derived biochar, and peanut shells derived biochar: Performance, mechanisms during the reuse process and site energy distribution analysis. J. Water Process Eng. 2024, 57, 104679. [Google Scholar] [CrossRef]
- Yin, Z.; Xu, S.; Liu, S.; Xu, S.; Li, J.; Zhang, Y. A novel magnetic biochar prepared by K2FeO4-promoted oxidative pyrolysis of pomelo peel for adsorption of hexavalent chromium. Bioresour. Technol. 2020, 300, 122680. [Google Scholar] [CrossRef]
- Goncalves, J.O.; de Farias, B.S.; Rios, E.C.; Ribeiro, A.C.; Acosta, K.d.R.; Gomes, C.P.W.; Cadaval Junior, T.R. Sustainable Removal of Chloroquine from Aqueous Solutions Using Microwave-Activated Cassava Biochar Derived from Agricultural Waste. Sustainability 2024, 16, 9854. [Google Scholar] [CrossRef]
- Wang, C.; Lei, H.; Qian, M.; Huo, E.; Zhao, Y.; Zhang, Q.; Mateo, W.; Lin, X.; Kong, X.; Zou, R.; et al. Application of highly stable biochar catalysts for efficient pyrolysis of plastics: A readily accessible potential solution to a global waste crisis. Sustain. Energy Fuels 2020, 4, 4614–4624. [Google Scholar] [CrossRef]
- Goncalves, J.O.; Crispim, M.M.; Rios, E.C.; Silva, L.F.; de Farias, B.S.; Cadaval Junior, T.R.S.A.; Pinto, L.A.d.A.; Nawaz, A.; Manoharadas, S.; Dotto, G.L. New and effective cassava bagasse-modified biochar to adsorb Food Red 17 and Acid Blue 9 dyes in a binary mixture. Environ. Sci. Pollut. Res. 2024, 31, 5209–5220. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zheng, J.; Li, Y.; Zaidi, A.; Hu, Y.; Hu, B. Fabrication of δ-MnO2-modified algal biochar for efficient removal of U(VI) from aqueous solutions. J. Environ. Chem. Eng. 2021, 9, 105625. [Google Scholar] [CrossRef]
- Xu, S.; Yang, J.; Marrakchi, F.; Wei, M.; Liu, Y.; Xiao, Y.; Li, C.; Wang, S. Macro- and micro-algae-based carbon composite for pharmaceutical wastewater treatment: Batch adsorption and mechanism study. Process Saf. Environ. 2023, 176, 641–652. [Google Scholar] [CrossRef]
- Shyam, S.; Arun, J.; Gopinath, K.P.; Ribhu, G.; Ashish, M.; Ajay, S. Biomass as source for hydrochar and biochar production to recover phosphates from wastewater: A review on challenges, commercialization, and future perspectives. Chemosphere 2022, 286, 131490. [Google Scholar] [CrossRef]
Algae | Chemical Components (wt%) | Proximate Analysis (wt%) | Ref. | |||||
---|---|---|---|---|---|---|---|---|
Lipid | Carbohydrate | Protein | Moisture | Volatile Matter | Fixed Carbon | Ash | ||
Macroalgae | ||||||||
Ulva fasciata | 2.37 | 40.91 | 11.42 | 10.29 | - | - | 20.89 | [56] |
Crassiphycus corneus | 1.93 | 23.55 | 21.27 | 4.3 | - | - | 34.16 | |
Sargassum vulgare | 4.02 | 39.07 | 10.32 | 4.53 | - | - | 30.09 | |
S. thunbergii GEEL-15 | 7.88 | 37.0 | 7.14 | 9.89 | - | - | 20.84 | [57] |
M. stellatus GEEL-16 | 4.63 | 35.08 | 9.14 | 9.23 | - | - | 28.17 | |
Ulva sp. GEEL-17 | 6.67 | 55.4 | 4.24 | 11.28 | - | - | 21.23 | |
Ulva lactuca | 1.45 | 32.61 | 12.17 | - | - | - | 20.94 | [52] |
Dictyopteris australis | 1.34 | 33.12 | 9.7 | - | -- | 28.11 | ||
Halymenia venusta | 1.43 | 34.81 | 14.13 | - | - | - | 17.12 | |
Gracilaria gracilis | 1.7 | 28.6 | 13.7 | 5.88 | 53.1 | 10.9 | 36 | [58] |
Cladophora glomerata | 2.4 | 34.7 | 26.3 | 4.4 | 44.8 | 29.1 | 26.1 | |
porphyra | 1.5 | 47.7 | 35.7 | 9.3 | 70.8 | 16.9 | 3.0 | [59] |
Enteromorpha prolifera | 4.31 | 20.21 | 42.06 | 4.86 | 55.9 | 10.69 | 28.56 | [60] |
Laminaria digitata | 1.0 | 46.6 | 12.9 | 8.0 | 79.9 | 13.1 | 9.9 | [61] |
Caulerpa sertularioidis | 1.88 | 44.7 | 9.44 | 10.42 | - | - | 31.24 | [62] |
Acanthophora spicifera | 1.4 | 48.51 | 6.55 | 8.12 | - | - | 47.04 | |
Cystoseira trinodis | 1.3 | 33.18 | 12.59 | 10.14 | - | - | 35.29 | |
Microalgae | ||||||||
Nannochloropsis sp. | 30.0 | 18.64 | 40.8 | 4.23 | 79.21 | 10.26 | 6.3 | [63] |
Chlorella vulgaris | 24.57 | 22.18 | 45.45 | 5.6 | 70.4 | 16.2 | 7.8 | [64] |
Scenedesmus almeriensis | 24.6 | 25.2 | 44.2 | 2.9 | 67.9 | 9.7 | 19.4 | [65] |
Nannochloropsis gaditana | 26.3 | 25.1 | 40.5 | 3.5 | 79.8 | 10.2 | 6.4 | |
Isochrysis | 39.3 | 13.9 | 32.9 | 3.67 | - | - | 10.23 | [66] |
Scenedesmus sp. | 19.5 | 29.3 | 36.4 | 4.59 | 75.33 | 12.78 | 7.3 | [67] |
Spirulina platensis | 27.17 | 7.2 | 65.64 | - | - | - | - | [68] |
N. granulata | 28.5 | 14.9 | 35.4 | - | - | - | - | [69] |
Nannochloropsis sp. | 30 | 35 | 43 | - | - | - | - | |
Schizochytrium limacinum | 51 | 24 | 14 | - | 89.4 | 1.7 | 8.9 | [70] |
C. debaryana | 19.9 | 10.1 | 59.4 | 2.7 | - | - | 7.9 | [71] |
Algae | Preparation | Physical Properties | Chemical Properties | Ref. | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yield% | Specific Surface Area m2/g | Total Pore Volume cm3/g | C% | H% | O% | N% | H/C | O/C | N/C | pH | Ash% | Volatiles% | Fixed Carbon% | |||
Macroalgae | ||||||||||||||||
Undaria pinnatifida root | Pyrolysis, N2, 5 °C/min, 2 h, 200 °C | 83.95 | 1.909 | 0.038 | 30.58 | 3.82 | 27.14 | 3.40 | 0.125 | 0.888 | 0.111 | 7.37 | 32.83 | - | - | [125] |
~, 400 °C | 67.70 | 70.29 | 0.112 | 31.92 | 1.74 | 13.56 | 2.35 | 0.055 | 0.425 | 0.074 | 8.38 | 41.85 | - | - | ||
~, 600 °C | 47.75 | 61.809 | 0.078 | 36.64 | 0.99 | 11.76 | 2.31 | 0.027 | 0.321 | 0.063 | 10.36 | 48.71 | - | - | ||
~, 800 °C | 39.29 | 44.491 | 0.057 | 40.51 | 0.70 | 10.02 | 2.00 | 0.017 | 0.247 | 0.049 | 11.09 | 50.41 | - | - | ||
Saccharina japonica | Pyrolysis, N2, 10 °C/min, 1 h 600 °C, bentonite impregnation and co-pyrolysis B:K = 0% | 31.7 | 203 | 0.0904 | 24.5 | 0.47 | 11.7 | 1.21 | 0.019 | 0.478 | 0.049 | 10.2 | 66.7 | 18.9 | 14.4 | [126] |
~, B:K = 5% | 33.6 | 29.2 | 0.0195 | 26.2 | 0.42 | 8.37 | 1.54 | 0.016 | 0.319 | 0.059 | 10.1 | 66.2 | 15.5 | 18.3 | ||
~, B:K = 10% | 35.8 | 2.30 | 0.0043 | 23.3 | 0.25 | 5.40 | 1.33 | 0.011 | 0.232 | 0.057 | 10.1 | 70.8 | 11.6 | 17.7 | ||
~, B:K = 20% | 36.0 | 6.62 | 0.0211 | 20.2 | 0.21 | 3.03 | 0.68 | 0.010 | 0.150 | 0.033 | 10.3 | 75.4 | 11.1 | 13.5 | ||
Mixture of Ulva rigida, Fucus spiralis, Pelvetia canaliculate, Himanthalia elongate, Ulva rigida, Fucus spiralis | Pyrolysis, 3 °C/min, 300 °C,1 h | - | 0.9569 | 0.52 | 49.19 | 4.07 | 18.04 | 2.88 | 0.99 | 0.28 | 0.059 | 7.67 | 25.03 | 47.3 | 27.67 | [127] |
~, 300 °C, 3 h | - | 0.9886 | 0.51 | 51.37 | 4.10 | 18.08 | 3.03 | 0.96 | 0.26 | 0.059 | 8.35 | 22.66 | 45.1 | 32.24 | ||
~, 600 °C, 1 h | - | 2.0444 | 0.62 | 55.31 | 1.56 | 12.16 | 2.46 | 0.34 | 0.16 | 0.044 | 9.36 | 27.98 | 18.9 | 53.12 | ||
~, 600 °C, 3 h | - | 2.1869 | 0.47 | 57.44 | 1.50 | 8.74 | 2.50 | 0.31 | 0.11 | 0.044 | 9.56 | 29.3 | 16.5 | 54.12 | ||
Enteromorpha prolifera | Pyrolysis, N2, 5 °C/min, 4 h, 500 °C | 39.0 | 12.02 | 0.0049 | 28.56 | 1.91 | 26.03 | 2.04 | 0.07 | 0.91 | 0.071 | - | 33.64 | - | - | [128] |
~, 600 °C | 9.5 | 38.49 | 0.0090 | 32.28 | 1.25 | 19.54 | 1.98 | 0.04 | 0.61 | 0.061 | - | 37.78 | - | - | ||
~, 700 °C | 8.4 | 99.34 | 0.0208 | 29.35 | 1.23 | 18.56 | 1.59 | 0.04 | 0.63 | 0.054 | - | 43.96 | - | - | ||
~, 800 °C | 7.5 | 134.19 | 0.0299 | 20.75 | 1.24 | 19.55 | 1.54 | 0.06 | 0.94 | 0.074 | - | 52.71 | - | - | ||
Undaria pinnatifida | Pyrolysis, N2, 10 °C/min, 2 h, 800 °C | - | 69.7 | 0.04 | 63.13 | 2.83 | 14.87 | 2.80 | 0.537 | 0.176 | 0.044 | - | - | - | - | [129] |
~, KOH activation (1:1) | - | 1156.25 | 0.67 | 52.58 | 1.75 | 15.29 | 0.64 | 0.499 | 0.218 | 0.012 | - | - | - | - | ||
Microalgae | ||||||||||||||||
chlorella | Pyrolysis, N2, 800 °C, 20 min | - | 5.00 | 0.01 | 45.03 | 6.89 | 26.37 | 8.43 | 0.15 | 0.59 | 0.19 | 8.7 | - | - | - | [130] |
~KOH activation, microwave, 700 W, N2, 15 min | - | 747.22 | 0.44 | 45.30 | 1.46 | 22.66 | 3.49 | 0.03 | 0.50 | 0.08 | 9.8 | - | - | - | ||
spirulina | Pyrolysis, N2, 800 °C, 20 min | - | 5.65 | 0.01 | 44.76 | 6.80 | 24.25 | 10.10 | 0.15 | 0.54 | 0.23 | 8.5 | - | - | - | |
KOH activation, microwave, 700 W, N2, 15 min | - | 568.3 | 0.40 | 34.47 | 1.74 | 28.93 | 1.98 | 0.05 | 0.84 | 0.06 | 9.6 | - | - | - | ||
Chlorella sp. | Pyrolysis, N2, 2 h, 200 °C | 57.45 | 5.08 | 0.05 | 48.41 | 5.71 | 9.10 | 8.22 | 0.12 | 0.19 | 0.17 | 9.94 | 11.24 | -- | - | [131] |
~, 400 °C | 43.42 | 5.40 | 0.08 | 57.88 | 5.61 | 8.79 | 4.33 | 0.09 | 0.15 | 0.07 | 10.12 | 16.78 | - | - | ||
~, 600 °C | 30.45 | 4.05 | 0.07 | 61.57 | 2.71 | 6.81 | 2.93 | 0.04 | 0.11 | 0.05 | 10.39 | 33.56 | - | - | ||
Spirulina sp. | Pyrolysis, N2, 2 h, 200 °C | 53.42 | 6.57 | 0.07 | 49.50 | 5.04 | 10.29 | 9.40 | 0.10 | 0.21 | 0.19 | 10.63 | 14.43 | - | - | |
~, 400 °C | 37.79 | 6.46 | 0.07 | 58.57 | 5.01 | 9.63 | 8.30 | 0.08 | 0.16 | 0.14 | 10.88 | 29.45 | - | - | ||
~, 600 °C | 27.82 | 7.89 | 0.07 | 64.96 | 2.73 | 6.91 | 5.12 | 0.04 | 0.11 | 0.08 | 11.22 | 36.23 | - | |||
Spirulina sp. | Pyrolysis, N2, 2 h, 350 °C | - | 0.31 | - | 61.63 | 6.62 | 18.71 | 11.77 | 1.289 | 0.228 | 0.191 | - | 1.27 | 56.47 | 42.26 | [132] |
~, 550 °C | - | 1.55 | - | 65.43 | 3.73 | 14.22 | 11.09 | 0.684 | 0.163 | 0.169 | - | 5.53 | 29.55 | 64.92 | ||
~, 750 °C | - | 2.63 | - | 66.60 | 1.30 | 12.25 | 9.42 | 0.138 | 0.138 | 0.141 | - | 10.43 | 19.59 | 69.98 | ||
Nannochloropsis sp. | Hydrothermal carbonization, Ar, 1 h, 210 °C | 28.6 | 1.38 | 0.01 | 54.89 | 6.42 | 32.19 | 5.98 | 0.12 | 0.59 | 0.11 | - | 11.2 | 66.0 | 19.3 | [133] |
~, 250 °C | 22.7 | 12.56 | 0.01 | 27.33 | 3.29 | 66.40 | 2.67 | 0.12 | 2.43 | 0.19 | - | 53.7 | 33.0 | 11.5 | ||
Chlorella vulgaris | Hydrothermal carbonization, 1 h, 260 °C | - | 5.23 | 0.027 | 61.22 | 4.38 | - | 7.25 | 0.61 | - | 0.12 | 7.34 | - | - | - | [134] |
~, citric acid activation | - | 5.89 | 0.014 | 60.46 | 3.78 | - | 7.76 | 0.64 | - | 0.13 | 6.88 | - | - | - | ||
Spirulina platensis | Pyrolysis, N2, 5 °C/min, 1 h, NaHCO3 activation 600 °C | - | 279 | 0.24 | 63.5 | 2.5 | - | 10.2 | 0.039 | - | 0.161 | - | - | - | - | [135] |
~, 700 °C | - | 865 | 0.50 | 65.7 | 2.7 | - | 7.5 | 0.041 | - | 0.114 | - | - | - | - | ||
~, 800 °C | - | 1511 | 0.93 | 85.7 | 1.2 | - | 1.9 | 0.014 | - | 0.022 | - | - | - | - |
Algae | Heavy Metal | Preparation Conditions | pH | Maximal Adsorption Capacity (mg/g) | Adsorption Isotherms | Adsorption Kinetics | Ref. |
---|---|---|---|---|---|---|---|
Macroalgae | |||||||
Macrocystis pyrifera | Cu2+ | Pyrolysis, N2, 450 °C, 1 h | - | 119.9 | Langmuir | Intra-particle diffusion- | [165] |
Red macroalgae | As3+ | Hydrothermal carbonization, 200 °C, 2 h, FeCl3 impregnation, 24 h | 6 | 3.8314 | Langmuir | Pseudo-Second-Order | [166] |
Enteromorpha prolifera | Cd2+ | Pyrolysis, N2, 500 °C, 2 h, KOH activation, 700 °C, 1 h | 7 | 5.84 | Langmuir | Pseudo-Second-Order | [167] |
Enteromorpha prolifera | Cd2+ | H3PO4 impregnation, 12 h, Pyrolysis, N2, 500 °C, 1 h | 7 | 423 | Langmuir | Intra-particle diffusion | [168] |
Ascophyllum nodosum | Cu2+ | Pyrolysis, N2, 700 °C, 2 h, coprecipitation with FeCl3 and FeCl2 | 5 | 53.19 | Langmuir | Pseudo-Second-Order | [169] |
Kappaphycus alvarezii | Cr6+ | Microwave torrefaction, N2, 560 W, 0.5 h, H2O2 activation | 3 | 6.009 | Langmuir | Pseudo-Second-Order | [170] |
Saccharina japonica | Zn2+ | Pyrolysis, N2, 700 °C, 2 h | - | 84.3 | - | - | [171] |
Sargassum fusiforme | 43 | ||||||
Microalgae | |||||||
Chlorella Pyrenoidosa | Ni2+ | Pyrolysis, N2, 600 °C, 2 h, KOH activation | 9.19 | 201.18 | Langmuir | Pseudo-Second-Order | [172] |
Scenedesmus dimorphus | Co2+ | Fast pyrolysis, N2, 500 °C, 40 °C/min | - | 0.672 | Freundlich | Pseudo-Second-Order | [173] |
Spirulina sp. | Cu2+ | Pyrolysis, N2, 200 °C, 2 h | 5 | - | Redlich-Peterson | Pseudo-Second-Order | [143] |
Chlorella sp. | Pb2+ | Pyrolysis, N2, 600 °C, 2 h | 6 | 131.41 | Langmuir | Pseudo-Second-Order | [131] |
Spirulina sp. | 154.51 | ||||||
Chlorella sp. | Cr6+ | Pyrolysis, N2, 450 °C, 1 h | 2 | 15.94 | Langmuir | Pseudo-Second-Order | [174] |
Organic Pollutant | Algae | Preparation | pH | Maximal Adsorption Capacity mg/g | Adsorption Isotherms | Adsorption Kinetics | Ref. |
---|---|---|---|---|---|---|---|
Dyes | |||||||
Reactive Yellow -145 | Chlorella sp. | Pyrolysis, N2, 550 °C, 1 h | 2 | 48.33 | Freundlich | pseudo-second-order | [177] |
Methylene Blue | Seaweed | Hydrothermal carbonization with H3PO4, 200 °C,5 h, KOH impregnation 6 h | 7 | 162.5 | Langmuir | pseudo-second-order | [178] |
malachite green | Cystoseira Fucales | H3PO4 impregnation, microwave, 700 W, 18 min | 7 | 86.44 | Freundlich | pseudo-second-order | [179] |
crystal violet | Enteromorpha flexuosa | Pyrolysis, N2, 600 °C, 1 h, ball milled with kaolin, coprecipitation with FeCl3 | 6 | 53.98 | Freundlich | pseudo-second-order | [180] |
Congo red | Chlorella sp. | Microwave wet torrefaction, 800 W, 10 min | 7 | 164.35 | Langmuir | pseudo-second-order | [181] |
Rhodamine B | Spirulina | Pyrolysis, N2, 700 °C, 1.5 h | 6 | 421.93 | Freundlich | - | [182] |
Methyl orange | Spirulina | Pyrolysis, 500 °C, 5 h | 2 | 10.04 | Langmuir | pseudo-second-order | [183] |
Basic blue 41 | Saccharina japonica | α-FeOOH impregnation, Pyrolysis, N2, 600 °C, 1 h | 8 | 1216 | Langmuir | pseudo-second-order | [184] |
Antibiotics | |||||||
Ciprofloxacin | Ulva Ohnoi | ZnCl2 impregnation, Pyrolysis, N2, 700 °C, 2 h | 7 | 161 | Langmuir | pseudo-second-order | [185] |
Agardhiella subulata | 227 | ||||||
Sargassum hemiphyllum | 250 | ||||||
Sulfamethoxazole | Enteromorpha prolifera | Pyrolysis, N2, 500 °C, 5 h, KOH activation, 800 °C, 2 h | - | 744.32 | Langmuir | pseudo-second-order | [186] |
Tetracycline | Chlorella | Pyrolysis, N2, 500 °C, 1 h, NaOH activation, 800 °C, 1.5 h | 9 | 310.696 | Freundlich | pseudo-second-order | [187] |
sulphathiazole | Spirulina | Pyrolysis, N2, 400 °C, 2 h, KHCO3 activation, 800 °C, 2 h | - | 218.4 | Langmuir | pseudo-second-order | [188] |
ofloxacin | Ulva prolifera | Pyrolysis, N2, 500 °C, 2 h | 7 | 60.98 | Freundlich | two-compartment first-order | [189] |
Other organics | |||||||
naphthalene | Enteromorpha prolifera | ZnCl2, FeCl3 impregnation, Pyrolysis, N2, 800 °C, 1 h | - | 90 | Freundlich | Elovich | [190] |
acenaphthene | 51 | ||||||
phenanthrene | 86 | ||||||
p-nitrophenol | Chlorella sp. Cha-01 | Pyrolysis, 600 °C, 0.5 h | 7 | 204.8 | Freundlich | pseudo-second-order | [191] |
Tetrabromobisphenol A | Ulva prolifera | Co-hydrothermal carbonization with FeSO4, Na2S2O4, 180 °C, 4 h | 4 | 1.47 | Freundlich | pseudo-second-order | [192] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Wang, J.; Sun, W.; Peng, X.; Qi, X. Production of Algae-Derived Biochar and Its Application in Pollutants Adsorption—A Mini Review. Separations 2025, 12, 32. https://doi.org/10.3390/separations12020032
Li L, Wang J, Sun W, Peng X, Qi X. Production of Algae-Derived Biochar and Its Application in Pollutants Adsorption—A Mini Review. Separations. 2025; 12(2):32. https://doi.org/10.3390/separations12020032
Chicago/Turabian StyleLi, Luyang, Jinfeng Wang, Weiming Sun, Xinhong Peng, and Xinhua Qi. 2025. "Production of Algae-Derived Biochar and Its Application in Pollutants Adsorption—A Mini Review" Separations 12, no. 2: 32. https://doi.org/10.3390/separations12020032
APA StyleLi, L., Wang, J., Sun, W., Peng, X., & Qi, X. (2025). Production of Algae-Derived Biochar and Its Application in Pollutants Adsorption—A Mini Review. Separations, 12(2), 32. https://doi.org/10.3390/separations12020032