Optimizing Quercetin Extraction from Taraxacum mongolicum Using Ionic Liquid–Enzyme Systems and Network Pharmacology Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instrumentation
2.3. Dandelion Water Content Assessment
2.4. Determination of Quercetin in Dandelions
2.5. Single-Factor Experiment
2.6. Response Surface Experiment
2.7. Method Validation
2.8. Comparison with Conventional Method
2.9. Network Pharmacology
2.10. In Vitro Antioxidant Activity
2.10.1. Determination of DPPH Radical Scavenging Activity
2.10.2. Determination of Hydroxyl (•OH) Radical Scavenging Activity
2.11. Statistical Analyses
3. Results
3.1. Optimizing the Extraction Parameters for Quercetin
3.1.1. The Effect of Different IL Solutions
3.1.2. The Effect of IL Concentration
3.1.3. The Effect of Liquid–Solid Ratio
3.1.4. The Effect of Ultrasound Temperature
3.1.5. The Effects of Cellulase and Pectinase
3.1.6. The Effect of Cellulase Addition
3.1.7. The Effect of Enzymatic Hydrolysis Temperature
3.2. Optimization Test by Response Surface Methodology
3.2.1. Response Surface Analysis
3.2.2. Verification Tests
3.3. Methodological Validation
3.3.1. Linearity, Limits of Detection, and Quantification
3.3.2. Stability
3.3.3. Recovery
3.3.4. Repeatability
3.4. Comparison with Conventional Methods
3.5. Network Pharmacology Analysis
3.5.1. Screening of Quercetin and Antioxidant-Related Targets
3.5.2. Construction of PPI Protein Interaction Network
3.5.3. GO Enrichment Analysis and KEGG Enrichment Analysis
3.6. In Vitro Antioxidant Activity of Quercetin
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Chen, Y.; Sun-Waterhouse, D. The Potential of Dandelion in the Fight against Gastrointestinal Diseases: A Review. J. Ethnopharmacol. 2022, 293, 115272. [Google Scholar] [CrossRef]
- Fan, M.; Zhang, X.; Song, H.; Zhang, Y. Dandelion (Taraxacum genus): A Review of Chemical Constituents and Pharmacological Effects. Molecules 2023, 28, 5022. [Google Scholar] [CrossRef]
- Di Napoli, A.; Zucchetti, P. A Comprehensive Review of the Benefits of Taraxacum officinale on Human Health. Bull. Natl. Res. Cent. 2021, 45, 110. [Google Scholar] [CrossRef]
- Kania-Dobrowolska, M.; Baraniak, J. Dandelion (Taraxacum officinale L.) as a Source of Biologically Active Compounds Supporting the Therapy of Co-Existing Diseases in Metabolic Syndrome. Foods 2022, 11, 2858. [Google Scholar] [CrossRef]
- Wang, R.; Li, W.; Fang, C.; Zheng, X.; Liu, C.; Huang, Q. Extraction and Identification of New Flavonoid Compounds in Dandelion Taraxacum mongolicum Hand.-Mazz. with Evaluation of Antioxidant Activities. Sci. Rep. 2023, 13, 2166. [Google Scholar] [CrossRef]
- Liu, N.; Song, M.; Wang, N.; Wang, Y.; Wang, R.; An, X.; Jingwei, Q. The Effects of Solid-State Fermentation on the Content, Composition and In Vitro Antioxidant Activity of Flavonoids from Dandelion. PLoS ONE 2020, 15, e0239076. [Google Scholar] [CrossRef]
- Georgiou, N.; Kakava, M.G.; Routsi, E.A.; Petsas, E.; Stavridis, N.; Freris, C.; Zoupanou, N.; Moschovou, K.; Kiriakidi, S.; Mavromoustakos, T. Quercetin: A Potential Polydynamic Drug. Molecules 2023, 28, 8141. [Google Scholar] [CrossRef]
- Manzoor, M.F.; Hussain, A.; Sameen, A.; Sahar, A.; Khan, S.; Siddique, R.; Aadil, R.M.; Xu, B. Novel Extraction, Rapid Assessment and Bioavailability Improvement of Quercetin: A Review. Ultrason. Sonochem. 2021, 78, 105686. [Google Scholar] [CrossRef]
- Kaur, G.; Kumar, H.; Singla, M. Diverse Applications of Ionic Liquids: A Comprehensive Review. J. Mol. Liq. 2022, 351, 118556. [Google Scholar] [CrossRef]
- Zhuo, Y.; Cheng, H.-L.; Zhao, Y.-G.; Cui, H.-R. Ionic Liquids in Pharmaceutical and Biomedical Applications: A Review. Pharmaceutics 2024, 16, 151. [Google Scholar] [CrossRef]
- Flieger, J.; Feder-Kubis, J.; Tatarczak-Michalewska, M. Chiral Ionic Liquids: Structural Diversity, Properties and Applications in Selected Separation Techniques. Int. J. Mol. Sci. 2020, 21, 4253. [Google Scholar] [CrossRef]
- Fan, Y.; Li, X.; Song, L.; Li, J.; Zhang, L. Effective Extraction of Quinine and Gramine from Water by Hydrophobic Ionic Liquids: The Role of Anion. Chem. Eng. Res. Des. 2017, 119, 58–65. [Google Scholar] [CrossRef]
- Zeng, H.; Wang, Y.; Kong, J.; Nie, C.; Yuan, Y. Ionic Liquid-Based Microwave-Assisted Extraction of Rutin from Chinese Medicinal Plants. Talanta 2010, 83, 582–590. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, J.; Han, Y.; Wang, X.; Sheng, Z. Optimization of Process Conditions for Ionic Liquid-Based Ultrasound-Enzyme-Assisted Extraction of Resveratrol from Polygonum cuspidatum. Ultrason. Sonochem. 2024, 108, 106973. [Google Scholar] [CrossRef]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H.; et al. A Comprehensive Review of Ultrasonic Assisted Extraction (UAE) for Bioactive Components: Principles, Advantages, Equipment, and Combined Technologies. Ultrason. Sonochem. 2023, 101, 106646. [Google Scholar] [CrossRef]
- Yohannes, A.; Zhang, B.; Dong, B.; Yao, S. Ultrasonic Extraction of Tropane Alkaloids from Radix Physochlainae Using as Extractant an Ionic Liquid with Similar Structure. Molecules 2019, 24, 2897. [Google Scholar] [CrossRef]
- Wang, L.; Bai, M.; Qin, Y.; Liu, B.; Wang, Y.; Zhou, Y. Application of Ionic Liquid-Based Ultrasonic-Assisted Extraction of Flavonoids from Bamboo Leaves. Mol. J. Synth. Chem. Nat. Prod. Chem. 2018, 23, 2309. [Google Scholar] [CrossRef]
- Liang, Q.; Zhang, J.; Su, X.; Meng, Q.; Dou, J. Extraction and Separation of Eight Ginsenosides from Flower Buds of Panax Ginseng Using Aqueous Ionic Liquid-Based Ultrasonic-Assisted Extraction Coupled with an Aqueous Biphasic System. Molecules 2019, 24, 778. [Google Scholar] [CrossRef]
- Liu, X.; Niu, Y.; Liu, J.; Shi, M.; Xu, R.; Kang, W. Efficient Extraction of Anti-Inflammatory Active Ingredients from Schefflera Octophylla Leaves Using Ionic Liquid-Based Ultrasonic-Assisted Extraction Coupled with HPLC. Molecules 2019, 24, 2942. [Google Scholar] [CrossRef]
- Nadar, S.S.; Rao, P.; Rathod, V.K. Enzyme Assisted Extraction of Biomolecules as an Approach to Novel Extraction Technology: A Review. Food Res. Int. 2018, 108, 309–330. [Google Scholar] [CrossRef]
- Amulya, P.R.; ul Islam, R. Optimization of Enzyme-Assisted Extraction of Anthocyanins from Eggplant (Solanum melongena L.) Peel. Food Chem. X 2023, 18, 100643. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhu, X.; Bai, H.; Ning, K. Network Pharmacology Databases for Traditional Chinese Medicine: Review and Assessment. Front. Pharmacol. 2019, 10, 123. [Google Scholar] [CrossRef]
- Noor, F.; Tahir Ul Qamar, M.; Ashfaq, U.A.; Albutti, A.; Alwashmi, A.S.S.; Aljasir, M.A. Network Pharmacology Approach for Medicinal Plants: Review and Assessment. Pharmaceuticals 2022, 15, 572. [Google Scholar] [CrossRef]
- Zheng, Y.; Ji, S.; Li, X.; Feng, Q. Active Ingredients and Molecular Targets of Taraxacum Mongolicum against Hepatocellular Carcinoma: Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation Analysis. PeerJ 2022, 10, e13737. [Google Scholar] [CrossRef]
- Singh, L.; Agarwal, T. Comparative Analysis of Conventional and Greener Extraction Methods and Method Validation for Analyzing PAHs in Cooked Chicken and Roasted Coffee. Food Chem. 2021, 364, 130440. [Google Scholar] [CrossRef]
- Ping, Y.; Yang, Y.; Gao, H.; Liu, X.; Pan, J.; Zhang, K.; Gu, H.; Tian, H.; Yang, L. Natural Surfactant Used as an Additive in the Enzymatic-Homogenate Synergistic Extraction of Piceatannol, Resveratrol, and Myricetin from the Myrtle (Rhodomyrtus tomentosa) Fruit. Food Biosci. 2024, 62, 105224. [Google Scholar] [CrossRef]
- Liu, F.-J.; Yang, J.; Chen, X.-Y.; Yu, T.; Ni, H.; Feng, L.; Li, P.; Li, H.-J. Chemometrics Integrated with in Silico Pharmacology to Reveal Antioxidative and Anti-Inflammatory Markers of Dandelion for Its Quality Control. Chin. Med. 2022, 17, 125. [Google Scholar] [CrossRef]
- Liu, D.-L.; Liu, S.-J.; Hu, S.-Q.; Chen, Y.-C.; Guo, J. Probing the Potential Mechanism of Quercetin and Kaempferol against Heat Stress-Induced Sertoli Cell Injury: Through Integrating Network Pharmacology and Experimental Validation. Int. J. Mol. Sci. 2022, 23, 11163. [Google Scholar] [CrossRef]
- Domínguez-Rodríguez, G.; Marina, M.L.; Plaza, M. Enzyme-Assisted Extraction of Bioactive Non-Extractable Polyphenols from Sweet Cherry (Prunus avium L.) Pomace. Food Chem. 2021, 339, 128086. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, S.; Yang, K.; Sun, Y.; Yang, R.; Hu, Y.; Chen, G.; Cai, H. Characterization and In Vitro Antioxidant and Anti-Inflammatory Activities of Ginsenosides Extracted from Forest-Grown Wild Panax quinquefolius L. Foods 2023, 12, 4316. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, X.; Liu, Q.; Lin, Y.; Zhang, Z.; Li, S. Study on Extraction and Antioxidant Activity of Flavonoids from Hemerocallis fulva (Daylily) Leaves. Molecules 2022, 27, 2916. [Google Scholar] [CrossRef]
- Liu, Z.; Jia, J.; Chen, F.; Yang, F.; Zu, Y.; Yang, L. Development of an Ionic Liquid-Based Microwave-Assisted Method for the Extraction and Determination of Taxifolin in Different Parts of Larix Gmelinii. Molecules 2014, 19, 19471. [Google Scholar] [CrossRef]
- Hu, Y.; Kang, G.; Wang, L.; Gao, M.; Wang, P.; Yang, D.; Huang, H. Current Status of Mining, Modification, and Application of Cellulases in Bioactive Substance Extraction. Curr. Issues Mol. Biol. 2021, 43, 687. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, R.; Gao, H.; Wang, Z.; Yang, X.; Ruan, M.; Gu, H.; Yang, L.; Tian, H.; Fan, C.; et al. β-Cyclodextrin as a Booster for Ultrasound-Assisted Extraction of Secoiridoids from Gentiana rigescens Using a Biobased Deep Eutectic Solvent. Ind. Crops Prod. 2023, 204, 117410. [Google Scholar] [CrossRef]
- Fumino, K.; Peppel, T.; Geppert-Rybczyńska, M.; Zaitsau, D.H.; Lehmann, J.K.; Verevkin, S.P.; Köckerling, M.; Ludwig, R. The Influence of Hydrogen Bonding on the Physical Properties of Ionic Liquids. Phys. Chem. Chem. Phys. 2011, 13, 14064–14075. [Google Scholar] [CrossRef]
- Gil, K.A.; Jokić, S.; Cikoš, A.-M.; Banožić, M.; Jakovljević Kovač, M.; Fais, A.; Tuberoso, C.I.G. Comparison of Different Green Extraction Techniques Used for the Extraction of Targeted Flavonoids from Edible Feijoa (Acca sellowiana (O.Berg) Burret) Flowers. Plants 2023, 12, 1461. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, Y.; Wang, H. Multi-Interactions in Ionic Liquids for Natural Product Extraction. Molecules 2020, 26, 98. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Wang, Y.; Gao, S.; Shao, X.; Cui, W.; Du, Y.; Guo, M.; Tang, D. Highly Efficient and Selective Extraction of Minor Bioactive Natural Products Using Pure Ionic Liquids: Application to Prenylated Flavonoids in Licorice. J. Ind. Eng. Chem. 2019, 80, 352–360. [Google Scholar] [CrossRef]
- Ventura, S.P.M.; e Silva, F.A.; Quental, M.V.; Mondal, D.; Freire, M.G.; Coutinho, J.A.P. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends. Chem. Rev. 2017, 117, 6984. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Gao, Y.-T.; Wei, J.-W.; Chen, Y.-F.; Liu, Q.-L.; Liu, H.-M. Optimization of Ultrasonic Cellulase-Assisted Extraction and Antioxidant Activity of Natural Polyphenols from Passion Fruit. Molecules 2021, 26, 2494. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-J.; Inbaraj, B.S.; Chen, B.-H. Determination of Phenolic Acids and Flavonoids in Taraxacum formosanum Kitam by Liquid Chromatography-Tandem Mass Spectrometry Coupled with a Post-Column Derivatization Technique. Int. J. Mol. Sci. 2012, 13, 260–285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yin, Z.; Guo, Q.; Chen, L.; Zhang, J. Ionic Liquid-Based Ultrasonic-Assisted Extraction Coupled with HPLC to Analyze Isoquercitrin, Trifolin and Afzelin in Amygdalus persica L. Flowers. BMC Chem. 2023, 17, 102. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; He, N.; Li, W.; Li, C.; Kang, W. Simultaneous Determination of Myricetrin, Quercitrin and Afzelin in Leaves of Cercis chinensis by a Fast and Effective Method of Ionic Liquid Microextraction Coupled with HPLC. Chem. Cent. J. 2018, 12, 23. [Google Scholar] [CrossRef] [PubMed]
- Greer, A.J.; Jacquemin, J.; Hardacre, C. Industrial Applications of Ionic Liquids. Molecules 2020, 25, 5207. [Google Scholar] [CrossRef] [PubMed]
- Palomar, J.; Lemus, J.; Navarro, P.; Moya, C.; Santiago, R.; Hospital-Benito, D.; Hernández, E. Process Simulation and Optimization on Ionic Liquids-MC. Chem. Rev. 2024, 124, 1649–1737. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC10906004/ (accessed on 20 January 2025). [CrossRef]
- Streimikyte, P.; Viskelis, P.; Viskelis, J. Enzymes-Assisted Extraction of Plants for Sustainable and Functional Applications. Int. J. Mol. Sci. 2022, 23, 2359. [Google Scholar] [CrossRef]
- Khan, R.A.; Mohammed, H.A.; Sulaiman, G.M.; Subaiyel, A.A.; Karuppaiah, A.; Rahman, H.; Makhathini, S.; Ramburrun, P.; Choonara, Y.E. Molecule(s) of Interest: I. Ionic Liquids–Gateway to Newer Nanotechnology Applications: Advanced Nanobiotechnical Uses’, Current Status, Emerging Trends, Challenges, and Prospects. Int. J. Mol. Sci. 2022, 23, 14346. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Sun, C.; Mao, L.; Ma, P.; Liu, F.; Yang, J.; Gao, Y. The Biological Activities, Chemical Stability, Metabolism and Delivery Systems of Quercetin: A Review. Trends Food Sci. Technol. 2016, 56, 21–38. [Google Scholar] [CrossRef]
- Frenț, O.-D.; Stefan, L.; Morgovan, C.M.; Duteanu, N.; Dejeu, I.L.; Marian, E.; Vicaș, L.; Manole, F. A Systematic Review: Quercetin—Secondary Metabolite of the Flavonol Class, with Multiple Health Benefits and Low Bioavailability. Int. J. Mol. Sci. 2024, 25, 12091. [Google Scholar] [CrossRef]
- Xu, D.; Hu, M.-J.; Wang, Y.-Q.; Cui, Y.-L. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules 2019, 24, 1123. [Google Scholar] [CrossRef]
- Abeyrathna, P.; Su, Y. The Critical Role of Akt in Cardiovascular Function. Vasc. Pharmacol. 2015, 74, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.H.; Khursigara, G.; Sun, X.; Franke, T.F.; Chao, M.V. Akt Phosphorylates and Negatively Regulates Apoptosis Signal-Regulating Kinase 1. Mol. Cell. Biol. 2001, 21, 893–901. [Google Scholar] [CrossRef]
- Cardone, L.; Bardelli, A.; Avvedimento, V.E. Activation of β-Catenin by Oncogenic PIK3CA and EGFR Promotes Resistance to Glucose Deprivation by Inducing a Strong Antioxidant Response. PLoS ONE 2012, 7, e37526. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.-W.; Hsu, S.-C.; Chueh, F.-S.; Chen, Y.-Y.; Yang, J.-S.; Lin, J.-P.; Lien, J.-C.; Tsai, C.-H.; Chung, J.-G. Quercetin Inhibits Migration and Invasion of SAS Human Oral Cancer Cells through Inhibition of NF-κB and Matrix Metalloproteinase-2/-9 Signaling Pathways. Anticancer Res. 2013, 33, 1941–1950. [Google Scholar] [PubMed]
- Sabarathinam, S. Unraveling the Therapeutic Potential of Quercetin and Quercetin-3-O-Glucuronide in Alzheimer’s Disease through Network Pharmacology, Molecular Docking, and Dynamic Simulations. Sci. Rep. 2024, 14, 14852. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Kono, K.; Shimomura, K.; Minami, H. Preparation of Cellulose Particles Using an Ionic Liquid. J. Colloid Interface Sci. 2014, 418, 126–131. [Google Scholar] [CrossRef] [PubMed]
Level | Factor | ||
---|---|---|---|
Enzymatic Hydrolysis Temperature (A) (°C) | Enzyme Addition (B) (%) | Liquid–Solid Ratio (C) (mL/g) | |
−1 | 30 | 10 | 25 |
0 | 50 | 15 | 30 |
1 | 70 | 20 | 35 |
Types of Enzymes | Yield (mg/g) |
---|---|
cellulase | 0.1897 ± 0.017 |
pectinase | 0.1121 ± 0.013 |
Run | Enzymatic Hydrolysis Temperature (A) (°C) | Enzyme Addition (B) (%) | Liquid–Solid Ratio (C) (mL/g) | Quercetin Yield (mg/g) |
---|---|---|---|---|
1 | −1 (30) | 0 (15) | −1 (25) | 0.150 |
2 | 0 (50) | 1 (20) | −1 (25) | 0.154 |
3 | −1 (30) | 0 (15) | 1 (35) | 0.184 |
4 | 0 (50) | 0 (15) | 0 (30) | 0.220 |
5 | 1 (70) | 0 (15) | −1 (25) | 0.170 |
6 | 0 (50) | 0 (15) | 0 (30) | 0.241 |
7 | 1 (70) | 1 (20) | 0 (30) | 0.174 |
8 | 0 (50) | 0 (15) | 0 (30) | 0.230 |
9 | 0 (50) | 0 (15) | 0 (30) | 0.243 |
10 | 0 (50) | 0 (15) | 0 (30) | 0.240 |
11 | −1 (30) | −1 (10) | 0 (30) | 0.144 |
12 | 1 (70) | −1 (10) | 0 (30) | 0.195 |
13 | 0 (50) | −1 (10) | 1 (35) | 0.183 |
14 | 0 (50) | 1 (20) | 1 (35) | 0.185 |
15 | −1 (30) | 1 (20) | 0 (30) | 0.150 |
16 | 1 (70) | 0 (15) | 1 (35) | 0.210 |
17 | 0 (50) | −1 (10) | −1 (25) | 0.154 |
Source | Sum of Squares | Df | Mean Square | F Value | p Value |
---|---|---|---|---|---|
Model | 0.0190 | 9 | 0.0021 | 27.2923 | 0.0001 |
A-Enzymatic hydrolysis temperature | 0.0018 | 1 | 0.0018 | 23.6997 | 0.0018 |
B-Enzyme addition | 2.113 × 105 | 1 | 2.113 × 105 | 0.2736 | 0.6171 |
C-Liquid–solid ratio | 0.0022 | 1 | 0.0022 | 29.0658 | 0.0010 |
AB | 0.0002 | 1 | 0.0002 | 2.3601 | 0.1684 |
AC | 9 × 106 | 1 | 9 × 106 | 0.1165 | 0.7428 |
BC | 1 × 106 | 1 | 1 × 106 | 0.0129 | 0.9126 |
A2 | 0.0037 | 1 | 0.0037 | 48.3395 | 0.0002 |
B2 | 0.0065 | 1 | 0.0065 | 84.1068 | 3.774 × 105 |
C2 | 0.0030 | 1 | 0.0030 | 38.3627 | 0.0004 |
Residual | 0.0005 | 7 | 7.722 × 105 | ||
Lack of fit | 0.0002 | 3 | 5.525 × 105 | 0.5896 | 0.6536 |
Pure error | 0.0004 | 4 | 9.37 × 105 | ||
Cor total | 0.0195 | 16 |
Stability Studies of Quercetin Reference Substances Under Optimal Extraction Conditions of Ionic Liquid–Enzyme Complex System | |||||||
---|---|---|---|---|---|---|---|
Compound | Initial concentration (mg/mL) | Recovered concentration after extraction (mg/mL) | RSD% (n = 3) | Average recovery (%) | Recovered concentration after 7 days (mg/mL) | RSD% (n = 3) | Average recovery (%) |
quercetin | 0.106 | 0.104 | 0.64% | 98.09% | 0.103 | 0.53% | 97.24% |
Recovery of quercetin from the dandelion | |||||||
Sample | Contents of the sample (mg) | Mass of added reference substances (mg) | The mass of the sample was analyzed with added reference substances (mg) | Recovery (%) | |||
1 | 0.234 | 0.116 | 0.348 | 99.429% | |||
2 | 0.234 | 0.119 | 0.351 | 99.433% | |||
3 | 0.234 | 0.117 | 0.349 | 99.430% | |||
Average | 99.431% |
Target | Degree | Betweenness | Closeness |
---|---|---|---|
AKT1 | 38 | 726.2767 | 0.013514 |
EGFR | 30 | 214.8449 | 0.011236 |
MMP9 | 27 | 177.4418 | 0.011111 |
GSK3B | 25 | 174.5827 | 0.011236 |
SRC | 25 | 87.43865 | 0.010638 |
MMP2 | 21 | 99.09848 | 0.010309 |
PARP1 | 21 | 138.1256 | 0.010206 |
ABCG2 | 16 | 138.8101 | 0.009804 |
CDK2 | 16 | 90.74173 | 0.009434 |
ABCB1 | 15 | 91.323 | 0.009804 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, J.; Sun, Y.; Dong, N.; Pei, Y.; Zhou, X.; Zhou, Y.; Liu, H. Optimizing Quercetin Extraction from Taraxacum mongolicum Using Ionic Liquid–Enzyme Systems and Network Pharmacology Analysis. Separations 2025, 12, 34. https://doi.org/10.3390/separations12020034
Hao J, Sun Y, Dong N, Pei Y, Zhou X, Zhou Y, Liu H. Optimizing Quercetin Extraction from Taraxacum mongolicum Using Ionic Liquid–Enzyme Systems and Network Pharmacology Analysis. Separations. 2025; 12(2):34. https://doi.org/10.3390/separations12020034
Chicago/Turabian StyleHao, Jingwei, Yifan Sun, Nan Dong, Yingying Pei, Xiangkun Zhou, Yi Zhou, and Heming Liu. 2025. "Optimizing Quercetin Extraction from Taraxacum mongolicum Using Ionic Liquid–Enzyme Systems and Network Pharmacology Analysis" Separations 12, no. 2: 34. https://doi.org/10.3390/separations12020034
APA StyleHao, J., Sun, Y., Dong, N., Pei, Y., Zhou, X., Zhou, Y., & Liu, H. (2025). Optimizing Quercetin Extraction from Taraxacum mongolicum Using Ionic Liquid–Enzyme Systems and Network Pharmacology Analysis. Separations, 12(2), 34. https://doi.org/10.3390/separations12020034