Hydrophilic Liquid Chromatography versus Reversed-Phase Liquid Chromatography in the Absence and the Presence of 1-Hexyl-3-methylimidazolium Chloride for the Analysis of Basic Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Instrumentation and Columns
3. Results and Discussion
3.1. Influence of Mobile Phase Composition on Retention
3.2. Selectivity
3.3. Peak Shape
3.4. Resolution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nawrocki, J. The silanol group and its role in liquid chromatography. J. Chromatogr. A 1997, 779, 29–71. [Google Scholar] [CrossRef]
- Neue, U.D.; Tran, K.; Méndez, A.; Carr, P.W. The combined effect of silanols and the reversed-phase ligand on the retention of positively charged analytes. J. Chromatogr. A 2005, 1063, 35–45. [Google Scholar] [CrossRef]
- Reta, M.; Carr, P.W. Comparative study of divalent metals and amines as silanol-blocking agents in reversed-phase liquid chromatography. J. Chromatogr. A 1999, 855, 121–127. [Google Scholar] [CrossRef]
- Engelhardt, H.; Blay, C.; Saar, J. Reversed phase chromatography: The mystery of surface silanols. Chromatographia 2005, 62, S19–S29. [Google Scholar]
- McCalley, D.V. The challenges of the analysis of basic compounds by high performance liquid chromatography: Some possible approaches for improved separations. J. Chromatogr. A 2010, 1217, 858–880. [Google Scholar] [CrossRef]
- García-Alvarez-Coque, M.C.; Navarro-Huerta, J.A.; Torres-Lapasió, J.R. Secondary chemical equilibria in reversed-phase liquid chromatography. In Liquid Chromatography: Fundamentals and Instrumentation, 2nd ed.; Fanali, S., Haddad, P., Poole, C.F., Riekkola, M.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 125–146. [Google Scholar]
- Calabuig-Hernández, S.; García-Alvarez-Coque, M.C.; Ruiz-Angel, M.J. Performance of amines as silanol suppressors in reversed-phase liquid chromatography. J. Chromatogr. A 2016, 1465, 98–106. [Google Scholar]
- Ruiz-Angel, M.J.; Torres-Lapasió, J.R.; García-Alvarez-Coque, M.C.; Carda-Broch, S. Retention mechanisms for basic drugs in the submicellar and micellar reversed-phase liquid chromatographic modes. Anal. Chem. 2008, 80, 9705–9713. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; He, L.; Gu, Y.; Liu, X.; Jiang, S. Effect of ionic liquids as mobile phase additives on retention of catecholamines in reversed-phase high-performance liquid chromatography. Anal. Lett. 2003, 36, 827–838. [Google Scholar] [CrossRef]
- Xiaohua, X.; Liang, Z.; Xia, L.; Shengxiang, J. Ionic liquids as additives in high performance liquid chromatography: Analysis of amines and the interaction mechanism of ionic liquids. Anal. Chim. Acta 2004, 519, 207–211. [Google Scholar]
- Marszałł, M.P.; Baczek, T.; Kaliszan, R. Evaluation of the silanol-suppressing potency of ionic liquids. J. Sep. Sci. 2006, 29, 1138–1145. [Google Scholar] [PubMed]
- Herrera-Herrera, A.V.; Hernández-Borges, J.; Rodríguez-Delgado, M.A. Ionic liquids as mobile phase additives for the high-performance liquid chromatographic analysis of fluoroquinolone antibiotics in water samples. Anal. Bioanal. Chem. 2008, 392, 1439–1446. [Google Scholar] [CrossRef] [PubMed]
- Martín-Calero, A.; Pino, V.; Ayala, J.H.; González, V.; Afonso, A.M. Ionic liquids as mobile phase additives in high-performance liquid chromatography with electrochemical detection: Application to the determination of heterocyclic aromatic amines in meat-based infant foods. Talanta 2009, 79, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Martín-Calero, A.; Tejral, G.; Ayala, J.H.; González, V.; Afonso, A.M. Suitability of ionic liquids as mobile-phase additives in HPLC with fluorescence and UV detection for the determination of heterocyclic aromatic amines. J. Sep. Sci. 2010, 33, 182–190. [Google Scholar] [PubMed]
- Petruczynik, A. Effect of ionic liquid additives to mobile phase on separation and system efficiency for HPLC of selected alkaloids on different stationary phases. J. Chromatogr. Sci. 2012, 50, 287–293. [Google Scholar]
- Tang, Y.; Sun, A.; Liu, R.; Zhang, Y. Simultaneous determination of fangchinoline and tetrandrine in Stephania tetrandra S. Moore by using 1-alkyl-3-methylimidazolium-based ionic liquids as the RP-HPLC mobile phase additives. Anal. Chim. Acta 2013, 767, 148–154. [Google Scholar] [CrossRef]
- García-Alvarez-Coque, M.C.; Ruiz-Angel, M.J.; Berthod, A.; Carda-Broch, S. On the use of ionic liquids as mobile phase additives in high-performance liquid chromatography. Anal. Chim. Acta 2015, 883, 1–21. [Google Scholar]
- Buszewska-Forajta, M.; Markuszewski, M.J.; Kaliszan, R. Free silanols and ionic liquids as their suppressors in liquid chromatography. J. Chromatogr A 2018, 1559, 17–43. [Google Scholar] [CrossRef]
- Fernández-Navarro, J.J.; García-Alvarez-Coque, M.C.; Ruiz-Angel, M.J. The role of the dual nature of ionic liquids in the reversed-phase liquid chromatographic separation of basic drugs. J. Chromatogr. A 2011, 1218, 398–407. [Google Scholar]
- Ubeda-Torres, M.T.; Ortiz-Bolsico, C.; García-Alvarez-Coque, M.C.; Ruiz-Angel, M.J. Gaining insight in the behaviour of imidazolium-based ionic liquids as additives in reversed-phase liquid chromatography for the analysis of basic compounds. J. Chromatogr. A 2015, 1380, 96–103. [Google Scholar] [CrossRef]
- Guo, Y.; Gaiki, S. Retention behavior of small polar compounds on polar stationary phases in hydrophilic interaction chromatography. J. Chromatogr. A 2005, 1074, 71–80. [Google Scholar] [CrossRef]
- Buszewski, B.; Noga, S. Hydrophilic liquid chromatography (HILIC): A powerful separation technique. Anal. Bioanal. Chem. 2012, 402, 231–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jandera, P.; Janás, P. Recent advances in stationary phases and understanding of retention in hydrophilic interaction chromatography: A review. J. Chromatogr. A 2017, 967, 12–32. [Google Scholar] [CrossRef] [PubMed]
- Cavazzini, A.; Catani, M.; Felinger, A. Hydrophilic interaction liquid chromatography. In Liquid Chromatography: Fundamentals and Instrumentation; Fanali, S., Haddad, P., Poole, C.F., Riekkola, M.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 147–169. [Google Scholar]
- McCalley, D.V. Understanding and manipulating the separation in hydrophilic interaction liquid chromatography. J. Chromatogr. A 2018, 1523, 49–71. [Google Scholar] [CrossRef] [PubMed]
- Burgos-Gil, R.; Peris-García, E.; Ruiz-Angel, M.J.; Baeza-Baeza, J.J.; García-Alvarez-Coque, M.C. Protocol to compare column performance applied to hydrophilic interaction liquid chromatography. Microchem. J. 2019, 149, 103973. [Google Scholar]
- McCalley, D.V. Is hydrophilic interaction chromatography with silica columns a viable alternative to reversed-phase liquid chromatography for the analysis of ionisable compounds? J. Chromatogr. A 1171, 2007, 46–55. [Google Scholar] [CrossRef]
- McCalley, D.V. Evaluation of the properties of a superficially porous silica stationary phase in hydrophilic interaction chromatography. J. Chromatogr A 2008, 1193, 85–91. [Google Scholar] [CrossRef]
- Al-Tannak, N.F.; Bawazeer, S.; Siddiqui, T.H.; Watson, D.G. The hydrophilic interaction like properties of some reversed phase high performance liquid chromatography columns in the analysis of basic compounds. J. Chromatogr. A 2011, 1218, 1486–1491. [Google Scholar]
- Jovanovi, M.; Stojanovi, B.J.; Raki, T.; Malenovi, A.; Ivanovi, D.; Medenica, M. Five different columns in the analysis of basic drugs in hydrophilic interaction liquid chromatography. Cent. Eur. J. Chem. 2013, 11, 1150–1162. [Google Scholar]
- ACE® HILIC Method Development Guide. ACE UHPLC and HPLC Columns, Advanced Chromatography Technologies, Aberdeen, Scotland. Available online: https://www.hplc.eu/Downloads/ACE_Guide_HILIC.pdf (accessed on 18 February 2020).
- Mehvar, R.; Brocks, D.R. Stereospecific pharmacokinetics and pharmacodynamics of beta-adrenergic blockers in humans. J. Pharm. Sci. 2001, 4, 185–200. [Google Scholar]
- Drayton, C.J. (Ed.) Comprehensive Medicine Chemistry; Pergamon Press: Oxford, UK, 1990; Volume 6. [Google Scholar]
- Torres-Lapasió, J.R. MICHROM Software; Marcel Dekker: New York, NY, USA, 2000. [Google Scholar]
- Berthod, A.; Ruiz-Angel, M.J.; Huguet, S. Non molecular solvents in separation methods: Dual nature of room temperature ionic liquids. Anal. Chem. 2005, 77, 4071–4080. [Google Scholar] [CrossRef]
- Guo, Y.; Gaiki, S. Retention and selectivity of stationary phases for hydrophilic interaction chromatography. J. Chromatogr. A 2011, 1218, 5920–5938. [Google Scholar] [CrossRef] [PubMed]
- Chirita, R.I.; West, C.; Zubrzycki, S.; Finaru, A.L.; Elfakir, C. Investigations on the chromatographic behaviour of zwitterionic stationary phases used in hydrophilic interaction chromatography. J. Chromatogr. A 2011, 1218, 5939–5963. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Watson, D.G.; Wang, L.; Westrop, G.D.; Coombs, G.H.; Zhang, T. Evaluation of mobile phase characteristics on three zwitterionic columns in hydrophilic interaction liquid chromatography mode for liquid chromatography-high resolution mass spectrometry based untargeted metabolite profiling of Leishmania parasites. J. Chromatogr. A 2014, 1362, 168–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arase, S.; Kimura, S.; Ikegami, T. Method optimization of hydrophilic interaction chromatography separation of nucleotides using design of experiment approaches. I: Comparison of several zwitterionic columns. J. Pharm. Biomed. Anal. 2018, 158, 307–316. [Google Scholar] [CrossRef]
- Ruiz-Angel, M.J.; Carda-Broch, S.; García-Alvarez-Coque, M.C. Peak half-width plots to study the effect of organic solvents on the peak performance of basic drugs in micellar liquid chromatography. J. Chromatogr. A 2010, 1217, 1786–1798. [Google Scholar] [CrossRef]
- Baeza-Baeza, J.J.; Ruiz-Angel, M.J.; García-Alvarez-Coque, M.C.; Carda-Broch, S. Half width plots, a simple tool to predict peak shape, reveal column kinetics and characterise chromatographic columns in liquid chromatography: State of the art and new results. J. Chromatogr. A 2013, 1314, 142–153. [Google Scholar] [CrossRef]
- Foley, J.P.; Dorsey, J.G. Equations for calculation of chromatographic figures of merit for ideal and skewed peaks. Anal. Chem. 1983, 55, 730–737. [Google Scholar] [CrossRef]
Compound | Acetonitrile Elution Strength | Water Elution Strength | |
---|---|---|---|
Conventional RPLC | RPLC with [C6C1im]Cl | HILIC | |
Acebutolol | −0.0948 | −0.1026 | −0.0405 |
Atenolol | −0.0295 | −0.1020 | −0.0342 |
Carteolol | −0.0789 | −0.0509 | −0.0392 |
Esmolol | −0.0929 | −0.0940 | −0.0253 |
Metoprolol | −0.0850 | −0.0884 | −0.0377 |
Oxprenolol | −0.0921 | −0.0953 | −0.0086 |
Propranolol | −0.0970 | −0.1217 | −0.0212 |
Timolol | −0.0894 | −0.0986 | −0.0224 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peris-García, E.; Burgos-Gil, R.; García-Alvarez-Coque, M.C.; Ruiz-Angel, M.J. Hydrophilic Liquid Chromatography versus Reversed-Phase Liquid Chromatography in the Absence and the Presence of 1-Hexyl-3-methylimidazolium Chloride for the Analysis of Basic Compounds. Separations 2020, 7, 30. https://doi.org/10.3390/separations7020030
Peris-García E, Burgos-Gil R, García-Alvarez-Coque MC, Ruiz-Angel MJ. Hydrophilic Liquid Chromatography versus Reversed-Phase Liquid Chromatography in the Absence and the Presence of 1-Hexyl-3-methylimidazolium Chloride for the Analysis of Basic Compounds. Separations. 2020; 7(2):30. https://doi.org/10.3390/separations7020030
Chicago/Turabian StylePeris-García, Ester, Raquel Burgos-Gil, María Celia García-Alvarez-Coque, and María José Ruiz-Angel. 2020. "Hydrophilic Liquid Chromatography versus Reversed-Phase Liquid Chromatography in the Absence and the Presence of 1-Hexyl-3-methylimidazolium Chloride for the Analysis of Basic Compounds" Separations 7, no. 2: 30. https://doi.org/10.3390/separations7020030
APA StylePeris-García, E., Burgos-Gil, R., García-Alvarez-Coque, M. C., & Ruiz-Angel, M. J. (2020). Hydrophilic Liquid Chromatography versus Reversed-Phase Liquid Chromatography in the Absence and the Presence of 1-Hexyl-3-methylimidazolium Chloride for the Analysis of Basic Compounds. Separations, 7(2), 30. https://doi.org/10.3390/separations7020030