GC-MS Analysis and Hemolytic, Antipyretic and Antidiarrheal Potential of Syzygium aromaticum (Clove) Essential Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oil Obtention
2.2. Animals
2.3. GC-MS Analysis
2.4. Anticoagulant Activity
2.5. Hemolytic Assay
2.6. Antidiarrheal Activity In Vivo
2.7. Antipyretic Activity
2.8. Statistical Analysis
3. Results
3.1. Yield and Composition of EOSa
3.2. Anticoagulant Activity
3.3. Hemolytic Activity
3.4. Antidiarrheal Activity
3.5. Antipyretic Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Johnson, A.; Gowtham, J.; Janakiraman, N.; Malar, T.R.J.J.; Rocha, J.E.; Coutinho, H.D.M. Phytochemical profile of Asplenium aethiopicum (Burm. f.) Becherer using HPTLC. Separations 2020, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Fontanals, N.; Marcé, R.M.; Borull, F. Materials for solid-phase extraction of organic compounds. Separations 2019, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Salvatore, M.M.; Ciaravolo, M.; Cirino, P.; Toscano, A.; Salvatore, F.; Fallo, M.; Naviglio, D.; Andolfi, A. Fatty acids from Paracentrotus lividus sea urchin shells obtained via rapid solid liquid dynamix extraction (RSLDE). Separations 2019, 6, 50. [Google Scholar] [CrossRef] [Green Version]
- Ngo, T.V.; Scarlett, C.J.; Bowyer, M.C.; Vuong, Q.V. Isolation and maximisation of extraction of mangiferin from the root of Salacia chinensis L. Separations 2019, 6, 44. [Google Scholar] [CrossRef] [Green Version]
- Li, H.T.; Wu, M.; Wang, J.; Qin, C.J.; Long, J.; Zhou, S.S.; Yuan, P.; Jing, X.Q. Protective role of Angelica sinensis extract on trichlorfon-induced oxidative damage and apoptosis in gills and erythrocytes of fish. Aquaculture 2020, 519, 734895. [Google Scholar] [CrossRef]
- Carmo, M.C.L.; Martins, I.M.; Magalhães, A.E.R.; Maróstica Júnior, M.R.; Macedo, J.A. Passion fruit (Passiflora edulis) leaf aqueous extract ameliorates intestinal epithelial barrier dysfunction and reverts inflammatory parameters in Caco-2 cells monolayer. Food Res. Int. 2020, 133, 109162. [Google Scholar] [CrossRef]
- Remigante, A.; Morabito, R.; Marino, A. Natural antioxidants beneficial effects on anion exchange through band 3 protein in human erythrocytes. Antioxidants 2020, 9, 25. [Google Scholar] [CrossRef] [Green Version]
- Anosike, C.A.; Igboegwu, O.N.; Nwodo, O.F.C. Antioxidant properties and membrane stabilization effects of methanol extract of Mucuna pruriens leaves on normal and sickle erythrocytes. J. Tradit. Complementary Med. 2019, 9, 278–284. [Google Scholar] [CrossRef]
- Prihatin, J.; Narulita, E.; Mufidah, L.; Kurniawan, A.; Wulandari, D.; Hariyadi, S. Antihyperglycaemic and tissue-repair effects of Myrmeleon formicarius extract in spreptozotocin-induced diabetic mice. J. Taibah Univ. Med. Sci. 2019, 14, 149–155. [Google Scholar] [CrossRef]
- Aljuhani, N.; Elkablawy, M.A.; Elbadawy, H.M.; Alahmadi, A.M.; Aloufi, A.M.; Farsi, S.H.; Alhubayshi, B.S.; Alhejaili, S.S.; Alhejaili, J.M.; Abdel-Halim, O.B. Protective effect of Ajwa date extract against tissue damage induced by acute diclofenac toxicity. J. Taibah Univ. Med. Sci. 2019, 14, 553–559. [Google Scholar] [CrossRef]
- Bhowmik, D.; Sampath, K.K.P.; Yadav, A.; Srivastava, S.; Paswan, S.; Dutta, A.S. Recent trends in Indian traditional herbs Syzygium aromaticum and its health benefits. J. Pharmacogn. Phytochem 2010, 1, 6–17. [Google Scholar]
- Sasidharan, S.; Chen, Y.; Saravan, D.; Sundram, K.M.; Latha, L.Y. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valente, R.O.H.; Sampaio, F.C.; Souza, I.A.; Higino, J.S. Estudo toxicológico pré-clínico (agudo) do extrato do Syzygium aromaticum (L) em roedores. Rev. Bras. Farmacogn. 2009, 19, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Cortés-Rojas, D.F.; Souza, C.R.F.; Oliveira, W.P. Clove (Syzygium aromaticum): A precious spice. Asian. Pac. J. Trop. Biomed. 2014, 4, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Taher, Y.A.; Samud, A.M.; El-Taher, F.E.; ben-Hussin, G.J.; Elmezogi, S.B.; Al-Mehdawi, F.; Sale, H.A. Experimental evaluation of anti-inflammatory, antinociceptive and antipyretic activities of clove oil in mice. Libyan J. Med. 2015, 10, 28685. [Google Scholar] [CrossRef] [PubMed]
- EDQM Council of Europe. European Pharmacopoeia, 8th ed.; EDQM Council of Europe: Strasbourg, France, 2014; pp. 273–274, Essential oils in herbal drugs, Monograph 2. 8.12. [Google Scholar]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy; Allured Publishing Corporation: Carol Stream, IL, USA, 2012. [Google Scholar]
- NIST Mass Spectrometry Data Center. Available online: https://www.nist.gov/mml/biomolecular-measurement/mass-spectrometry-data-center (accessed on 27 April 2020).
- Cavalheiro, M.G.; Farias, D.F.; Fernandes, G.S.; Nunes, E.P.; Cavalcanti, F.S.; Vasconcelos, I.M.; Melo, V.M.M.; Carvalho, A.F.U. Atividades biológicas e enzimáticas do extrato aquoso de sementes de Caesalpinia ferrea Mart., Leguminosae. Rev. Bras. Farmacog. 2009, 19, 586–591. [Google Scholar] [CrossRef]
- Prestes, L.S. Atividade antimicrobiana in vitro e antidiarreica em modelo experimental de extratos de folhas de plantas da família Myrtacea. Ph.D. Thesis, Programa de Pós-graduação, Federal University of Pelotas, Pelotas, Brazil, 2011. [Google Scholar]
- Pasin, J.S.M.; Ferreira, A.P.O.; Saraiva, A.L.L.; Ratzlaff, V.; Andrighetto, R.; Machado, S.; Marchesan, S.; Zanette, R.A.; Bonacorso, H.G.; Zanatta, N.; et al. Antipyretic and antioxidante activities of 5-trifluoromethyl-4,5-dihydro-1H-pyrazoles in rats. Braz. J. Med. Biol. Res. 2010, 43, 1193–1202. [Google Scholar] [CrossRef] [Green Version]
- Amelia, B.; Saepudin, E.; Cahyana, A.H.; Rahayu, D.U.; Sulistyoningrum, A.S.; Haib, J. GC-MS analysis of clove (Syzygium aromaticum) bud essential oil from Java and Manado. In Proceedings of the AIP Conference Proceedings 1862, International Symposium on Current Progress in Mathematics and Sciences 2016 (ISCPMS 2016), Jawa Barat, Indonesia, 1–2 November 2016; 2017; p. 030082. [Google Scholar] [CrossRef] [Green Version]
- Guan, W.; Li, S.; Yan, R.; Tang, S.; Quan, C. Comparison of essential oils of clove buds extracted with supercritical carbon dioxide and other three traditional extraction methods. Food Chem. 2007, 101, 1558–1564. [Google Scholar] [CrossRef]
- Kapadiya, S.M.; Parikh, J.; Desai, M.A. A greener approach towards isolating clove oil from buds of Syzygium aromaticum using microwave radiation. Ind. Crop. Prod. 2018, 112, 626–632. [Google Scholar] [CrossRef]
- Hossain, M.A.; Harbi, S.R.; Weli, A.M.; Al-Riyami, Q.; Al-Sabahi, J.N. Comparison of chemical constituents and antimicrobial activities of three essential oils from three different brands’ clove samples collected from Gulf region. Asian Pac. J. Trop. Dis. 2014, 4, 262–268. [Google Scholar] [CrossRef]
- Silvestri, J.D.F.; Paroul, N.; Czyewski, E.; Lerin, L.; Rotava, I.; Casian, R.L.; Mossi, A.; Toniazzo, G.; Oliveira, D.; Treichel, H. Perfil da composição química e atividades antibacteriana e antioxidante do óleo essencial do cravo-da-índia (Eugenia caryophyllata Thumb.). Rev. Ceres 2010, 57, 589–594. [Google Scholar] [CrossRef]
- Sohilait, H.J. Chemical composition of the essential oils in Eugenia caryophylata, Thunb from Amboina Island. Sci. J. Chem. 2015, 3, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Kapadiya, S.; Desai, M.A. Desai Isolation of essential oil from buds of Syzygium Aromaticum using hydrodistillation: Multi-response optimization and predictive modelling. Int. J. Adv. Res. Sci. Eng. 2017, 6, 405–418. [Google Scholar]
- Oliveira, R.A.; Reis, T.V.; Sacramento, C.K.; Duarte, L.P.; Oliveira, F.F. Constituines químicos voláteis de especiarias ricas em eugenol. Rev. Bra. Farmacogn. 2009, 19, 771–775. [Google Scholar] [CrossRef] [Green Version]
- Scherer, R.; Wagner, R.; Duarte, M.C.T.; Godoy, H.T. Composição e atividades antioxidante e antimicrobiaana dos óleos essenciais de cravo-da-índia, citronela e palmarosa. Rev. Bra. Plan. Med. 2009, 4, 442–449. [Google Scholar] [CrossRef]
- Beraldo, C.; Daneluzzi, N.S.; Scanavacca, J.; Doyama, J.T.; Fernandez, A., Jr.; Moritz, C.M.F. Eficiencia de óleos essenciais de canela e cravo-da-Índia como sanitizantes na intúdtria de alimentos. Pesq. Agropecuária Trop. 2013, 43, 436–440. [Google Scholar] [CrossRef]
- Chaieb, K.; Hajlaoui, H.; Zmantar, T.; Kahla-Nakbi, A.B.; Rouabhia, M.; Mahdouani, K.; Nakhrouf, A. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): A short review. Phytother. Res. 2007, 21, 501–506. [Google Scholar] [CrossRef]
- Ostrowski, A.A.; Valentini, S.A.; Pavanelli, M.F. Atividade anticoagulante de extrato aquoso, hidroetanólico e óleo essencial das folhas de Tropaeolum majus. Rev. Saúde Biol. 2014, 9, 46–53. [Google Scholar]
- Melo, K.R.T.; Almeida-Lima, J.; Gomes, D.L.; Dantas-Santos, N.; Camara, R.G.B.; Rocha, H.A.O. Caracterização e atividade anticoagulante de polissacarídeos sulfatados extraídos de alga marrom Dictyopteris justii. Holos 2012, 28, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, J.A.G.; Farias, W.R.L. Purificação e atividade anticoagulante in vitro de galactanas sulfatadas extraídas da alga marinha vermelha Halymenia pseudofloresia. Rev. Bra. Eng. Pesca. 2008, 2, 16–29. [Google Scholar]
- Rodrigues, J.A.G.; Vanderlei, E.S.O.; Quindere, A.L.G.; Coura, C.O.; Benevides, N.M.B. Avaliação do potencial anticoagulante de polissacarideos sulfatados de macroalgas marinhas. Rev. Bra. Eng. Pesca. 2010, 5, 56–69. [Google Scholar]
- Elgebaly, H.A.; Mosa, N.M.; Allach, M.; El-massry, K.F.; El-Ghorab, A.H.; Al Hroob, A.M.; Mahmoud, A.M. Olive oil and leaf extract prevent fluoxetine-induced hepatotoxicity by attenuating oxidative stress, inflammation and apoptosis. Biomed. Pharmacother. 2018, 98, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Tang, H.; Zeng, X.; Ye, D.; Liu, J. Resveratrol inhibits proliferation, migration and invasion via Akt and ERK1/2 signaling pathways in renal cell carcinoma cells. Biomed. Pharmacother. 2018, 98, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Affonso, R.S.; Rennó, M.N.; Slana, G.B.C.A.; França, T.C.C. Aspectos químicos e biológicos do óleo essencial de cravo da índia. Rev. Virtual Quim. 2012, 4, 146–161. [Google Scholar] [CrossRef]
- Mathur, A.; Purohit, R.; Mathur, D.; Prasad, G.B.K.S.; Dua, V.K. Pharmacological investigation of methanol extract of Syzigum cumini seeds and Crateva nurvula bark on the basis of antimicrobial, antioxidant and anti-inflammatory properties. Der Chem. Sin. 2011, 2, 174–181. [Google Scholar]
- Saha, R.K. Comparative evaluation of the medicinal activities of methanolic extract of seeds, fruit pulps and fresh juice of Syzygium cumini in vitro. J. Coast. Life Med. 2013, 1, 300–308. [Google Scholar] [CrossRef]
- Luchese, F.C. Óleos essenciais de orégano e alecrim na prevenção e no tratamento da diarreia neonatal em leitões. Mater’s Thesis, Programa de Pós-graduação em Medicina Veterinária, Federal University of Santa Maria, Santa Maria, Brazil, 2009. [Google Scholar]
- Gairola, S.; Sharma, J.; Gaur, R.D.; Siddqi, T.O.; Painuli, R.M. Plants used for treatment of dysentery and diarrhoea by the Bhoxa community of district Dehradun, Uttarakhand, India. J. Ethnopharmacol. 2013, 140, 989–1006. [Google Scholar] [CrossRef]
- Darroz, J.V.; Fuso, L.C.; Borges, N.M.; Gomes, J.P.S. Utilização de fitoterápicos no tratamento de constipação intestinal. Arq. Cienc. Saúde Unipar 2014, 18, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Maheswari, D.U.; Anand, T.; Padma, A.; Ilaiyaraja, N.; Khanum, F. Evaluation of effect of herbal extracts and their bioactive compounds against motion sickness by regulating neurotransmitter levels in vitro and in vivo. S. Afr. J. Bot. 2020, 130, 130–140. [Google Scholar] [CrossRef]
- Hamad, A.; Mahardika, M.G.P.; Yuliani, I.; Hartanti, D. Chemical constituents and antimicrobial activities of essential oils of Syzigium polyanthum and Syzigium aromaticum. Rasayan J. Chem. 2017, 10, 564–569. [Google Scholar] [CrossRef]
- Malik, A.; Ahmad, A.R. Antidiarrheal activity of etanolic extract of bay leaves (Syzygium polyanthum [wight.] walp.). Int. Res. J. Pharm 2013, 4, 106–108. [Google Scholar] [CrossRef]
- Shamkuwar, P.B.; Pawar, D.P.; Chauhan, S.S. Antidiarrhoeal activity of seeds of Syzygium cumini L. J. Pharm. Res. 2012, 5, 5537–5539. [Google Scholar]
- Yao, Z.; Namkung, W.; Ko, E.A.; Park, J.; Tradtrantip, L.; Verkman, A.S. Fractionation of a herbal antidiarrheal medicine reveals eugenol as an inhibitor of Ca2+-Activated Cl- Channel TMEM16A. PLoS ONE 2012, 7, 38030. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, A.; Arsi, K.; Wagle, B.R.; Upadhyaya, I.; Shrestha, S.; Donoghue, A.M.; Donoghue, D.J. Trans-Cinnamaldehyde, carvacrol, and eugenol reduce Campylobacter jejuni colonization factors and expression of virulence genes in vitro. Front. Microbiol. 2017, 8, 713. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Chandra, D. Pharmacological potentials of Syzygium cumini: A review. J. Sci. Food Agric. 2013, 93, 2084–2093. [Google Scholar] [CrossRef]
- Purnomo, S.J.; Sikni, R.K.; Anita, D.J. Antipyretic effect test of Syzygium polyanthum [wight.] walp. leaves infusion on male white rates of wistar strain. J. Farm. Dan Obat Alam. 2012, 1, 22–28. [Google Scholar]
- Feng, J.; Lipton, J.M. Eugenol: Antipyretic activity in rabbits. Neuropharmacology 1987, 26, 1775–1778. [Google Scholar] [CrossRef]
- Ramos, M.F.S.; Siani, A.C.; Souza, M.C.; Rosas, E.C.; Henriques, M.G.M.O. Avaliação da atividade antiinflamatória dos óleos essenciais de cinco espécies de Myrtaceae. Rev. Fitos 2006, 2, 58–66. [Google Scholar]
- Nikoui, V.; Ostadhadi, S.; Bakhtiarian, A.; Abbasi-Goujani, E.; Habibian-Dehkordi, S.; Rezaei-Roshan, M.; Foroohandeh, M.; Giorgi, M. The anti-inflammatory and antipyretic effects of clove oil in healthy dogs after surgery. PharmaNutrition 2017, 5, 52–57. [Google Scholar] [CrossRef]
Compounds | RI | RIa | RIb | RIc | RId | RIe | RIf | Most Fragment Ions with RInt * (%) | Identification ** | (%) |
---|---|---|---|---|---|---|---|---|---|---|
methyl salicylate | 1220 | 1190 | 1187–1234 | 1191–1234 | 1182–1203 | 1185–1193 | - | 152 (49%), 120 (100%), 92 (93%) and 121 (31%) | 1, 2, 3 | 0.20 |
chavicol | 1257 | 1247 | – | – | 1249–1254 | – | 1251–1265 | 134 (100%), 133 (91%), 107 (45%) and 77 (44%) | 1, 2, 3 | 0.08 |
(E)-cinnamaldehyde | 1272 | 1267 | – | – | 1266–1277 | – | 1253–1287 | 132 (72%), 131 (100%), 103 (52%) and 77 (36%) | 1, 2, 3 | 0.08 |
eugenol | 1361 | 1356 | 1348–1378 | 1348–1359 | 1351–1366 | 1346–1370 | 1332–1367 | 164 (100%), 103 (35%), 149 (35%) and 131 (25%) | 1, 2, 3 | 84.63 |
α-humulene | 1448 | 1452 | 1430–1488 | 1432–1489 | 1431–1499 | 1449–1469 | 1414–1495 | 204 (4%), 93 (100%), 91 (36%) and 80 (29%) | 1, 2, 3 | 0.32 |
9-epi-(E)-caryophyllene | 1459 | 1464 | 1460–1476 | 1467 | 1453–1465 | – | 1467–1470 | 204 (45%), 41 (100%), 91 (87%), 161 (75%) | 1, 2 | 2.31 |
eugenol acetate | 1530 | 1521 | 1525 | – | 1522–1524 | – | 1524–1531 | 206 (9%), 164 (100%), 149 (22%), 131 (15%) and 133 (14%) | 1, 2, 3 | 11.37 |
caryophylla-4(12),8(13) dien-5β-ol | 1628 | 1639 | – | – | – | – | 1590–1641 | 41 (100%), 136 (70%), 91 (62%) and 79 (57%) | 1, 2 | 0.67 |
(Z)-lanceol | 1762 | 1760 | 1753 | – | 1761–1766 | 1764–1781 | 1739–1762 | 220 (1%), 43 (100%), 93 (92%), 41 (73%) and 79 (70%) | 1,2 | 0.13 |
Total | 99.79 |
Group | 0 h | 1 h | 2 h | 3 h |
---|---|---|---|---|
Vehicle | 38.28 ± 0.18 | 38.36 ± 0.24 | 38.38 ± 0.3 | 38.35 ± 0.6 |
Metamizole | 38.18 ± 0.17 | 36.98 ± 0.29 * | 36.86 ± 0.51 * | 36.65 ± 0.43 ** |
EOSa 50 mg/kg | 38.21 ± 0.14 | 37.06 ± 1.2 * | 36.53 ± 0.7 * | 36.18 ± 1.08 ** |
EOSa 100 mg/kg | 38.5 ± 0.33 | 36.5 ± 1.07 * | 36.65 ± 0.74 * | 36.25 ± 0.96 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uchôa Lopes, C.M.; Saturnino de Oliveira, J.R.; Holanda, V.N.; Rodrigues, A.Y.F.; Martins da Fonseca, C.S.; Galvão Rodrigues, F.F.; Camilo, C.J.; Lima, V.L.d.M.; Coutinho, H.D.M.; Kowalski, R.; et al. GC-MS Analysis and Hemolytic, Antipyretic and Antidiarrheal Potential of Syzygium aromaticum (Clove) Essential Oil. Separations 2020, 7, 35. https://doi.org/10.3390/separations7020035
Uchôa Lopes CM, Saturnino de Oliveira JR, Holanda VN, Rodrigues AYF, Martins da Fonseca CS, Galvão Rodrigues FF, Camilo CJ, Lima VLdM, Coutinho HDM, Kowalski R, et al. GC-MS Analysis and Hemolytic, Antipyretic and Antidiarrheal Potential of Syzygium aromaticum (Clove) Essential Oil. Separations. 2020; 7(2):35. https://doi.org/10.3390/separations7020035
Chicago/Turabian StyleUchôa Lopes, Cristiane Marinho, João Ricardhis Saturnino de Oliveira, Vanderlan Nogueira Holanda, Antonio Yony Felipe Rodrigues, Caíque Silveira Martins da Fonseca, Fábio Fernandes Galvão Rodrigues, Cicera Janaine Camilo, Vera Lucia de Menezes Lima, Henrique Douglas Melo Coutinho, Radosław Kowalski, and et al. 2020. "GC-MS Analysis and Hemolytic, Antipyretic and Antidiarrheal Potential of Syzygium aromaticum (Clove) Essential Oil" Separations 7, no. 2: 35. https://doi.org/10.3390/separations7020035
APA StyleUchôa Lopes, C. M., Saturnino de Oliveira, J. R., Holanda, V. N., Rodrigues, A. Y. F., Martins da Fonseca, C. S., Galvão Rodrigues, F. F., Camilo, C. J., Lima, V. L. d. M., Coutinho, H. D. M., Kowalski, R., & da Costa, J. G. M. (2020). GC-MS Analysis and Hemolytic, Antipyretic and Antidiarrheal Potential of Syzygium aromaticum (Clove) Essential Oil. Separations, 7(2), 35. https://doi.org/10.3390/separations7020035