The Separation and Purification of Ellagic Acid from Phyllanthus urinaria L. by a Combined Mechanochemical-Macroporous Resin Adsorption Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Mechanochemical-Assisted Extraction Procedure
2.3. Acidolysis Experiment
2.4. Macroporous Resin Adsorption Experiment
2.4.1. Pretreatment of Adsorbents
2.4.2. Static Adsorption Tests
2.4.3. Sorption Kinetics Tests
2.4.4. Dynamic Adsorption Tests
2.5. Ultra High-Performance Liquid Chromatography (UPLC): Quantitative Analysis and the Characterization of Ellagic Acid
3. Results and Discussion
3.1. Optimization of the MCAE Procedure
3.2. Optimization of Acid Hydrolysis Conditions
3.3. Screening of Optimum Resin
3.4. Static Adsorption Kinetics and Adsorption Isotherms
3.5. Dynamic Adsorption and Elution
3.6. UPLC Quantitative Analysis
3.6.1. Linearity and Limits of Detection and Quantification
3.6.2. Precision, Repeatability, Stability and Recovery
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Pilar, Z.; Federico, F.; Francisco, A.T.-B. Effect of processing and storage on the antioxidant ellagic acid derivatives and fla-vonoids of red raspberry (Rubus idaeus) Jams. J. Agric. Food Chem. 2001, 49, 3651–3655. [Google Scholar]
- De Ancos, B.; González, E.M.; Cano, M.P. Ellagic Acid, Vitamin C, and Total Phenolic Contents and Radical Scavenging Capacity Affected by Freezing and Frozen Storage in Raspberry Fruit. J. Agric. Food Chem. 2000, 48, 4565–4570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassoun, E.A.; Vodhanel, J.; Abushaban, A. The modulatory effects of ellagic acid and vitamin E succinate on TCDD-induced oxidative stress in different brain regions of rats after subchronic exposure. J. Biochem. Mol. Toxicol. 2004, 18, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Seeram, N.P.; Adams, L.S.; Henning, S.M.; Niu, Y.; Zhang, Y.; Nair, M.G.; Heber, D. In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J. Nutr. Biochem. 2005, 16, 360–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.-Z.; Fu, Z.-M.; Deng, G.; Guo, R.; Chen, D.-F. Free radical scavenging potency of ellagic acid and its derivatives in multiple H+/e—Processes. Phytochemistry 2020, 180, 112517. [Google Scholar] [CrossRef]
- Guadalupe, L.-P.; Paul, A.K.; Elvira, G.M.; Norman, Y.K. Inhibitory effects of ellagic acid on the direct-acting mutagenicity of aflatoxin B1 in the Salmonella microsuspension assay. Mutat. Res. 1998, 398, 183–187. [Google Scholar]
- Larrosa, M.; Tomás-Barberán, F.A.; Espín, J.C. The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using the mitochondrial pathway. J. Nutr. Biochem. 2006, 17, 611–625. [Google Scholar] [CrossRef]
- Al-Shar’I, N.A.; Al-Balas, Q.A.; Hassan, M.A.; El-Elimat, T.M.; Aljabal, G.A.; Almaaytah, A.M. Ellagic acid: A potent glyoxa-lase-I inhibitor with a unique scaffold. Acta Pharm. 2021, 71, 115–130. [Google Scholar] [CrossRef]
- Han, D.H.; Lee, M.J.; Kim, J.H. Antioxidant and apoptosis-inducing activities of ellagic acid. Anticancer Res. 2006, 26, 3601–3606. [Google Scholar]
- Bell, C.; Hawthorne, S. Ellagic acid, pomegranate and prostate cancer—A mini review. J. Pharm. Pharmacol. 2008, 60, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Losso, J.N.; Bansode, R.R.; Trappey, A.; Bawadi, H.A.; Truax, R. In vitro anti-proliferative activities of ellagic acid. J. Nutr. Biochem. 2004, 15, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Chao, P.-C.; Hsu, C.-C.; Yin, M.-C. Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice. Nutr. Metab. 2009, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Rogerio, A.P.; Fontanari, C.; Borducchi, E.; Keller, A.C.; Russo, M.; Soares, E.G.; Albuquerque, D.A.; Faccioli, L.H. An-ti-inflammatory effects of Lafoensia pacari and ellagic acid in a murine model of asthma. Eur. J. Pharmacol. 2008, 580, 262–270. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, A.K.; Kumar, R.; Jamieson, S.; Pandey, A.K.; Bishayee, A. Neuroprotective Potential of Ellagic Acid: A Critical Review. Adv. Nutr. 2021, 12, 1211–1238. [Google Scholar] [CrossRef]
- Kang, C.; Duan, Z.H.; Luo, Y.H.; Li, Y.; Wu, S.J.; Mo, F.W.; Deng, N.F.; Xie, W.; Su, H.L.; Shuai, L. Method for Extracting Ellagic Acid from Mango Stone. CN Patent 107163059A, 15 September 2017. [Google Scholar]
- Kim, J.H.; Kim, Y.S.; Kim, T.I.; Li, W.; Mun, J.-G.; Jeon, H.D.; Kee, J.-Y.; Choi, J.-G.; Chung, H.-S. Unripe Black Raspberry (Rubus coreanus Miquel) Extract and Its Constitute, Ellagic Acid Induces T Cell Activation and Antitumor Immunity by Blocking PD-1/PD-L1 Interaction. Foods 2020, 9, 1590. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.J.; Feng, B.; Xiao, Z.H.; Luo, B.; Wang, S.J.; Li, J.B.; Zhang, Y.M. One-Step Preparation of Ellagic Acid from Gallate De-Rivatives. CN Patent 110066284A, 30 July 2019. [Google Scholar]
- Zhang, Y.; Jiang, B.; Hu, X.S.; Liao, X.J. Extraction of Ellagic Acid from Pomegranate Peels by Biological Enzymic Hydrolysis. CN Patent 101701234A, 5 May 2010. [Google Scholar]
- Geethangili, M.; Ding, S.-T. A Review of the Phytochemistry and Pharmacology of Phyllanthus urinaria L. Front. Pharmacol. 2018, 9, 1109. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.P.; Wu, C.; Xu, T.Q.; Jiang, X.Y.; Tong, G.D.; Wei, C.S.; Zhou, G.X. Phenolic Constituents with Antioxidant and Antiviral Activities from Phyllanthus urinaria Linnea. Indian J. Pharm. Sci. 2019, 81, 424–430. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Zhang, Q.-Q.; Chen, J.-Q.; Zhang, W.; Qiu, H.-C.; Zhang, Z.-J.; Liu, B.-M.; Xu, F.-G. Liver metabolomics study reveals protective function of Phyllanthus urinaria against CCl 4-induced liver injury. Chin. J. Nat. Med. 2017, 15, 525–533. [Google Scholar] [CrossRef]
- Wu, Y.; Lu, Y.; Li, S.-Y.; Song, Y.-H.; Hao, Y.; Wang, Q. Extract from Phyllanthus urinaria L. inhibits hepatitis B virus replication and expression in hepatitis B virus transfection model in vitro. Chin. J. Integr. Med. 2015, 21, 938–943. [Google Scholar] [CrossRef]
- Cai, J.; Liang, J.Y. Progress of studies on constituents and pharmacological effect of Phyllanthus urinaria L. Strait Pharm. 2003, 15, 1–3. [Google Scholar]
- Li, Y.; Jiang, M.; Li, M.; Chen, Y.; Wei, C.; Peng, L.; Liu, X.; Liu, Z.; Tong, G.; Zhou, D.; et al. Compound Phyllanthus urinaria L Inhibits HBV-Related HCC through HBx-SHH Pathway Axis Inactivation. Evid. Based Complement. Altern. Med. 2019, 2019, 1635837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeo, S.-G.; Song, J.H.; Hong, E.-H.; Lee, B.-R.; Kwon, Y.S.; Chang, S.-Y.; Kim, S.H.; Lee, S.W.; Park, J.-H.; Ko, H.-J. Antiviral effects of Phyllanthus urinaria containing corilagin against human enterovirus 71 and Coxsackievirus A16 in vitro. Arch. Pharmacal Res. 2014, 38, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.C.; Jaganath, I.; Manikam, R.; Sekaran, S.D. Evaluation of Antiviral Activities of Four Local Malaysian Phyllanthus Species against Herpes Simplex Viruses and Possible Antiviral Target. Int. J. Med. Sci. 2013, 10, 1817–1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.-T.; Yang, R.-C.; Lee, P.-N.; Yang, S.-H.; Liao, S.-K.; Chen, T.-Y.; Pang, J.-H.S. Anti-tumor and anti-angiogenic effects of Phyllanthus urinaria in mice bearing Lewis lung carcinoma. Int. Immunopharmacol. 2006, 6, 870–879. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.Q.; Dong, Z.J.; Wu, L.O.; Chen, Z.H.; Liu, J.K. Effects of fraction from Phyllanthus urinaria on thrombosis and coagu-lation system in animals. Zhong Xi Yi Jie He Xue Bao 2004, 2, 106–110. [Google Scholar] [CrossRef]
- Mediani, A.; Abas, F.; Khatib, A.; Tan, C.P.; Ismail, I.S.; Shaari, K.; Ismail, A.; Lajis, N. Phytochemical and biological features of Phyllanthus niruri and Phyllanthus urinaria harvested at different growth stages revealed by 1 H NMR-based metabolomics. Ind. Crop. Prod. 2015, 77, 602–613. [Google Scholar] [CrossRef]
- Fang, S.-H.; Rao, Y.K.; Tzeng, Y.-M. Anti-oxidant and inflammatory mediator’s growth inhibitory effects of compounds isolated from Phyllanthus urinaria. J. Ethnopharmacol. 2008, 116, 333–340. [Google Scholar] [CrossRef]
- Liu, Y.; She, X.-R.; Huang, J.-B.; Liu, M.-C.; Zhan, M.-E. Ultrasonic-extraction of phenolic compounds from Phyllanthus urinaria: Optimization model and antioxidant activity. Food Sci. Technol. 2018, 38, 286–293. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.-H.; Fang, S.-H.; Rao, Y.K.; Geethangili, M.; Tang, C.-H.; Lin, Y.-J.; Hung, C.-H.; Wang, W.-C.; Tzeng, Y.-M. Inhibition of Helicobacter pylori-induced inflammation in human gastric epithelial AGS cells by Phyllanthus urinaria extracts. J. Ethnopharmacol. 2008, 118, 522–526. [Google Scholar] [CrossRef]
- Tseng, H.-H.; Chen, P.-N.; Kuo, W.-H.; Wang, J.-W.; Chu, S.-C.; Hsieh, Y.-S. Antimetastatic Potentials of Phyllanthus urinaria L on A549 and Lewis Lung Carcinoma Cells via Repression of Matrix-Degrading Proteases. Integr. Cancer Ther. 2011, 11, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Ito, H.; Iguchi, A.; Hatano, T. Identification of Urinary and Intestinal Bacterial Metabolites of Ellagitannin Geraniin in Rats. J. Agric. Food Chem. 2007, 56, 393–400. [Google Scholar] [CrossRef]
- Ito, H. Metabolites of the Ellagitannin Geraniin and Their Antioxidant Activities. Planta Medica 2011, 77, 1110–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Z.; Zhao, Y.J.; Huang, Y.; Zhang, Y.L.; Lu, J. Optimization of ultrasound-assisted extraction of ellagic acid and total phenols from Muscadine (Vitis rotundifolia) by response surface methodology. Food Sci. 2015, 36, 29–35. [Google Scholar]
- Li, X.P.; Xin, X.L.; Liu, Y.H.; Liang, Q. Study on the extraction processing of ellagic acid form the fruit of red raspberry. Sci. Technol. Food Ind. 2010, 1, 277–279. [Google Scholar]
- Lou, S.; Chen, Z.; Liu, Y.; Ye, H.; Di, D. New Way to Analyze the Adsorption Behavior of Flavonoids on Macroporous Adsorption Resins Functionalized with Chloromethyl and Amino Groups. Langmuir 2011, 27, 9314–9326. [Google Scholar] [CrossRef] [PubMed]
- Bolster, C.H. Revisiting a Statistical Shortcoming when Fitting the Langmuir Model to Sorption Data. J. Environ. Qual. 2008, 37, 1986–1992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Trade Name | Specific Surface Area (m2/g) | Particle Size (mm) | Polarity Type |
---|---|---|---|
XAD-2 | 300 | 0.25–0.84 | Non-polarity |
HP-20 | 590 | 0.25–0.60 | Non-polarity |
AB-8 | 480–520 | 0.30–1.25 | Weak polarity |
XDA-8D | 140 | 0.20–0.40 | Medium polarity |
LSA-8D | 150 | 0.30–1.25 | Medium polarity |
HPD450 | 500–550 | 0.30–1.25 | Medium polarity |
HPD826 | 500–600 | 0.30–1.25 | Medium polarity |
DA201 | 150–200 | 0.30–1.25 | Polarity |
LXA-8 | 200 | 0.30–1.25 | Polarity |
LX-8 | 1000 | 0.315–1.26 | Polarity |
Trade Name | Adsorbent Concentration (mg/mL) | Desorption Solution Concentration (mg/mL) | Adsorption Rate (%) | Desorption Rate (%) | Recovery Rate (%) |
---|---|---|---|---|---|
XAD-2 | 0.078 | 0.007 | 13.60 | 60.64 | 8.25 |
HP-20 | 0.076 | 0.010 | 16.03 | 66.68 | 10.69 |
AB-8 | 0.067 | 0.010 | 25.80 | 42.59 | 10.99 |
XDA-8D | 0.021 | 0.016 | 78.03 | 74.47 | 58.11 |
LSA-8D | 0.066 | 0.012 | 26.85 | 47.78 | 12.83 |
HPD450 | 0.081 | 0.009 | 0.00 | 92.77 | 9.42 |
HPD826 | 0.045 | 0.015 | 39.92 | 67.98 | 6.73 |
DA201 | 0.062 | 0.017 | 31.00 | 62.44 | 19.36 |
LXA-8 | 0.078 | 0.009 | 12.81 | 76.70 | 9.82 |
LX-8 | 0.060 | 0.020 | 33.14 | 67.62 | 22.41 |
T/°C | Langmuir Isotherm Equation | R2 |
---|---|---|
20 | Y = 1.994 X1.320/(1 + 0.369 X1.320) | 0.9970 |
25 | Y = 1.853 X1.346/(1 + 0.329 X1.346) | 0.9932 |
30 | Y = 2.462 X1.773/(1 + 0.640 X1.773) | 0.9970 |
35 | Y = 2.392 X1.825/(1 + 0.636 X1.825) | 0.9927 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Xiong, S.; Xie, Y.; Liang, X. The Separation and Purification of Ellagic Acid from Phyllanthus urinaria L. by a Combined Mechanochemical-Macroporous Resin Adsorption Method. Separations 2021, 8, 186. https://doi.org/10.3390/separations8100186
Guo Z, Xiong S, Xie Y, Liang X. The Separation and Purification of Ellagic Acid from Phyllanthus urinaria L. by a Combined Mechanochemical-Macroporous Resin Adsorption Method. Separations. 2021; 8(10):186. https://doi.org/10.3390/separations8100186
Chicago/Turabian StyleGuo, Zili, Shuting Xiong, Yuanyuan Xie, and Xianrui Liang. 2021. "The Separation and Purification of Ellagic Acid from Phyllanthus urinaria L. by a Combined Mechanochemical-Macroporous Resin Adsorption Method" Separations 8, no. 10: 186. https://doi.org/10.3390/separations8100186
APA StyleGuo, Z., Xiong, S., Xie, Y., & Liang, X. (2021). The Separation and Purification of Ellagic Acid from Phyllanthus urinaria L. by a Combined Mechanochemical-Macroporous Resin Adsorption Method. Separations, 8(10), 186. https://doi.org/10.3390/separations8100186