Study on the Preparation of Magnetic Mn–Co–Fe Spinel and Its Mercury Removal Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Characterization of Samples
2.4. Experimental Device
3. Results and Discussion
3.1. Sample Characterization Analysis
3.1.1. XRD Analysis
3.1.2. SEM Analysis
3.1.3. VSM Analysis
3.2. Sorbent Mercury Removal Experiment
3.2.1. Influence of Different Doping Amount of Mn on the Performance of Mercury Removal
3.2.2. The Effect of Different Fuel Addition on the Performance of Mercury Removal
3.2.3. The Effect of Reaction Temperature on the Performance of Mercury Removal
3.2.4. Influence of Flue Gas Components on the Performance of Mercury Removal
Impact of O2
Impact of SO2
Impact of HCl
3.3. Comparison of Performance between Mn-Co-Fe Spinel and Other Adsorbents
3.4. Regeneration and Reuse of Spent Mn–Co–Fe Spinel
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Y.L.; Zhong, Q.; Liu, X.Y. Elemental mercury oxidation and adsorption on magnesite powder modified by Mn at low temperature. J. Hazard. Mater. 2015, 283, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Huang, Y.J.; Dong, L.; Cao, J.H.; Xia, Z.P.; Qin, W.H. Study on the preparation of magnetic attapulgite and its mercury removal performance. J. Fuel Chem. Technol. 2018, 46, 1392–1400. [Google Scholar]
- Yang, Y.J.; Liu, J.; Zang, B.K.; Liu, F. Density functional theory study on the heterogeneous reaction between Hg0 and HCl over spinel-type MnFe2O4. Chem. Eng. J. 2017, 308, 897–903. [Google Scholar] [CrossRef]
- Wang, J.W.; Xu, C.; Qin, W.; Zang, J.L.; Zang, X.L.; Dong, Y.J.; Cui, X.F. Hg0 removal by palygorskite (PG) supported MnOx catalyst. J. Fuel Chem. Technol. 2020, 48, 1442–1451. [Google Scholar] [CrossRef]
- Zhang, A.C.; Zheng, W.W.; Song, J.; Hu, S.; Liu, Z.C.; Xiang, J. Cobalt manganese oxides modified titania catalysts for oxidation of elemental mercury at low flue gas temperature. Chem. Eng. J. 2014, 236, 29–38. [Google Scholar] [CrossRef]
- Liu, F.F.; Zhang, J.Y.; Zhao, Y.C.; Zheng, C.G. Mercury removal from flue gas by metal oxide-loaded attapulgite mineral sorbent. Combust. Sci. Technol. 2014, 20, 553–557. [Google Scholar]
- Sun, Q.K.; Huang, Y.J.; Wang, L.; Guan, Z.W.; Li, M.; Zhou, J.; Wang, Y. Experimental study on mercury removal efficiencies of magnetic Fe3O4-Ag composite nanoparticles. Chem. Ind. Eng. Prog. 2017, 36, 1101–1106. [Google Scholar]
- Ma, Y.P.; Xu, T.F.; Wang, J.D.; Shi, Y.R.; Wang, H.Y.; Xiong, F.G.; Xu, H.M.; Ma, Y.X.; Zhang, H.Z. Superior Hg0 capture performance and SO2 resistance of Co-Mn binary metal oxide-modified layered MCM-22 zeolite for SO2-containing flue gas. Environ. Sci. Pollut. Res. Int. 2021, 28, 16447–16457. [Google Scholar] [CrossRef]
- Chen, L.; Liu, S.Y.; Lv, W.Y.; Yang, K.; Li, Y. Effect of Manganese loading on zero valent mercury adsorption on magnetic iron oxides. Environ. Eng. 2019, 37, 131–137. [Google Scholar]
- Zou, S.J.; Liao, Y.; Xiong, S.C.; Huang, N.; Geng, Y.; Yang, S.J. H2S-modified Fe-Ti spinel: A recyclable magnetic sorbent for recovering gaseous elemental mercury from flue gas as a co-benefit of wet electrostatic precipitators. Environ. Sci. Technol. 2017, 51, 3426–3434. [Google Scholar] [CrossRef]
- Liao, Y.; Xiong, S.C.; Dang, H.; Xiao, X.; Yang, S.J.; Wong, P.K. The centralized control of elemental mercury emission from the flue gas by a magnetic rengenerable Fe-Ti-Mn spinel. J. Hazard. Mater. 2015, 299, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Huang, Y.J.; Chen, H.; Liu, L.Q.; Liu, C.Q.; Xu, L.G.; Zha, J.R.; Wang, Y.X.; Liu, H. Magnetic γ-Fe2O3-loaded attapulgite sorbent for Hg0 removal in coal-fired flue gas. Energy Fuels 2019, 33, 7522–7533. [Google Scholar] [CrossRef]
- Dang, H. The Centralized Control of Elemental Mercury Emission from the Flue Gas Using Magnetic Mn-Fe Spinel; Nanjing University of Science & Technology: Nanjing, China, 2017. [Google Scholar]
- Xiong, S.C.; Xiao, X.; Huang, N.; Dang, H.; Liao, Y.; Zou, S.J.; Yang, S.J. Elemental mercury oxidation over Fe-Ti-Mn spinel: Performance, mechanism, and reaction kinetics. Environ. Sci. Technol. 2017, 51, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Shen, B.X.; Li, Z.; Chen, J.H.; He, C. Removal of elemental mercury by clays impregnated with KI and KBr. Chem. Eng. J. 2014, 241, 19–27. [Google Scholar] [CrossRef]
- Liu, H.; Yang, J.P.; Tian, C.; Zhao, Y.C.; Zhang, J.Y. Mercury removal from coal combustion flue gas by modified palygorskite adsorbents. Appl. Clay Sci. 2017, 147, 36–43. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Duan, W.; Liu, Z.; Cao, Y. Effects of modified fly ash on mercury adsorption ability in an entrained-flow reactor. Fuel 2014, 128, 274–280. [Google Scholar] [CrossRef]
- Yang, Y.J.; Zhang, B.H.; Liu, J.; Wang, Z.; Miao, S. Mercury removal by recyclable and regenerable CuxMn(3-x)O4 spinel-type sorbents. Combust. Sci. Technol. 2017, 23, 511–515. [Google Scholar]
- Dong, L.; Huang, Y.J.; Yuan, Q.; Cheng, H.Q.; Ding, S.Y.; Wang, S.; Duan, Y.F. Experimental study on the mercury removal from flue gas using manganese modified titanium-zirconium and titanium-tin composite oxide catalysts. J. Fuel Chem. Technol. 2020, 48, 741–751. [Google Scholar]
- Wang, Z.; Yang, Y.J.; Liu, J.; Liu, F.; Yan, X.C. Experimental and theoretical insights into the effect of syngas components on Hg0 removal over CoMn2O4 sorbent. Ind. Eng. Chem. Res. 2020, 59, 8078–8085. [Google Scholar] [CrossRef]
- Shi, D.L.; Lu, Y.; Tang, Z.; Han, F.N.; Chen, R.Y.; Xu, Q. Removal of elemental mercury from simulated flue gas by cerium oxide modified attapulgite. Korean J. Chem. Eng. 2014, 31, 1405–1412. [Google Scholar] [CrossRef]
- He, C.; Shen, B.X.; Chen, J.H.; Cai, J. Adsorption and oxidation of elemental mercury over Ce-MnOx/Ti-PILCs. Environ. Sci. Technol. 2014, 48, 7891–7898. [Google Scholar] [CrossRef]
- Xie, Y.J.; Yan, B.; Tian, C.; Liu, Y.X.; Liu, Q.X.; Zeng, H.B. Efficient removal of elemental mercury (Hg0) by SBA-15-Ag adsorbents. J. Mater. Chem. A 2014, 2, 17730–17734. [Google Scholar] [CrossRef]
- Cimino, S.; Scala, F. Removal of elemental mercury by MnOx catalysts supported on TiO2 or Al2O3. Ind. Eng. Chem. Res. 2015, 55, 5133–5138. [Google Scholar] [CrossRef]
- Liu, H.; You, Z.W.; Yang, S.; Liu, C.; Xie, X.F.; Xiang, K.S.; Wang, X.Y.; Yan, X. High-efficient adsorption and removal of elemental mercury from smelting flue gas by cobalt sulfide. Environ. Sci. Pollut. Res. 2019, 26, 6735–6744. [Google Scholar] [CrossRef] [PubMed]
- Li, H.L.; Zhu, L.; Wang, J.; Li, L.Q.; Shih, K. Development of nano-sulfide sorbent for efficient removal of elemental mercury from coal combustion fuel gas. Environ. Sci. Technol. 2016, 50, 9551–9557. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.N.; Zou, S.J.; Mei, J.; Geng, Y.; Zhao, H.; Yang, S.J. Outstanding resistance of H2S-modified Cu/TiO2 to SO2 for capturing gaseous Hg0 from nonferrous metal smelting flue gas: Performance and reaction mechanism. Environ. Sci. Technol. 2018, 52, 10003–10010. [Google Scholar] [CrossRef]
- Liu, W.; Xu, H.M.; Liao, Y.; Quan, Z.W.; Li, S.C.; Zhao, S.J.; Qu, Z.; Yan, N.Q. Recyclable CuS sorbent with large mercury adsorption capacity in the presence of SO2 from non-ferrous metal smelting flue gas. Fuel 2019, 235, 847–854. [Google Scholar] [CrossRef]
- Ding, S.Y.; Huang, Y.J.; Chen, H.; Dong, L.; Fan, C.H.; Hu, H.J.; Qi, E.B. Mercury removal performance of CuCl2-modified magentic attapulgite. Chem. Ind. Eng. Prog. 2020, 39, 1187–1195. [Google Scholar]
- Yang, J.P.; Zhao, Y.C.; Zhang, J.Y.; Zheng, C.G. Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas. Environ. Sci. Technol. 2014, 48, 14837–14843. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Wang, Z.L.; Chakoumakos, B.C.; Yin, J.S. Temperature dependence of cation distribution and oxidation state in magnetic Mn-Fe ferrite nanocrystals. J. Am. Chem. Soc. 1998, 120, 1800–1804. [Google Scholar] [CrossRef]
- Chandel, M.; Ghosh, B.K.; Moitra, D.; Patra, M.K.; Vadera, S.R.; Ghosh, N.N. Synthesis of various ferrite (MFe2O4) nanoparticles and their application as efficient and magnetically separable catalyst for biginelli reaction. J. Nanosci. Nanotechnol. 2018, 18, 2481–2492. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Huang, Y.J.; Dong, L.; Yuan, Q.; Ding, S.Y.; Cheng, H.Q.; Wang, S.; Duan, Y.F. Experimental study on mercury removal of coal-fired flue gas over Co-doped iron-based oxide sorbent. J. Fuel Chem. Technol. 2020, 48, 785–794. [Google Scholar]
- Shi, Y.J.; Deng, S.; Wang, H.M.; Huang, J.Y.; Li, Y.K.; Zhang, F.; Shu, X.Q. Fe and Co modified vanadium-titanium steel slag as sorbents for elemental mercury adsorption. RSC. Adv. 2016, 6, 15999–16009. [Google Scholar] [CrossRef]
- Yue, Z.X.; Zhou, J.; Zhang, H.G.; Gui, Z.L.; Li, L.T. Auto-combustion behavior of nitrate-citrate gels and synthesis of ferrite nano-particles. J. Chin. Ceram. Soc. 1999, 27, 84–88. [Google Scholar]
- Guo, M.Y.; Wang, Y.M.; Pan, Z.D.; Liu, S. Synthesis of nanocrystalline (Co0.5Cu0.5)(MnFe)O4 ceramic pigment via solution combustion technique. J. Chin. Ceram. Soc. 2015, 43, 411–417. [Google Scholar]
- Yang, Y.J.; Liu, J.; Zhang, B.K.; Liu, F. Mechanistic studies of mercury adsorption and oxidation by oxygen over spinel-type MnFe2O4. J. Hazard. Mater. 2017, 321, 154–161. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, G.Q.; Pang, Q.C.; He, S.W.; Deng, F.F.; Xu, Y.Q.; Yao, H. Adsorption and catalytic oxidation of elemental mercury over regenerable magnetic Fe-Ce mixed oxides modified by non-thermal plasma treatment. Chem. Eng. J. 2019, 358, 1454–1463. [Google Scholar] [CrossRef]
- Dong, L.; Huang, Y.J.; Liu, L.Q.; Liu, C.Q.; Xu, L.G.; Zha, J.R.; Chen, H.; Liu, H. Investigation of elemental mercury removal from coal-fired boiler flue gas over MIL101-Cr. Energy Fuels 2019, 33, 8864–8875. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, J.; Li, B.; Xu, H.B.; Liu, D.J. Removal of elemental mercury from simulated flue gas by ZSM-5 modified with Mn-Fe mixed oxides. Chem. Eng. J. 2019, 375, 121946. [Google Scholar] [CrossRef]
- Yang, S.J.; Yan, N.Q.; Guo, Y.F.; Wu, D.Q.; He, H.P.; Qu, Z.; Li, J.F.; Zhou, Q.; Jia, J.P. Gaseous elemental mercury capture from flue gas using magnetic nanosized (Fe3−xMnx)1−δO4. Environ. Sci. Technol. 2011, 45, 1540–1546. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Zhong, Z.; Xu, Y.; Xu, Y. Study on the Preparation of Magnetic Mn–Co–Fe Spinel and Its Mercury Removal Performance. Separations 2021, 8, 225. https://doi.org/10.3390/separations8110225
Huang J, Zhong Z, Xu Y, Xu Y. Study on the Preparation of Magnetic Mn–Co–Fe Spinel and Its Mercury Removal Performance. Separations. 2021; 8(11):225. https://doi.org/10.3390/separations8110225
Chicago/Turabian StyleHuang, Jiawei, Zhaoping Zhong, Yueyang Xu, and Yuanqiang Xu. 2021. "Study on the Preparation of Magnetic Mn–Co–Fe Spinel and Its Mercury Removal Performance" Separations 8, no. 11: 225. https://doi.org/10.3390/separations8110225
APA StyleHuang, J., Zhong, Z., Xu, Y., & Xu, Y. (2021). Study on the Preparation of Magnetic Mn–Co–Fe Spinel and Its Mercury Removal Performance. Separations, 8(11), 225. https://doi.org/10.3390/separations8110225