A Rapid HPLC Method for the Concurrent Determination of Several Antihypertensive Drugs from Binary and Ternary Formulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation
2.3. Chromatographic Conditions
2.4. Preparation of Standard Solutions
2.5. Preparation of Sample Solutions
2.6. Validation of HPLC Method
2.6.1. System Suitability Test
2.6.2. Linearity
2.6.3. Sensitivity
2.6.4. Precision
2.6.5. Accuracy
2.6.6. Robustness
3. Results and Discussion
3.1. Validation of HPLC Method
3.1.1. System Suitability Studies
3.1.2. Linearity
3.1.3. Limit of Detection and Quantification
3.1.4. Precision
3.1.5. Accuracy
3.1.6. Robustness
3.2. Application to Formulations and Comparison with Reported Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adji, A.; O’Rourke, M.F.; Namasivayam, M. Arterial stiffness, its assessment, prognostic value, and implications for treat-ment. Am. J. Hypertens. 2011, 24, 5–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maatouk, I.; Wild, B.; Herzog, W.; Wesche, D.; Schellberg, D.; Schöttker, B.; Müller, H.; Rothenbacher, D.; Stegmaier, C.; Brenner, H. Longitudinal predictors of health-related quality of life in middle-aged and older adults with hyperten-sion: Results of a population-based study. J. Hypertens. 2012, 30, 1364–1372. [Google Scholar] [CrossRef]
- Filipova, E.; Dineva, S.; Uzunova, K.; Pavlova, V.; Kalinov, K.; Vekov, T. Combining angiotensin receptor blockers with chlorthalidone or hydrochlorothiazide—Which is the better alternative? A meta-analysis. Syst. Rev. 2020, 9, 1–12. [Google Scholar] [CrossRef]
- Smith, D.K.; Lennon, R.P.; Carlsgaard, P.B. Managing Hypertension Using Combination Therapy. Am. Fam. Physician 2020, 101, 341–349. [Google Scholar] [PubMed]
- Guerrero-García, C.; Rubio-Guerra, A.F. Combination therapy in the treatment of hypertension. Drugs Context 2018, 7, 1–9. [Google Scholar] [CrossRef]
- Taddei, S. Combination Therapy in Hypertension: What Are the Best Options According to Clinical Pharmacology Principles and Controlled Clinical Trial Evidence? Am. J. Cardiovasc. Drugs 2015, 15, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, I.J.; Kreutz, R.; Olsen, M.H.; Schutte, A.E.; Lopez-Jaramillo, P.; Frieden, T.R.; Sliwa, K.; Lackland, D.T.; Brainin, M. Fixed-dose combination antihypertensive medications. Lancet 2019, 394, 637–638. [Google Scholar] [CrossRef] [Green Version]
- Volpe, M.; Tocci, G. Rationale for triple fixed-dose combination therapy with an angiotensin II receptor blocker, a calcium channel blocker, and a thiazide diuretic. Vasc. Health Risk Manag. 2012, 8, 371–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, G.C.; Lee, H.-Y.; Chung, W.J.; Youn, H.-J.; Cho, E.-J.; Sung, K.-C.; Chae, S.C.; Yoo, B.-S.; Park, C.G.; Hong, S.J.; et al. Comparison of effects between calcium channel blocker and diuretics in combination with angiotensin II receptor blocker on 24-h central blood pressure and vascular hemodynamic parameters in hypertensive patients: Study design for a multicenter, double-blinded, active-controlled, phase 4, randomized trial. Clin. Hypertens. 2017, 23, 18. [Google Scholar] [CrossRef] [Green Version]
- Deeks, E.D. Olmesartan medoxomil/amlodipine/hydrochlorothiazide: Fixed-dose combination in hypertension. Drugs 2011, 71, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Attimarad, M.; Venugopala, K.N.; Aldhubiab, B.E.; Nair, A.B.; Sreeharsha, N.; Pottathil, S.; Akrawi, S.H. Development of UV Spectrophotometric Procedures for Determination of Amlodipine and Celecoxib in Formulation: Use of Scaling Factor to Improve the Sensitivity. J. Spectrosc. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Giri, P.; Jadhav, P.; Patil, U.; Jadhav, N.R. Hydrochlorothiazide Nanocrystals Stabilization by Silk Sericin. Indian J. Pharm. Educ. Res. 2019, 53, 494–502. [Google Scholar] [CrossRef]
- Ahsan, S.F.; Sheraz, M.A.; Khan, M.F.; Anwar, Z.; Ahmed, S.; Ahmad, I. Formulation and Stability Studies of Fast Disinte-grating Tablets of Amlodipine Besylate. Indian J. Pharm. Educ. Res. 2019, 53, 480–493. [Google Scholar] [CrossRef]
- Attimarad, M.; Narayanswamy, V.K.; Aldhubaib, B.E.; Sreeharsha, N.; Nair, A.B. Development of UV spectrophotometry methods for concurrent quantification of amlodipine and celecoxib by manipulation of ratio spectra in pure and pharmaceutical formulation. PLoS ONE 2019, 14, e0222526. [Google Scholar] [CrossRef]
- Desavathu, M.; Raghuveer, P.; Sarada, P. Insertion of Dual Drugs of Hypertension in Gelatin Pockets for Chrono pharma-cotherapy and its Evaluation by in-vitro and ex-vivostudies. Indian J. Pharm. Educ. Res. 2018, 52, S184–S196. [Google Scholar] [CrossRef]
- Shakya, P.; Jain, P.K.; Shrivastava, S.P.; Gajbhiye, A. Simultaneous estimation of irbesartan and hydrochlorothiazide by UV spectroscopy. Int. J. ChemTech Res. 2015, 7, 389–391. [Google Scholar]
- Darwish, H.W.; Bakheit, A.H.; Abdelhameed, A.S. Simultaneous quantitative analysis of olmesartan, amlodipine and hydrochlorothiazide in their combined dosage form utilizing classical and alternating least squares based chemometric methods. Acta Pharm. 2016, 66, 83–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usharani, N.; Divya, K.; Ashrtiha, V.V.S. Development and Validation of UV-Derivative Spectroscopic and RP-HPLC Methods for the Determination of Amlodipine Besylate and Valsartan in Tablet Dosage form and Comparison of the Developed Methods by Student’s T-Test. Indian J. Pharm. Educ. Res. 2017, 51, S776–S782. [Google Scholar]
- Shalan, S.; Nasr, J.J. Simultaneous evaluation of losartan and amlodipine besylate using second-derivative synchronous spectrofluorimetric technique and liquid chromatography with time-programmed fluorimetric detection. R. Soc. Open Sci. 2019, 6, 190310. [Google Scholar] [CrossRef] [Green Version]
- Bangaruthalli, J.; Harini, U.; Divya, M.; Sushma, P.; Eswar, N. Simultaneous estimation of telmisartan and atorvastatin cal-cium in API and tablet dosage form. J. Drug Deliv. Ther. 2019, 9, 175–179. [Google Scholar]
- Nisa, Z.; Ali, S.I.; Rizvi, M.; Khan, M.A.; Sultan, R.A.; Fatima, R.; Shaheen, N.; Zafar, F.; Kashif, S.S.; Khatian, N. Development and validation of reverse phase HPLC method for determination of angiotensin receptor blocking agent irbesartan in plasma. Pak. J. Pharm. Sci. 2019, 32, 853–858. [Google Scholar]
- Attimarad, M.; Venugopala, K.N.; SreeHarsha, N.; Aldhubiab, B.E.; Nair, A.B. Validation of rapid RP-HPLC method for concurrent quantification of amlodipine and celecoxib in pure and formulation using an experimental design. Microchem. J. 2020, 152, 104365. [Google Scholar] [CrossRef]
- Kasagić-Vujanović, I.; Jančić-Stojanović, B.; Ivanović, D. Investigation of the retention mechanisms of amlodipine besylate, bisoprolol fumarate, and their impurities on three different HILIC columns. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 523–531. [Google Scholar] [CrossRef]
- Heidari, H.; Limouei-Khosrowshahi, B. Magnetic solid phase extraction with carbon-coated Fe3O4 nanoparticles coupled to HPLC-UV for the simultaneous determination of losartan, carvedilol, and amlodipine besylate in plasma samples. J. Chromatogr. B 2019, 1114–1115, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Kurbanoğlu, S.; Yarman, A. Simultaneous Determination of Hydrochlorothiazide and Irbesartan from Pharmaceutical Dosage Forms with RP-HPLC. Turk. J. Pharm. Sci. 2020, 17, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Palakurthi, A.K.; Dongala, T.; Katakam, L.N.R. QbD based development of HPLC method for simultaneous quantification of Telmisartan and Hydrochlorothiazide impurities in tablets dosage form. Pract. Lab. Med. 2020, 21, e00169. [Google Scholar] [CrossRef]
- Maslarska, V.; Yankov, V.; Obreshkova, D.; Bozhanov, S. Simultaneous Determination of Sartans by High Performance Liq-uid Chromatography with Ultra Violet Detection. Indian J. Pharm. Educ. Res. 2017, 51, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Attimarad, M.; Sreeharsha, N.; Al-Dhubaib, B.E.; Nair, A.B.; Venugopala, K.N. Capillary Electrophoresis: MEKC assay method for simultaneous determination of olmesartan medopomil, Amlodipine besylate and hydrochlorothiazide in tab-lets. Indian J. Pharm. Educ. Res. 2016, 50, 188–195. [Google Scholar]
- Sivasubramanian, L. Simultaneous Estimation of Irbesartan, Telmisartan, Hydrochlorothiazide and Ramipril in combined dosage forms by Validated HPTLC method. J. Anal. Pharm. Res. 2017, 4, 00112. [Google Scholar] [CrossRef]
- Attimarad, M.; Chohan, M.S.; Elgorashe, R.E.E. Smart analysis of a ternary mixture of amlodipine, hydrochlorothiazide and telmisartan by manipulation of UV spectra: Development, validation and application to formulations. J. Mol. Struct. 2020, 1212, 128095. [Google Scholar] [CrossRef]
- Trang, N.T.Q.; Van Hop, N.; Chau, N.D.G.; Tran, T.B. Simultaneous Determination of Amlodipine, Hydrochlorothiazide, and Valsartan in Pharmaceutical Products by a Combination of Full Spectrum Measurement and Kalman Filter Algorithm. Adv. Mater. Sci. Eng. 2019, 2019, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, P.; Gangrade, D. Simultaneous estimation of hydrochlorothiazide, amlodipine besylate and telmisartan in com-bined tablet dosage form by using RP- HPLC method. Int. J. Pharm. Sci. Res. 2017, 8, 268–276. [Google Scholar] [CrossRef]
- Elkady, E.F.; Mandour, A.A.; Algethami, F.K.; Aboelwafa, A.A.; Farouk, F. Sequential liquid-liquid extraction coupled to LC-MS/MS for simultaneous determination of amlodipine, olmesartan and hydrochlorothiazide in plasma samples: Application to pharmacokinetic studies. Microchem. J. 2020, 155, 104757. [Google Scholar] [CrossRef]
- Patchala, A.; Nadendla, R. Quantification and validation of amlodipine besylate, olmesartan medoxomil and hydrochloro-thiazide by RP-HPLC in marketed dosage form. Int. J. Pharm. Sci. Res. 2020, 11, 2350–2355. [Google Scholar] [CrossRef]
- Nezhadali, A.; Shapouri, M.R.; Amoli-Diva, M.; Hooshangi, A.H.; Khodayari, F. Method development for simultaneous determination of active ingredients in cough and cold pharmaceuticals by high performance liquid chromatography. Heliyon 2019, 5, e02871. [Google Scholar] [CrossRef] [Green Version]
- Ebeid, W.M.; Elkady, E.; Patonay, G.; El-Zaher, A.A.; El-Bagary, R.I. Synchronized separation of seven medications representing most commonly prescribed antihypertensive classes by using reversed-phase liquid chromatography: Application for analysis in their combined formulations. J. Sep. Sci. 2014, 37, 748–757. [Google Scholar] [CrossRef] [PubMed]
- Alothman, Z.A.; Alsheetan, K.M.; Aboul-Enein, H.Y.; Ali, I. Applications of shun shell column and nanocomposite sorbent for analysis of eleven anti-hypertensive in human plasma. J. Chromatogr. B 2020, 1146, 122125. [Google Scholar] [CrossRef]
- Zareh, M.M.; Saad, M.Z.; Hassan, W.S.; Elhennawy, M.E.; Soltan, M.K.; Sebaiy, M.M. Gradient HPLC Method for Simultaneous Determination of Eight Sartan and Statin Drugs in Their Pure and Dosage Forms. Pharmaceuticals 2020, 13, 32. [Google Scholar] [CrossRef] [Green Version]
- Sebaiy, M.M.; Sm, E.-A.; Mm, B.; Aa, H. Analytical Methods for Determination of Certain Sartans and Diuretics. J. Chem. Sci. Chem. Eng. 2020, 1, 11–18. [Google Scholar] [CrossRef]
- Tekkeli, S.E.K. Development of an HPLC-UV Method for the Analysis of Drugs Used for Combined Hypertension Therapy in Pharmaceutical Preparations and Human Plasma. J. Anal. Methods Chem. 2013, 2013, 1–10. [Google Scholar] [CrossRef]
- Celia, C.; Di Marzio, L.; Locatelli, M.; Ramundo, P.; D’Ambrosio, F.; Tartaglia, A. Current Trends in Simultaneous Determination of Co-Administered Drugs. Separations 2020, 7, 29. [Google Scholar] [CrossRef]
- ICH Secretariat. ICH Harmonized Tripartite Guideline. Text on Validation of Analytical Procedures. In Proceedings of the International Conference on Harmonization, Geneva, Switzerland, 27 October 1994; pp. 1–17. [Google Scholar]
Drug Products | Composition |
---|---|
Amlokind-H | Hydrochlorothiazide (12.5 mg) + Amlodipine (5 mg) |
Lisart Plus (40 mg + 12.5 mg) | Telmisartan (40 mg) + Hydrochlorothiazide (12.5 mg) |
Lisart Plus (80 mg + 12.5 mg) | Telmisartan (80 mg) + Hydrochlorothiazide (12.5 mg) |
Cresar plus | Telmisartan (40 mg) + Hydrochlorothiazide (12.5 mg) + Amlodipine (5 mg) |
Olsar Plus (40 mg/12.5 mg) | Olmesartan Medoxomil (40 mg) + Hydrochlorothiazide (12.5 mg) |
Olsar Plus (20 mg/12.5 mg) | Olmesartan Medoxomil (20 mg) + Hydrochlorothiazide (12.5 mg) |
Sevikar HCZ (20 mg/12.5 mg/5 mg) | Olmesartan Medoxomil (20 mg) + Hydrochlorothiazide (12.5 mg) + Amlodipine 5 mg |
Arena Plus (150 mg/12.5 mg) | Irbesartan (150 mg) + Hydrochlorothiazide (12.5 mg) |
Arena Plus 300/25 | Irbesartan (300 mg) + Hydrochlorothiazide (25 mg) |
Aprovasc 300 mg/5 mg | Irbesartan 300 mg + Amlodipine (5 mg) |
Aprovasc 150 mg/10 mg | Irbesartan 150 mg + Amlodipine (10 mg) |
Parameters | HCZ | AMD | OLM | IRB | TEL |
---|---|---|---|---|---|
System Suitability Results | |||||
tR ± SD | 1.01 ± 0.02 | 1.42 ± 0.021 | 1.83 ± 0.014 | 2.14 ± 0.022 | 3.32 ± 0.012 |
Peak area ± SD | 1162.46 ± 6.27 a | 92.08 ± 1.16 b | 515.24 ± 2.34 c | 4695.45 ± 68.42 d | 3160.15 ± 57.83 e |
Resolution ± SD | -- | 2.43 ± 0.015 | 2.89 ± 0.012 | 2.21 ± 0.013 | 5.56 ± 0.031 |
Tailing factor ± SD | 0.98 ± 0.03 | 1.08 ± 0.01 | 1.06 ± 0.01 | 1.02 ± 0.02 | 0.99 ± 0.01 |
Linearity | |||||
Linearity range (µg/mL) | 5–30 | 1–15 | 5–160 | 10–300 | 5–160 |
Slope | 143.41 | 18.94 | 30.12 | 46.56 | 81.202 |
Intercept | −628.48 | −3.18 | −80.49 | 23.95 | −100.2 |
Regression coefficient (r2) | 0.9993 | 0.9998 | 0.9999 | 0.9999 | 0.9999 |
Sensitivity | |||||
LOD (µg/mL) | 1.42 | 0.22 | 1.34 | 2.33 | 1.36 |
LOQ (µg/mL) | 4.31 | 0.68 | 4.07 | 7.06 | 4.14 |
Drug | Amount of Drug (µg/mL) | Interday | Intraday | ||||
---|---|---|---|---|---|---|---|
Amount Found Mean (n = 3) ± SD | %RSD | %RE | Amount Found Mean (n = 9) ± SD | %RSD | %RE | ||
AMD | 1 | 0.98 ± 0.01 | 1.02 | −2.00 | 1.01 ± 0.02 | 1.98 | 1.00 |
7.5 | 7.61 ± 0.12 | 1.58 | 1.47 | 7.45 ± 0.14 | 1.88 | −0.67 | |
15 | 14.87 ± 0.12 | 0.81 | −0.87 | 14.75 ± 0.21 | 1.42 | −1.67 | |
HCZ | 5 | 4.97 ± 0.03 | 1.61 | −0.60 | 5.01 ± 0.07 | 1.40 | 0.20 |
15 | 15.02 ± 0.11 | 0.73 | 0.13 | 14.83 ± 0.18 | 1.21 | −1.13 | |
30 | 29.68 ± 0.31 | 1.04 | −1.07 | 30.12 ± 0.31 | 1.03 | 0.40 | |
OLM | 5 | 4.94 ± 0.06 | 1.21 | −1.20 | 5.06 ± 0.07 | 1.38 | 1.20 |
80 | 79.42 ± 1.28 | 1.61 | −0.72 | 79.26 ± 1.35 | 1.70 | −0.92 | |
160 | 158.14 ± 1.73 | 1.09 | −1.16 | 158.54 ± 2.57 | 1.62 | −0.91 | |
IRB | 10 | 9.85 ± 0.12 | 1.22 | −1.50 | 9.86 ± 0.13 | 1.32 | −1.40 |
150 | 147.89 ± 1.54 | 1.04 | −1.41 | 148.55 ± 1.25 | 0.84 | −0.97 | |
300 | 297.54 ± 3.24 | 1.09 | −0.82 | 294.87 ± 2.55 | 0.86 | −1.71 | |
TEL | 5 | 5.04 ± 0.1 | 1.98 | 0.80 | 4.93 ± 0.06 | 1.22 | −1.40 |
80 | 79.05 ± 1.22 | 1.54 | −1.19 | 78.98 ± 0.98 | 1.24 | −1.28 | |
160 | 158.27 ± 1.24 | 0.78 | −1.08 | 157.71 ± 2.05 | 1.30 | −1.43 |
Drug | Amount of Drug (µg/mL) | Amount Found Mean (n = 3) ± SD | %RE | % Recovery |
---|---|---|---|---|
AMD | 2.50 | 2.46 ± 0.04 | −1.60 | 98.40 |
5.00 | 5.04 ± 0.06 | 0.80 | 100.80 | |
7.50 | 7.43 ± 0.1 | −0.93 | 99.07 | |
Across Mean | 99.42 | |||
% RSD | 1.24 | |||
HCZ | 5.00 | 4.96 ± 0.04 | −0.80 | 99.20 |
10.00 | 10.05 ± 0.09 | 0.50 | 100.50 | |
15.00 | 14.87 ± 0.26 | −0.87 | 99.13 | |
Across Mean | 99.61 | |||
% RSD | 0.77 | |||
OLM | 10.00 | 9.88 ± 0.03 | −1.20 | 98.80 |
20.00 | 19.79 ± 0.15 | −1.05 | 98.95 | |
30.00 | 29.51 ± 0.35 | −1.63 | 98.37 | |
Across Mean | 98.71 | |||
% RSD | 0.30 | |||
IRB | 50.00 | 50.68 ± 0.18 | 1.36 | 101.36 |
100.00 | 98.39 ± 1.09 | −1.61 | 98.39 | |
150.00 | 148.05 ± 2.48 | −1.30 | 98.70 | |
Across Mean | 99.48 | |||
% RSD | 1.63 | |||
TEL | 20.00 | 19.81 ± 0.13 | −0.95 | 99.05 |
40.00 | 39.59 ± 0.34 | −1.02 | 98.98 | |
60.00 | 59.08 ± 0.62 | −1.53 | 98.47 | |
Across Mean | 98.83 | |||
% RSD | 0.32 |
Chromatographic Condition | Peak Area | |||||
---|---|---|---|---|---|---|
HCZ | AMD | OLM | IRB | TEL | ||
Mobile phase pH | 3.3 (Low) | 1147.92 | 92.88 | 2385.09 | 6869.23 | 6389.15 |
3.5 (Normal) | 1162.46 | 91.86 | 2362.85 | 7070.25 | 6446.99 | |
3.7 (High) | 1159.68 | 91.49 | 2315.24 | 7103.48 | 6586.2 | |
Across mean | 1156.69 | 92.08 | 2354.39 | 7014.32 | 6474.11 | |
% RSD | 0.67 | 0.78 | 1.52 | 1.81 | 1.56 | |
Injection volume (µL) | 18 (Low) | 1177.92 | 93.48 | 2318.27 | 6922.3 | 6293.98 |
20 (Normal) | 1162.46 | 91.86 | 2362.85 | 7070.25 | 6446.99 | |
22 (High) | 1189.68 | 91.58 | 2392.45 | 7134.95 | 6401.32 | |
Across mean | 1176.69 | 92.31 | 2357.86 | 7042.50 | 6380.76 | |
% RSD | 1.16 | 1.11 | 1.58 | 1.55 | 1.23 | |
Wavelength (nm) | 228 (Low) | 1191.21 | 94.01 | 2328.34 | 6934.12 | 6318.75 |
230 (Normal) | 1162.46 | 91.86 | 2362.85 | 7070.25 | 6446.99 | |
232 (High) | 1152.26 | 92.82 | 2386.19 | 7189.24 | 6503.42 | |
Across mean | 1168.64 | 92.90 | 2359.13 | 7064.54 | 6423.05 | |
% RSD | 1.73 | 1.16 | 1.23 | 1.81 | 1.47 |
Pharmaceutical Preparation | Drug | Label Claim (mg/Tab) | Amount Found (mg) | % Label Claim | % RSD |
---|---|---|---|---|---|
Amlokind-H | AMD HCZ | 5 12.5 | 4.97 12.31 | 99.40 98.48 | 0.60 1.62 |
Lisart Plus (40 + 12.5) | TEL HCZ | 40 12.5 | 39.78 12.52 | 99.45 100.16 | 1.03 0.88 |
Lisart Plus (80 + 12.5) | TEL HCZ | 80 12.5 | 79.59 12.53 | 99.49 100.24 | 1.65 1.92 |
Cresar plus | TEL HCZ AMD | 40 12.5 5 | 40.32 12.46 4.96 | 100.80 99.68 99.20 | 1.54 1.04 1.81 |
Olsar Plus (40/12.5) | OLM HCZ | 40 12.5 | 39.78 12.48 | 99.45 99.84 | 1.46 1.36 |
Olsar Plus (20/12.5) | OLM HCZ | 20 12.5 | 20.03 12.35 | 100.15 99.80 | 0.80 1.54 |
Sevikar HCZ (20/12.5/5) | OLM HCZ AMD | 20 12.5 5 | 19.63 12.38 5.02 | 98.15 99.04 100.40 | 1.68 1.13 0.80 |
Arena Plus (150/12.5) | IRB HCZ | 150 12.5 | 148.54 12.35 | 99.03 98.80 | 1.73 1.70 |
Arena Plus (300/25) | IRB HCZ | 300 25 | 296.65 12.40 | 98.88 99.20 | 1.36 1.77 |
Aprovasc (300/5) | IRB AMD | 300 5 | 294.79 4.93 | 98.26 98.60 | 1.30 1.62 |
Aprovasc (150/10) | IRB AMD | 150 10 | 151.89 9.87 | 101.26 98.7 | 1.29 1.52 |
Drug | Method | Mean (% Assay) | % RSD | n | Student’s t-test (2.228) a | F test (5.050) b |
---|---|---|---|---|---|---|
AMD | Present method | 99.20 | 1.81 | 6 | 0.758 | 1.276 |
Ref method [28] | 99.98 | 0.97 | ||||
HCZ | Present method | 99.68 | 1.04 | 6 | 0..037 | 1.395 |
Ref method [28] | 100.27 | 1.46 | ||||
TEL | Present method | 100.80 | 1.54 | 6 | 0.710 | 1.128 |
Ref method [27] | 98.82 | 1.39 | ||||
OLM | Present method | 99.45 | 1.46 | 6 | 0.282 | 1.099 |
Ref method [28] | 99.58 | 0.86 | ||||
IRB | Present method | 99.03 | 1.73 | 6 | 0.129 | 1.241 |
Ref method [27] | 100.87 | 1.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attimarad, M.; Venugopala, K.N.; Sreeharsha, N.; Chohan, M.S.; Shafi, S.; Nair, A.B.; Pottathil, S. A Rapid HPLC Method for the Concurrent Determination of Several Antihypertensive Drugs from Binary and Ternary Formulations. Separations 2021, 8, 86. https://doi.org/10.3390/separations8060086
Attimarad M, Venugopala KN, Sreeharsha N, Chohan MS, Shafi S, Nair AB, Pottathil S. A Rapid HPLC Method for the Concurrent Determination of Several Antihypertensive Drugs from Binary and Ternary Formulations. Separations. 2021; 8(6):86. https://doi.org/10.3390/separations8060086
Chicago/Turabian StyleAttimarad, Mahesh, Katharigatta N. Venugopala, Nagaraja Sreeharsha, Muhammad S. Chohan, Sheeba Shafi, Anroop B. Nair, and Shinu Pottathil. 2021. "A Rapid HPLC Method for the Concurrent Determination of Several Antihypertensive Drugs from Binary and Ternary Formulations" Separations 8, no. 6: 86. https://doi.org/10.3390/separations8060086
APA StyleAttimarad, M., Venugopala, K. N., Sreeharsha, N., Chohan, M. S., Shafi, S., Nair, A. B., & Pottathil, S. (2021). A Rapid HPLC Method for the Concurrent Determination of Several Antihypertensive Drugs from Binary and Ternary Formulations. Separations, 8(6), 86. https://doi.org/10.3390/separations8060086