Effect of Oily Aerosol Charge Characteristics on the Filtration Efficiency of an Electrostatically Enhanced Fibrous Filter System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental System
2.1.1. Aerosol Generation
2.1.2. Aerosol Charging
2.1.3. Data Acquisition and Analysis
2.2. Experimental Methodology
2.2.1. Method of Determining the Aerosol Charge
2.2.2. Model of the Particle Filtration Efficiency
3. Results
3.1. Filtering Performances of the Two Coupled Systems
3.2. DOP Charging Effects of the Coupled Systems
3.3. Effect of the Electric Field Intensity on the Filtering Effects of the Coupled Systems
3.4. Effect of Coupled Systems on the Filtration Efficiency and Stability of the Filter Material
4. Conclusions
- (1)
- In the electrostatically enhanced fibrous filter system, the charge of the aerosol is the main factor affecting the coupling effect. Increasing the charge of the aerosol improves the DOP filtration efficiency of the coupled system. Both the form of coupling and the strength of the electric field affect the charge of DOP aerosol. The arrangement of an electric field with a grounding electrode is more conducive to the charging of aerosol and has a better effect on filtration;
- (2)
- For the filter media or electric field, the DOP aerosol has a permeable particle size range of 0.15–0.25 μm. In the electrostatically enhanced fibrous filter system, there is no longer the phenomenon of the most permeable particle size because the charge of the aerosol and filter media increases the Coulomb force in the filtration process. The filtration efficiency gradually increases with the enlargement of particles, reaching 96.6% at a particle size of 0.25 μm;
- (3)
- The electrostatically enhanced fibrous filter system restores the filtration efficiency of electret materials and effectively enhances the long-term stability of electret materials in filtering oily aerosol.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, R.; Zhang, Y.; Bozzetti, C. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaral, S.S.; de Carvalho, J.A., Jr.; Costa MA, M.; Pinheiro, C. An Overview of Particulate Matter Measurement Instruments. Atmosphere 2015, 6, 1327–1345. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, S.; Zhang, Q.; Jiang, C.; Liang, L.; Tang, S.; Zhang, X.; Han, X.; Zhu, L. Origins of black carbon from anthropogenic emissions and open biomass burning transported to Xishuangbanna, Southwest China. J. Environ. Sci. 2023, 125, 277–289. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Liu, X.; Liu, Y.; Li, C. Characteristics and source apportionment of PM2. 5 under the dual influence of the Spring Festival and the COVID-19 pandemic in Yuncheng city. J. Environ. Sci. 2023, 125, 553–567. [Google Scholar] [CrossRef]
- Gao, J.; Chao, H.; Li, T. Advancements in technologies for improving dust removal effectiveness of electrostatic precipitators. Environ. Pollut. Control 2007, 29, 763–766. [Google Scholar]
- Zhang, H.; Liu, N.; Zeng, Q.; Liu, J.; Zhang, X.; Ge, M.; Zhang, W.; Li, S.; Fu, Y.; Zhang, Y. Design of polypropylene electret melt blown nonwovens with superior filtration efficiency stability through thermally stimulated charging. Polymers 2020, 12, 2341. [Google Scholar] [CrossRef]
- Afshari, A.; Ekberg, L.; Forejt, L.; Mo, J.; Rahimi, S.; Siegel, J.; Chen, W.; Wargocki, P.; Zurami, S.; Zhang, J. Electrostatic Precipitators as an Indoor Air Cleaner—A Literature Review. Sustainability 2020, 12, 8774. [Google Scholar] [CrossRef]
- Kanaoka, C. Fine Particle Filtration Technology Using Fiber as Dust Collection Medium. KONA Powder Part. J. 2019, 36, 88–113. [Google Scholar] [CrossRef] [Green Version]
- Abdolghader, P.; Brochot, C.; Haghighat, F.; Bahloul, A. Airborne nanoparticles filtration performance of fibrous media: A review. Sci. Technol. Built Environ. 2018, 24, 648–672. [Google Scholar] [CrossRef]
- Liu, C.; Dai, Z.; He, B.; Ke, Q.F. The Effect of Temperature and Humidity on the Filtration Performance of Electret Melt-Blown Nonwovens. Materials 2020, 13, 4774. [Google Scholar] [CrossRef]
- Jaworek, A.; Sobczyk, A.T.; Krupa, A.; Marchewicz, A.; Czech, T.; Śliwiński, L. Hybrid electrostatic filtration systems for fly ash particles emission control. A review. Sep. Purif. Technol. 2019, 213, 283–302. [Google Scholar] [CrossRef]
- Stenhouse, J. Clogging of an electrically active fibrous filter material: Experimental results and two-dimensional simulations. Powder Technol. 1997, 93, 63–75. [Google Scholar]
- Huang, B.; Yao, Q.; Li, S.Q.; Zhao, H.L.; Song, Q.; You, C.F. Experimental investigation on the particle capture by a single fiber using microscopic image technique. Powder Technol. 2006, 163, 125–133. [Google Scholar] [CrossRef]
- Bugarski, A.D.; Hummer, J.A. Contribution of various types and categories of diesel-powered vehicles to aerosols in an underground mine. J. Occup. Environ. Hyg. 2020, 17, 121–134. [Google Scholar] [CrossRef]
- Oeder, S.; Kanashova, T.; Sippula, O.; Sapcariu, S.C.; Streibel, T.; Arteaga-Salas, J.M.; Passig, J.; Dilger, M.; Paur, H.-R.; Schlager, C.; et al. Particulate matter from both heavy fuel oil and diesel fuel shipping emissions show strong biological effects on human lung cells at realistic and comparable in vitro exposure conditions. PLoS ONE 2015, 10, e0126536. [Google Scholar]
- Dasch, J.; D’Arcy, J.; Gundrum, A.; Sutherland, J.; Johnson, J.; Carlson, D. Characterization of fine particles from machining in automotive plants. J. Occup. Environ. Hyg. 2005, 2, 609–625. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhang, L.; Wang, Y.; Miao, Z. Exploration of a novel three-dimensional knitted spacer air filter with low pressure drop on cooking fume particles removal. Build. Environ. 2020, 177, 106903. [Google Scholar] [CrossRef]
- Guo, C.; Gao, Z.; Shen, J. Emission rates of indoor ozone emission devices: A literature review. Build. Environ. 2019, 158, 302–318. [Google Scholar] [CrossRef]
- Boelter, K.J.; Davidson, J.H. Ozone generation by indoor, electrostatic air cleaners. Aerosol Sci. Technol. 1997, 27, 689–708. [Google Scholar] [CrossRef]
- Waring, M.S.; Siegel, J.A.; Corsi, R.L. Ultrafine particle removal and generation by portable air cleaners. Atmos. Environ. 2008, 42, 5003–5014. [Google Scholar] [CrossRef]
- De Oliveira, A.E.; Guerra, V.G. Electrostatic precipitation of nanoparticles and submicron particles: Review of technological strategies. Process Saf. Environ. Prot. 2021, 153, 422–438. [Google Scholar] [CrossRef]
- Tu, G.; Song, Q.; Chen, K.; Yao, Q. Study on the Charge Decay of Charged Particles During Particle Transportation. Proc. Csee 2016, 36, 4369–4375. [Google Scholar]
- Gao, Y.; Tian, E.; Zhang, Y.; Mo, J. Utilizing electrostatic effect in fibrous filters for efficient airborne particles removal: Principles, fabrication, and material properties. Appl. Mater. Today 2022, 26, 1369. [Google Scholar] [CrossRef]
- Chen, K.; Huang, Y.; Wang, S.; Zhu, Z.; Lou, T.; Cheng, H. Experimental study on graded capture performance of fine particles with electrostatic-fabric integrated precipitator. Powder Technol. 2022, 402, 117297. [Google Scholar] [CrossRef]
- Stepkina, M.Y.; Kudryashova, O.B.; Antonnikova, A. Sedimentation of a Fine Aerosol in the Acoustic Field and with the Electrostatic Charge of Particles. Arch. Acoust. 2018, 43, 69–73. [Google Scholar]
- Tang, M.; Junbin, Y.U.; Ling, H.E.; Wang, L.; Wang, T. The Accumulation Mechanism of Charged Particles on the Surface of Bag Filter in EBP. Ind. Saf. Environ. Prot. 2015, 41, 79–83. [Google Scholar]
- Feng, Z.; Long, Z.; Mo, J. Experimental and theoretical study of a novel electrostatic enhanced air filter (EEAF) for fine particles. J. Aerosol Sci. 2016, 102, 41–54. [Google Scholar] [CrossRef]
- Feng, Z.; Long, Z.; Yu, T. Filtration characteristics of fibrous filter following an electrostatic precipitator. J. Electrost. 2016, 83, 52–62. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, C.; Liu, Z.; Yan, K. Electrostatic precipitation of airborne bio-aerosols. J. Electrost. 2013, 71, 204–207. [Google Scholar] [CrossRef]
- Jianan, W.; Xue, W.; Tingyu, Z.; Yi, Z. Experimental study on the impact of electrostatic effect on the movement of charged particles. J. Electrost. 2018, 94, 14–20. [Google Scholar] [CrossRef]
- Donovan, R.P.; Hovis, L.S.; Ramsey, G.H.; Ensor, D.S. Electric-Field-Enhanced Fabric Filtration of Electrically Charged Flyash. Aerosol Sci. Technol. 1982, 1, 385–399. [Google Scholar] [CrossRef]
- Luckner, J.; Wertejuk, Z.; Gradoń, L. Experimental studies of the fibrous filters coupled with external electrical field. J. Aerosol Sci. 1995, 26, S915–S916. [Google Scholar] [CrossRef]
- Luckner, H.; Gradoń, L.; Podgórski, A.; Wertejuk, Z. Separation of liquid aerosol particles in cyclones and fibrous filters conjugated with external electric field. J. Aerosol Sci. 1999, 30, 743–744. [Google Scholar] [CrossRef]
- Tarasenko, V.F.; Baksht, E.K.; Vinogradov, N.P.; Kozyrev, A.V.; Kokovin, A.S.; Kozhevnikov, V.Y. On the Mechanism of Generation of Trichel Pulses in Atmospheric Air. JETP Lett. 2022, 115, 667–672. [Google Scholar] [CrossRef]
- Berendt, A.; Budnarowska, M.; Mizeraczyk, J. DC negative corona discharge characteristics in air flowing transversely and longitudinally through a needle-plate electrode gap. J. Electrost. 2018, 92, 24–30. [Google Scholar] [CrossRef]
- Ouyang, J.; Zhang, Z.; Zhang, Y.; Peng, Z.L. Experimental Study on the Characteristics of Negative-corona Trichel Pulses in Air. High Volt. Eng. 2014, 40, 1194–1200. [Google Scholar]
- Sattari, P.; Gallo, C.F.; Castle GS, P.; Adamiak, K. Trichel pulse characteristics—Negative corona discharge in air. J. Phys. D Appl. Phys. 2011, 44, 155502. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, X.; Li, Y.; Zhang, G.; Sun, A. Effect of transverse airflow on the deflection of negative corona discharge on the Trichel pulse mode at atmospheric pressure. AIP Adv. 2021, 11, 125107. [Google Scholar] [CrossRef]
- Lu, B.X.; Song, L.J. The study of negative needle-to-plane corona discharge with photoionization under various air pressures. AIP Adv. 2021, 11, 085013. [Google Scholar] [CrossRef]
- INTRA, P. Corona discharge in a cylindrical triode charger for unipolar diffusion aerosol charging. J. Electrost. 2012, 70, 136–143. [Google Scholar] [CrossRef]
- Alguacil, F.J.; Alonso, M. Multiple charging of ultrafine particles in a corona charger. J. Aerosol Sci. 2006, 37, 875–884. [Google Scholar] [CrossRef]
- Hernandez-Sierra, A.; Alguacil, F.J.; Alonso, M. Unipolar charging of nanometer aerosol particles in a corona ionizer. J. Aerosol Sci. 2003, 34, 733–745. [Google Scholar] [CrossRef]
- Bortolassi, A.C.C.; Nagarajan, S.; de Araújo Lima, B.; Guerra, V.G.; Aguiar, M.L.; Huon, V.; Soussan, L.; Cornu, D.; Miele, P.; Bechelany, M. Efficient nanoparticles removal and bactericidal action of electrospun nanofibers membranes for air filtration. Mater. Sci. Eng. C 2019, 102, 718–729. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Pan, D.; Kang, K.; Bai, S.-P.; Han, H.; Song, H.; Kang, J. Effect of Oily Aerosol Charge Characteristics on the Filtration Efficiency of an Electrostatically Enhanced Fibrous Filter System. Separations 2022, 9, 320. https://doi.org/10.3390/separations9100320
Yu Y, Pan D, Kang K, Bai S-P, Han H, Song H, Kang J. Effect of Oily Aerosol Charge Characteristics on the Filtration Efficiency of an Electrostatically Enhanced Fibrous Filter System. Separations. 2022; 9(10):320. https://doi.org/10.3390/separations9100320
Chicago/Turabian StyleYu, Yi, Di Pan, Kai Kang, Shu-Pei Bai, Hao Han, Hua Song, and Jian Kang. 2022. "Effect of Oily Aerosol Charge Characteristics on the Filtration Efficiency of an Electrostatically Enhanced Fibrous Filter System" Separations 9, no. 10: 320. https://doi.org/10.3390/separations9100320
APA StyleYu, Y., Pan, D., Kang, K., Bai, S. -P., Han, H., Song, H., & Kang, J. (2022). Effect of Oily Aerosol Charge Characteristics on the Filtration Efficiency of an Electrostatically Enhanced Fibrous Filter System. Separations, 9(10), 320. https://doi.org/10.3390/separations9100320