Metal-Chelating Peptides Separation Using Immobilized Metal Ion Affinity Chromatography: Experimental Methodology and Simulation
Abstract
:1. Introduction
2. Production and Applications of Metal-Chelating Peptides
2.1. Metal-Chelating Peptides and Their Application
2.2. Various Protein Resources of Metal-Chelating Peptides
2.3. Proteolysis Production of Metal-Chelating Peptides
2.4. Peptides-Metal Ion Interactions
2.4.1. The Hard and Soft Acid and Base Theory
2.4.2. Effect of Various Parameters on Peptide-Metal Ion Interactions
3. Immobilized Metal Ion Affinity Chromatography for Metal-Chelating Peptides Separation
3.1. Generalities on IMAC
3.2. The Constituents of IMAC Chromatographic Phase
3.2.1. The Matrix
3.2.2. Complexing Agents
3.2.3. Immobilized Metal Ions
3.3. The Various Steps of IMAC Separation
3.3.1. General Principle
3.3.2. Metal Ion Loading and Equilibration of the Column with Buffer Solutions
3.3.3. Sample Load and Injection
3.3.4. Removing the Unbound Components
3.3.5. Elution of Targeted Compounds
3.3.6. Column Stripping
3.4. Parameters Affecting IMAC
3.4.1. Generalities
3.4.2. The pH of the Environment
3.4.3. The Salts
3.4.4. The Organic Solvents and Detergents
3.5. Application of IMAC for Metal-Chelating Peptides Separation
3.5.1. Metal-Chelating Peptides Separation and Purification in Hydrolysate
3.5.2. Separation and Purification of Recombinant Proteins/Peptides
3.5.3. Adsorption and Concentration of Histidine-Containing Peptides
4. Simulation of Metal-Chelating Peptides Separation from Surface Plasmon Resonance Experimental Data
4.1. Peptides Investigated for Simulation
4.2. Affinity Constant Determination Using Surface Plasmon Resonance
4.2.1. Surface Plasmon Resonance Principle
4.2.2. Affinity Constant Determination of Metal-Chelating Peptide for an Immobilized Metal Ion
4.2.3. Analogy between IMAC and SPR
4.3. Simulation of Chromatographic Separation
4.3.1. Principle
4.3.2. Adsorption Modeling
4.3.3. Axially Dispersed Plug Flow Model or Transport-Dispersive Model
- represents Vs/Vm, which is the phase ratio, where Vs and Vm are the volumes of stationary phase and mobile phase, respectively,
- describes the accumulation in the mobile phase,
- describes the accumulation in the stationary phase,
- describes the convective transport in the mobile phase,
- and describes the transport by axial dispersion in the mobile phase.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Guo, L.; Harnedy, P.A.; Li, B.; Hou, H.; Zhang, Z.; Zhao, X.; FitzGerald, R.J. Food protein-derived chelating peptides: Biofunctional ingredients for dietary mineral bioavailability enhancement. Trends Food Sci. Technol. 2014, 37, 92–105. [Google Scholar] [CrossRef]
- Tu, M.; Cheng, S.; Lu, W.; Du, M. Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. Trac Trends Anal. Chem. 2018, 105, 7–17. [Google Scholar] [CrossRef]
- Chalamaiah, M.; Ulug, S.K.; Hong, H.; Wu, J. Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. J. Funct. Foods 2019, 58, 123–129. [Google Scholar] [CrossRef]
- Liu, L.; Li, S.; Zheng, J.; Bu, T.; He, G.; Wu, J. Safety considerations on food protein-derived bioactive peptides. Trends Food Sci. Technol. 2019, 96, 199–207. [Google Scholar] [CrossRef]
- Wong, J.W.; Albright, R.L.; Wang, N.-H.L. Immobilized Metal Ion Affinity Chromatography (IMAC) Chemistry and Bioseparation Applications. Sep. Purif. Methods 1991, 20, 49–106. [Google Scholar] [CrossRef]
- Cheung, R.C.F.; Wong, J.H.; Ng, T.B. Immobilized metal ion affinity chromatography: A review on its applications. Appl. Microbiol. Biotechnol. 2012, 96, 1411–1420. [Google Scholar] [CrossRef]
- Lenz, K.; Beste, Y.A.; Arlt, W. Comparison of static and dynamic measurements of adsorption isotherms. Sep. Sci. Technol. 2002, 37, 1611–1629. [Google Scholar] [CrossRef]
- Seidel-Morgenstern, A. Experimental determination of single solute and competitive adsorption isotherms. J. Chromatogr. A 2004, 1037, 255–272. [Google Scholar] [CrossRef]
- Cornel, J.; Tarafder, A.; Katsuo, S.; Mazzotti, M. The direct inverse method: A novel approach to estimate adsorption isotherm parameters. J. Chromatogr. A 2010, 1217, 1934–1941. [Google Scholar] [CrossRef]
- Silva, T.C.; Eppink, M.; Ottens, M. Small, smaller, smallest: Miniaturization of chromatographic process development. J. Chromatogr. A 2022, 1681, 463451. [Google Scholar] [CrossRef] [PubMed]
- Hernández, V.A.; Samuelsson, J.; Forssén, P.; Fornstedt, T. Enhanced interpretation of adsorption data generated by liquid chromatography and by modern biosensors. J. Chromatogr. A 2013, 1317, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Canabady-Rochelle, L.L.; Selmeczi, K.; Collin, S.; Pasc, A.; Muhr, L.; Boschi-Muller, S. SPR screening of metal chelating peptides in a hydrolysate for their antioxidant properties. Food Chem. 2018, 239, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Guiochon, G.; Shirazi, D.G.; Felinger, A.; Katti, A.M. Fundamentals of Preparative and Nonlinear Chromatography; Academic Press: Boston, MA, USA, 2006. [Google Scholar]
- Remelli, M.; Nurchi, V.M.; Lachowicz, J.I.; Medici, S.; Zoroddu, M.A.; Peana, M. Competition between Cd(II) and other divalent transition metal ions during complex formation with amino acids, peptides, and chelating agents. Coord. Chem. Rev. 2016, 327–328, 55–69. [Google Scholar] [CrossRef]
- Wang, C.; Li, B.; Ao, J. Separation and identification of zinc-chelating peptides from sesame protein hydrolysate using IMAC-Zn2+ and LC–MS/MS. Food Chem. 2012, 134, 1231–1238. [Google Scholar] [CrossRef]
- Guo, L.; Harnedy, P.A.; O’Keeffe, M.B.; Zhang, L.; Li, B.; Hou, H.; FitzGerald, R.J. Fractionation and identification of Alaska pollock skin collagen-derived mineral chelating peptides. Food Chem. 2015, 173, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Udechukwu, M.C.; Collins, S.A.; Udenigwe, C.C. Prospects of enhancing dietary zinc bioavailability with food-derived zinc-chelating peptides. Food Funct. 2016, 7, 4137–4144. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Yang, Y.; Sun, N.; Bao, Z.; Lin, S. Food protein-derived iron-chelating peptides: The binding mode and promotive effects of iron bioavailability. Food Res. Int. 2020, 131, 108976. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Zhang, H.; Duan, Y.; Ma, H. Plant protein-derived antioxidant peptides: Isolation, identification, mechanism of action and application in food systems: A review. Trends Food Sci. Technol. 2020, 105, 308–322. [Google Scholar] [CrossRef]
- Gaetke, L. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003, 189, 147–163. [Google Scholar] [CrossRef]
- Chalamaiah, M.; Yu, W.; Wu, J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chem. 2017, 245, 205–222. [Google Scholar] [CrossRef]
- Di Natale, C.; De Benedictis, I.; De Benedictis, A.; Marasco, D. Metal–Peptide Complexes as Promising Antibiotics to Fight Emerging Drug Resistance: New Perspectives in Tuberculosis. Antibiotics 2020, 9, 337. [Google Scholar] [CrossRef] [PubMed]
- Csire, G.; Canabady-Rochelle, L.; Averlant-Petit, M.-C.; Selmeczi, K.; Stefan, L. Both metal-chelating and free radical-scavenging synthetic pentapeptides as efficient inhibitors of reactive oxygen species generation. Metallomics 2020, 12, 1220–1229. [Google Scholar] [CrossRef] [PubMed]
- Csire, G.; Dupire, F.; Canabady-Rochelle, L.; Selmeczi, K.; Stefan, L. Bio-Inspired Casein-Derived Antioxidant Peptides Exhibiting a Dual Direct/Indirect Mode of Action. Inorg. Chem. 2022, 61, 1941–1948. [Google Scholar] [CrossRef] [PubMed]
- Nwachukwu, I.D.; Aluko, R.E. Structural and functional properties of food protein-derived antioxidant peptides. J. Food Biochem. 2019, 43, e12761. [Google Scholar] [CrossRef] [Green Version]
- Sarbon, N.M.; Badii, F.; Howell, N.K. Purification and characterization of antioxidative peptides derived from chicken skin gelatin hydrolysate. Food Hydrocoll. 2018, 85, 311–320. [Google Scholar] [CrossRef]
- Sun, N.; Wu, H.; Du, M.; Tang, Y.; Liu, H.; Fu, Y.; Zhu, B. Food protein-derived calcium chelating peptides: A review. Trends Food Sci. Technol. 2016, 58, 140–148. [Google Scholar] [CrossRef]
- Harnedy, P.A.; FitzGerald, R.J. Bioactive peptides from marine processing waste and shellfish: A review. J. Funct. Foods 2012, 4, 6–24. [Google Scholar] [CrossRef]
- Rahman, M.; Khalid, H.S.; Akhtar, M.F.; Ijaz, M.; Iqbal, M.; Bukhari, S.A.; Mustafa, G.; Shaukat, K. Handbook of Bioremediation; Elsevier: Amsterdam, The Netherlands, 2021; pp. 437–444. [Google Scholar]
- Carlton, D.D., Jr.; Schug, K.A. A review on the interrogation of peptide–metal interactions using electrospray ionization-mass spectrometry. Analytica Chimica Acta 2011, 68, 19–39. [Google Scholar] [CrossRef]
- Jung, W.-K.; Karawita, R.; Heo, S.-J.; Lee, B.-J.; Kim, S.-K.; Jeon, Y.-J. Recovery of a novel Ca-binding peptide from Alaska Pollack (Theragra chalcogramma) backbone by pepsinolytic hydrolysis. Process Biochem. 2006, 41, 2097–2100. [Google Scholar] [CrossRef]
- Storcksdieck, S.; Bonsmann, S.S.G.; Hurrell, R.F. Iron-Binding Properties, Amino Acid Composition, and Structure of Muscle Tissue Peptides from in vitro Digestion of Different Meat Sources. J. Food Sci. 2007, 72, S019–S029. [Google Scholar] [CrossRef]
- Lee, S.H. Isolation of a Calcium-binding Peptide from Enzymatic Hydrolysates of Porcine Blood Plasma Protein. J. Korean Soc. Appl. Biol. Chem. 2009, 52, 290–294. [Google Scholar] [CrossRef]
- Huang, S.-L.; Zhao, L.-N.; Cai, X.; Wang, S.-Y.; Huang, Y.-F.; Hong, J.; Rao, P.-F. Purification and characterisation of a glutamic acid-containing peptide with calcium-binding capacity from whey protein hydrolysate. J. Dairy Res. 2015, 82, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wu, Z.; Dai, Z.; Wang, G.; Wu, G. Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. J. Anim. Sci. Biotechnol. 2017, 8, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.; Liu, Z.; Huang, W.; Zhao, Y.; Dong, S.; Zeng, M. Purification and characterisation of a zinc-binding peptide from oyster protein hydrolysate. J. Funct. Foods 2013, 5, 689–697. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Z.; Zhao, Y.; Zeng, M. Enzymatic preparation and characterization of iron-chelating peptides from anchovy (Engraulis japonicus) muscle protein. Food Res. Int. 2012, 48, 435–441. [Google Scholar] [CrossRef]
- Charoenphun, N.; Cheirsilp, B.; Sirinupong, N.; Youravong, W. Calcium-binding peptides derived from tilapia (Oreochromis niloticus) protein hydrolysate and its calcium bioavailability in rats. J. Funct. Foods 2012, 236, 57–63. [Google Scholar] [CrossRef]
- Miao, J.; Liao, W.; Pan, Z.; Wang, Q.; Duan, S.; Xiao, S.; Yang, Z.; Cao, Y. Isolation and identification of iron-chelating peptides from casein hydrolysates. Food Funct. 2019, 10, 2372–2381. [Google Scholar] [CrossRef]
- Timón, M.L.; Andrés, A.I.; Otte, J.; Petrón, M.J. Antioxidant peptides (<3 kDa) identified on hard cow milk cheese with rennet from different origin. Food Res. Int. 2019, 120, 643–649. [Google Scholar] [CrossRef]
- Nielsen, S.D.; Beverly, R.L.; Qu, Y.; Dallas, D.C. Milk bioactive peptide database: A comprehensive database of milk protein-derived bioactive peptides and novel visualization. Food Chem. 2017, 232, 673–682. [Google Scholar] [CrossRef]
- Choi, D.-W.; Lee, J.-H.; Chun, H.-H.; Bin Song, K. Isolation of a calcium-binding peptide from bovine serum protein hydrolysates. Food Sci. Biotechnol. 2012, 21, 1663–1667. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, S.; Cai, X.; Hong, J.; Wang, S. A specific peptide with calcium chelating capacity isolated from whey protein hydrolysate. J. Funct. Foods 2014, 10, 46–53. [Google Scholar] [CrossRef]
- Megías, C.; Pedroche, J.; Yust, M.M.; Girón-Calle, J.; Alaiz, M.; Millán, F.; Vioque, J. Production of copper-chelating peptides after hydrolysis of sunflower proteins with pepsin and pancreatin. LWT 2008, 41, 1973–1977. [Google Scholar] [CrossRef]
- Lv, Y.; Bao, X.; Liu, H.; Ren, J.; Guo, S. Purification and characterization of caclium-binding soybean protein hydrolysates by Ca2+/Fe3+ immobilized metal affinity chromatography (IMAC). Food Chem. 2013, 141, 1645–1650. [Google Scholar] [CrossRef]
- Liu, F.-R.; Wang, L.; Wang, R.; Chen, Z.-X. Calcium-Binding Capacity of Wheat Germ Protein Hydrolysate and Characterization of Peptide–Calcium Complex. J. Agric. Food Chem. 2013, 61, 7537–7544. [Google Scholar] [CrossRef]
- Eckert, E.; Lu, L.; Unsworth, L.D.; Chen, L.; Xie, J.; Xu, R. Biophysical and in vitro absorption studies of iron chelating peptide from barley proteins. J. Funct. Foods 2016, 25, 291–301. [Google Scholar] [CrossRef]
- Budseekoad, S.; Yupanqui, C.T.; Sirinupong, N.; Alashi, A.M.; Aluko, R.E.; Youravong, W. Structural and functional characterization of calcium and iron-binding peptides from mung bean protein hydrolysate. J. Funct. Foods 2018, 49, 333–341. [Google Scholar] [CrossRef]
- Aryee, A.N.A.; Boye, J.I. Improving the Digestibility of Lentil Flours and Protein Isolate and Characterization of Their Enzymatically Prepared Hydrolysates. Int. J. Food Prop. 2016, 19, 2649–2665. [Google Scholar] [CrossRef] [Green Version]
- Hadnadjev, M.; Dapcevic-Hadnadjev, T.; Pojic, M.; Saric, B.; Misan, A.; Jovanov, P.; Sakac, M. Progress in vegetable proteins isolation techniques: A review. Food Feed Res. 2017, 44, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Udenigwe, C.; Aluko, R.E. Food Protein-Derived Bioactive Peptides: Production, Processing, and Potential Health Benefits. J. Food Sci. 2011, 77, R11–R24. [Google Scholar] [CrossRef]
- Chen, D.; Mu, X.; Huang, H.; Nie, R.; Liu, Z.; Zeng, M. Isolation of a calcium-binding peptide from tilapia scale protein hydrolysate and its calcium bioavailability in rats. J. Funct. Foods 2014, 6, 575–584. [Google Scholar] [CrossRef]
- Wu, W.; Li, B.; Hou, H.; Zhang, H.; Zhao, X. Identification of iron-chelating peptides from Pacific cod skin gelatin and the possible binding mode. J. Funct. Foods 2017, 35, 418–427. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, W.; Chen, F.; Zou, J.; Chen, W.; Huang, G. Purification of an iron-binding peptide from scad (Decapterus maruadsi) processing by-products and its effects on iron absorption by Caco-2 cells. J. Food Biochem. 2019, 43, e12876. [Google Scholar] [CrossRef] [PubMed]
- Malison, A.; Arpanutud, P.; Keeratipibul, S. Chicken foot broth byproduct: A new source for highly effective peptide-calcium chelate. Food Chem. 2020, 345, 128713. [Google Scholar] [CrossRef] [PubMed]
- Xie, N.; Huang, J.; Li, B.; Cheng, J.; Wang, Z.; Yin, J.; Yan, X. Affinity purification and characterisation of zinc chelating peptides from rapeseed protein hydrolysates: Possible contribution of characteristic amino acid residues. Food Chem. 2015, 173, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Hou, H.; Li, B.; Zhang, Z.; Wang, S.; Zhao, X. Preparation, isolation and identification of iron-chelating peptides derived from Alaska pollock skin. Process Biochem. 2013, 48, 988–993. [Google Scholar] [CrossRef]
- Hou, H.; Wang, S.; Zhu, X.; Li, Q.; Fan, Y.; Cheng, D.; Li, B. A novel calcium-binding peptide from Antarctic krill protein hydrolysates and identification of binding sites of calcium-peptide complex. Food Chem. 2018, 243, 389–395. [Google Scholar] [CrossRef]
- Lv, Y.; Wei, K.; Meng, X.; Huang, Y.; Zhang, T.; Li, Z. Separation and identification of iron-chelating peptides from defatted walnut flake by nanoLC-ESI–MS/MS and de novo sequencing. Process Biochem. 2017, 59, 223–228. [Google Scholar] [CrossRef]
- Zhang, F.; Qu, J.; Thakur, K.; Zhang, J.-G.; Mocan, A.; Wei, Z.-J. Purification and identification of an antioxidative peptide from peony (Paeonia suffruticosa Andr.) seed dreg. Food Chem. 2019, 285, 266–274. [Google Scholar] [CrossRef]
- Daroit, D.J.; Brandelli, A. In vivo bioactivities of food protein-derived peptides–a current review. Curr. Opin. Food Sci. 2021, 39, 120–129. [Google Scholar] [CrossRef]
- Daliri, E.; Oh, D.; Lee, B. Bioactive Peptides. Foods 2017, 6, 32. [Google Scholar] [CrossRef]
- Korhonen, H.; Pihlanto, A. Food-derived Bioactive Peptides-Opportunities for Designing Future Foods. Curr. Pharm. Des. 2003, 9, 1297–1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conti, J.P.; Vinderola, G.; Esteban, E.N. Characterization of a soy protein hydrolyzate for the development of a functional ingredient. J. Food Sci. Technol. 2019, 56, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Munekata, P.E.; Gómez, B.; Barba, F.J.; Mora, L.; Pérez-Santaescolástica, C.; Toldrá, F. Bioactive peptides as natural antioxidants in food products–A review. Trends Food Sci. Technol. 2018, 79, 136–147. [Google Scholar] [CrossRef]
- Beaubier, S.; Framboisier, X.; Fournier, F.; Galet, O.; Kapel, R. A new approach for modelling and optimizing batch enzymatic proteolysis. Chem. Eng. J. 2020, 405, 126871. [Google Scholar] [CrossRef]
- Dash, P.; Ghosh, G. Amino acid composition, antioxidant and functional properties of protein hydrolysates from Cucurbitaceae seeds. J. Food Sci. Technol. 2017, 54, 4162–4172. [Google Scholar] [CrossRef] [PubMed]
- Adler-Nissen, J. Enzymic Hydrolysis of Food Proteins; Elsevier: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Gutiérrez, R.; Del Valle, E.M.M.; Galán, M.A. Immobilized Metal-Ion Affinity Chromatography: Status and Trends. Sep. Purif. Rev. 2007, 36, 71–111. [Google Scholar] [CrossRef]
- Pearson, R.G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85, 3533–3539. [Google Scholar] [CrossRef]
- Melnikov, F.; Geohagen, B.C.; Gavin, T.; LoPachin, R.M.; Anastas, P.T.; Coish, P.; Herr, D.W. Application of the hard and soft, acids and bases (HSAB) theory as a method to predict cumulative neurotoxicity. Neuro Toxicol. 2020, 79, 95–103. [Google Scholar] [CrossRef]
- Kozłowski, H.; Bal, W.; Dyba, M.; Kowalik-Jankowska, T. Specific structure–stability relations in metallopeptides. Coord. Chem. Rev. 1999, 184, 319–346. [Google Scholar] [CrossRef]
- Sóvágó, I.; Várnagy, K.; Lihi, N.; Grenács. Coordinating properties of peptides containing histidyl residues. Coord. Chem. Rev. 2016, 327, 43–54. [Google Scholar] [CrossRef]
- Wątły, J.; Hecel, A.; Rowińska-Żyrek, M.; Kozłowski, H. Impact of histidine spacing on modified polyhistidine tag–Metal ion interactions. Inorganica Chim. Acta 2018, 472, 119–126. [Google Scholar] [CrossRef]
- Watly, J.; Simonovsky, E.; Wieczorek, R.; Barbosa, N.; Miller, Y.; Kozlowski, H. Insight into the Coordination and the Binding Sites of Cu2+ by the Histidyl-6-Tag using Experimental and Computational Tools. Inorg. Chem. 2014, 53, 6675–6683. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, O.; Odani, A. Stability constants of metal complexes of amino acids with charged side chains-Part I: Positively charged side chains (Technical Report). Pure Appl. Chem. 1996, 68, 469–496. [Google Scholar] [CrossRef]
- Everson, R.; Parker, H. Zinc binding and synthesis of eight-hydroxy-quinoline-agarose. Bioinorg. Chem. 1974, 4, 15–20. [Google Scholar] [CrossRef]
- Porath, J.; Carlsson, J.; Olsson, I.; Belfrage, G. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 1975, 258, 598–599. [Google Scholar] [CrossRef]
- Sun, X.; Chiu, J.-F.; He, Q.-Y. Application of immobilized metal affinity chromatography in proteomics. Expert Rev. Proteom. 2005, 2, 649–657. [Google Scholar] [CrossRef]
- Tsai, S.-Y.; Lin, S.-C.; Suen, S.-Y.; Hsu, W.-H. Effect of number of poly(His) tags on the adsorption of engineered proteins on immobilized metal affinity chromatography adsorbents. Process Biochem. 2006, 41, 2058–2067. [Google Scholar] [CrossRef]
- Chaga, G.S. Twenty-five years of immobilized metal ion affinity chromatography: Past, present and future. J. Biochem. Biophys. Methods 2001, 49, 313–334. [Google Scholar] [CrossRef]
- Ueda, E.; Gout, P.; Morganti, L. Current and prospective applications of metal ion–protein binding. J. Chromatogr. A 2003, 988, 1–23. [Google Scholar] [CrossRef]
- Michalski, W.P. Resolution of three forms of superoxide dismutase by immobilised metal affinity chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1992, 576, 340–345. [Google Scholar] [CrossRef]
- Biswas, S.; Sarkar, A.; Misra, R. Iron affinity gel and gallium immobilized metal affinity chromatographic technique for phosphopeptide enrichment: A comparative study. Biotechnol. Biotechnol. Equip. 2017, 31, 639–646. [Google Scholar] [CrossRef] [Green Version]
- Abelin, J.G.; Trantham, P.D.; Penny, S.A.; Patterson, A.; Ward, S.; Hildebrand, W.H.; Cobbold, M.; Bai, D.L.; Shabanowitz, J.; Hunt, D.F. Complementary IMAC enrichment methods for HLA-associated phosphopeptide identification by mass spectrometry. Nat. Protoc. 2015, 10, 1308–1318. [Google Scholar] [CrossRef] [Green Version]
- Ruprecht, B.; Koch, H.; Medard, G.; Mundt, M.; Kuster, B.; Lemeer, S. Comprehensive and Reproducible Phosphopeptide Enrichment Using Iron Immobilized Metal Ion Affinity Chromatography (Fe-IMAC) Columns. Mol. Cell. Proteom. 2015, 14, 205–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barron, L.; O’Toole, M.; Diamond, D.; Nesterenko, P.N.; Paull, B. Separation of transition metals on a poly-iminodiacetic acid grafted polymeric resin column with post-column reaction detection utilising a paired emitter–detector diode system. J. Chromatogr. A 2008, 1213, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.R.; Ikonomou, M.G.; Orians, K.J. Characterization of copper-complexing ligands in seawater using immobilized copper(II)-ion affinity chromatography and electrospray ionization mass spectrometry. Mar. Chem. 2003, 83, 47–58. [Google Scholar] [CrossRef]
- Gu, J.; Codd, R. The resolution of two clinical agents, bleomycin and desferrioxamine B, from a Streptomyces verticillus fermentation mixture using multi-dimensional immobilised metal ion affinity chromatography. RSC Adv. 2014, 5, 3443–3453. [Google Scholar] [CrossRef]
- Simionato, A.V.C.; Silva-Stenico, M.E.; Tsai, S.M.; Carrilho, E. Evidences of siderophores synthesis by Grapevine Xylella fastidiosa, causal agent of pierce’s disease, through instrumental approaches. J. Braz. Chem. Soc. 2010, 21, 635–641. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Guo, S.; Li, X.; Ren, X. Comparative analysis of salt-responsive phosphoproteins in maize leaves using Ti 4+ -IMAC enrichment and ESI-Q-TOFMS: Proteomics and 2DE. Electrophoresis 2013, 34, 485–492. [Google Scholar] [CrossRef]
- Rodrigues, C.A.; Reynaud, F.; Stadler, E.; Drago, V. Preparation, Characterization, and Chromatography Properties of Chitin Modified with FeCl3. J. Liq. Chromatogr. Relat. Technol. 1999, 22, 761–769. [Google Scholar] [CrossRef]
- Bonn, G.K.; Kalghatgi, K.; Horne, W.C.; Horváth, C. Rapid metal-interaction chromatography of proteins and peptides on micropellicular sorbents. Chromatographia 1990, 30, 484–488. [Google Scholar] [CrossRef]
- Burba, P.; Jakubowski, B.; Kuckuk, R.; Küllmer, K.; Heumann, K.G. Characterization of aquatic humic substances and their metal complexes by immobilized metal-chelate affinity chromatography on iron(III)-loaded ion exchangers. Anal. Bioanal. Chem. 2000, 368, 689–696. [Google Scholar] [CrossRef] [PubMed]
- de Aquino, L.C.L.; de Sousa, H.R.T.; Miranda, E.A.; Vilela, L.; Bueno, S.M.A. Evaluation of IDA-PEVA hollow fiber membrane metal ion affinity chromatography for purification of a histidine-tagged human proinsulin. J. Chromatogr. B 2006, 834, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Martin, L.; Benavente, F.; Medina-Casanellas, S.; Giménez, E.; Sanz-Nebot, V. Study of immobilized metal affinity chromatography sorbents for the analysis of peptides by on-line solid-phase extraction capillary electrophoresis-mass spectrometry: CE and CEC. Electrophoresis 2015, 36, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Sulkowski, E. Purification of proteins by IMAC. Trends Biotechnol. 1985, 3, 1–7. [Google Scholar] [CrossRef]
- Del Contreras, M.M.; Lama-Muñoz, A.; Manuel Gutiérrez-Pérez, J.; Espínola, F.; Moya, M.; Castro, E. Protein extraction from agri-food residues for integration in biorefinery: Potential techniques and current status. Bioresour. Technol. 2019, 280, 459–477. [Google Scholar] [CrossRef]
- Pavan, G.L.; Bresolin, I.; Borsoi-Ribeiro, M.; Vijayalakshmi, M.; Bueno, S.M.A. The effect of NaCl on the adsorption of human IgG onto CM-Asp–PEVA hollow fiber membrane-immobilized nickel and cobalt metal ions. Adsorption 2014, 20, 677–688. [Google Scholar] [CrossRef]
- Gladilovich, V.; Greifenhagen, U.; Sukhodolov, N.; Selyutin, A.; Singer, D.; Thieme, D.; Majovsky, P.; Shirkin, A.; Hoehenwarter, W.; Bonitenko, E.; et al. Immobilized metal affinity chromatography on collapsed Langmuir-Blodgett iron(III) stearate films and iron(III) oxide nanoparticles for bottom-up phosphoproteomics. J. Chromatogr. A 2016, 1443, 181–190. [Google Scholar] [CrossRef]
- De Góes, L.C.; Miranda, E.A.; Bueno, S.M.A. Interaction of histidine-tagged human proinsulin with immobilized nickel ion: Effect of chelating ligand and thermodynamics analysis. Colloids Surf. A Physicochem. Eng. Asp. 2010, 369, 176–185. [Google Scholar] [CrossRef]
- Block, H.; Maertens, B.; Spriestersbach, A.; Brinker, N.; Kubicek, J.; Fabis, R.; Labahn, J.; Schäfer, F. Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2009; pp. 439–473. [Google Scholar]
- Hochuli, E. Genetically designed affinity chromatography using a novel metal chelate adsorben. Biol. Active Mol. 1989, 411, 217–239. [Google Scholar]
- Smith, M.C.; Furman, T.C.; Ingolia, T.D.; Pidgeon, C. Chelating peptide-immobilized metal ion affinity chromatography. A new concept in affinity chromatography for recombinant proteins. J. Biol. Chem. 1988, 263, 7211–7215. [Google Scholar] [CrossRef]
- Paris, C. Developpement de Nouvelles Approches Analytiques Pour le Criblage de Peptides Chelateurs de fer; Université de Lorraine: Lorraine, France, 2021. [Google Scholar]
- Nuwaysir, L.M.; Stults, J.T. Electrospray ionization mass spectrometry of phosphopeptides isolated by on-line immobilized metal-ion affinity chromatography. J. Am. Soc. Mass Spectrom. 1993, 4, 662–669. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Jiang, H.; Cai, Y.; Qian, X. Phosphopeptide detection using automated online IMAC-capillary LC-ESI-MS/MS. Proteomics 2006, 6, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Moser, K.; White, F. Phosphoproteomic Analysis of Rat Liver by High Capacity IMAC and LC−MS/MS. J. Proteome Res. 2005, 5, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Liu, Q.; Bao, X.; Tang, W.; Yang, B.; Guo, S. Identification and Characteristics of Iron-Chelating Peptides from Soybean Protein Hydrolysates Using IMAC-Fe3+. J. Agric. Food Chem. 2009, 57, 4593–4597. [Google Scholar] [CrossRef]
- Ejje, N.; Soe, C.Z.; Gu, J.; Codd, R. The variable hydroxamic acid siderophore metabolome of the marine actinomycete Salinispora tropica CNB-440. Metallomics 2013, 5, 1519–1528. [Google Scholar] [CrossRef]
- Braich, N.; Codd, R. Immobilised metal affinity chromatography for the capture of hydroxamate-containing siderophores and other Fe(iii)-binding metabolites directly from bacterial culture supernatants. Analyst 2008, 133, 877–880. [Google Scholar] [CrossRef]
- Bresolin, I.R.A.P.; Bresolin, I.T.L.; Pessoa, A. Purification of Anti-Interleukin-6 Monoclonal Antibody Using Precipitation and Immobilized Metal-Ion Affinity Chromatography. Adsorpt. Sci. Technol. 2015, 33, 191–202. [Google Scholar] [CrossRef]
- Li, S.; Dass, C. Iron(III)-Immobilized Metal Ion Affinity Chromatography and Mass Spectrometry for the Purification and Characterization of Synthetic Phosphopeptides. Anal. Biochem. 1999, 270, 9–14. [Google Scholar] [CrossRef]
- Lee, J.; Xu, Y.; Chen, Y.; Sprung, R.; Kim, S.C.; Xie, S.; Zhao, Y. Mitochondrial Phosphoproteome Revealed by an Improved IMAC Method and MS/MS/MS. Mol. Cell. Proteom. 2007, 6, 669–676. [Google Scholar] [CrossRef] [Green Version]
- de la Hoz, L.; Ponezi, A.N.; Milani, R.F.; da Silva, V.S.N.; de Souza, A.S.; Bertoldo-Pacheco, M.T. Iron-binding properties of sugar cane yeast peptides. Food Chem. 2014, 142, 166–169. [Google Scholar] [CrossRef] [Green Version]
- Duhita, N.; Hiwasa-Tanase, K.; Yoshida, S.; Ezura, H. Single-Step Purification of Native Miraculin Using Immobilized Metal-Affinity Chromatography. J. Agric. Food Chem. 2009, 57, 5148–5151. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ortega, O.; Guzmán, R. Purification of Human Serum Immunoglobulins Using Immobilized Metal Affinity Chromatography with Ethylenediamine Triacetic Acid as Chelating Agent. J. Liq. Chromatogr. Relat. Technol. 2014, 38, 74–81. [Google Scholar] [CrossRef]
- Hutchens, T.W.; Li, C.M. Estrogen receptor interaction with immobilized metals: Differential molecular recognition of Zn2+, Cu2+ and Ni2+ and separation of receptor isoforms. J. Mol. Recognit. 1988, 1, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Vançan, S.; Miranda, E.A.; Bueno, S.M.A. IMAC of human IgG: Studies with IDA-immobilized copper, nickel, zinc, and cobalt ions and different buffer systems. Process Biochem. 2002, 37, 573–579. [Google Scholar] [CrossRef]
- Rowinska-Zyrek, M.; Witkowska, D.; Potocki, S.; Remelli, M.; Kozlowski, H. His-rich sequences–is plagiarism from nature a good idea? N. J. Chem. 2013, 37, 58–70. [Google Scholar] [CrossRef]
- He, Z.; Tan, J.S.; Lai, O.M.; Ariff, A.B. Optimization of conditions for the single step IMAC purification of miraculin from Synsepalum dulcificum. Food Chem. 2015, 181, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Amiri, S.; Mehrnia, M.R.; Sobhanifard, S.; Roudsari, F.P.; Hosseini, S. Evaluation of agarose-entrapped magnetic nanoparticles influence on protein adsorption isotherm and kinetics using nickel-iminodiacetic acid ligand. Sep. Purif. Technol. 2017, 188, 423–430. [Google Scholar] [CrossRef]
- Tian, F.; Yang, L.; Lv, F.; Zhou, P. Modeling and prediction of retention behavior of histidine-containing peptides in immobilized metal-affinity chromatography. J. Sep. Sci. 2009, 32, 2159–2169. [Google Scholar] [CrossRef]
- Sidenius, U.; Farver, O.; Jøns, O.; Gammelgaard, B. Comparison of different transition metal ions for immobilized metal affinity chromatography of selenoprotein P from human plasma. J. Chromatogr. B: Biomed. Sci. Appl. 1999, 735, 85–91. [Google Scholar] [CrossRef]
- Caetano-Silva, M.E.; Bertoldo-Pacheco, M.T.; Paes-Leme, A.F.; Netto, F.M. Iron-binding peptides from whey protein hydrolysates: Evaluation, isolation and sequencing by LC–MS/MS. Food Res. Int. 2015, 71, 132–139. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Wu, C.-F.; Liu, C.-C. Interactions of Imidazole and Proteins with Immobilized Cu(II) Ions: Effects of Structure, Salt Concentration, and pH in Affinity and Binding Capacity. J. Colloid Interface Sci. 1996, 180, 135–143. [Google Scholar] [CrossRef]
- Hansen, P.; Lindeberg, G. Purification of tryptophan containing synthetic peptides by selective binding of the α-amino group to immobilised metal ions. J. Chromatogr. A 1994, 662, 235–241. [Google Scholar] [CrossRef]
- Knecht, S.; Ricklin, D.; Eberle, A.N.; Ernst, B. Oligohis-tags: Mechanisms of binding to Ni2+-NTA surfaces. J. Mol. Recognit. 2009, 22, 270–279. [Google Scholar] [CrossRef]
- Blanco-Canosa, J.B.; Wu, M.; Susumu, K.; Petryayeva, E.; Jennings, T.L.; Dawson, P.E.; Algar, W.R.; Medintz, I.L. Recent progress in the bioconjugation of quantum dots. Co-ord. Chem. Rev. 2014, 263–264, 101–137. [Google Scholar] [CrossRef]
- Aljawish, A.; Chevalot, I.; Madad, N.; Paris, C.; Muniglia, L. Laccase mediated-synthesis of hydroxycinnamoyl-peptide from ferulic acid and carnosine. J. Biotechnol. 2016, 227, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Cuajungco, M.P.; Fagét, K.Y.; Huang, X.; Tanzi, R.E.; Bush, A.I. Metal Chelation as a Potential Therapy for Alzheimer’s Disease. Ann. N. Y. Acad. Sci. 2006, 920, 292–304. [Google Scholar] [CrossRef]
- Robert, A.; Liu, Y.; Nguyen, M.; Meunier, B. Regulation of Copper and Iron Homeostasis by Metal Chelators: A Possible Chemotherapy for Alzheimer’s Disease. Accounts Chem. Res. 2015, 48, 1332–1339. [Google Scholar] [CrossRef]
- Oshima, T.; Tachiyama, H.; Kanemaru, K.; Ohe, K.; Baba, Y. Adsorption and concentration of histidine-containing dipeptides using divalent transition metals immobilized on a chelating resin. Sep. Purif. Technol. 2009, 70, 79–86. [Google Scholar] [CrossRef]
- Chandrudu, S.; Simerska, P.; Toth, I. Chemical Methods for Peptide and Protein Production. Molecules 2013, 18, 4373–4388. [Google Scholar] [CrossRef] [Green Version]
- De Luca, C.; Felletti, S.; Macis, M.; Cabri, W.; Lievore, G.; Chenet, T.; Pasti, L.; Morbidelli, M.; Cavazzini, A.; Catani, M.; et al. Modeling the nonlinear behavior of a bioactive peptide in reversed-phase gradient elution chromatography. J. Chromatogr. A 2019, 1616, 460789. [Google Scholar] [CrossRef]
- Merrifield, R.B. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149–2154. [Google Scholar] [CrossRef]
- Coin, I.; Beyermann, M.; Bienert, M. Solid-phase peptide synthesis: From standard procedures to the synthesis of difficult sequences. Nat. Protoc. 2007, 2, 3247–3256. [Google Scholar] [CrossRef] [PubMed]
- Bernaudat, F.; Bülow, L. Rapid evaluation of nickel binding properties of His-tagged lactate dehydrogenases using surface plasmon resonance. J. Chromatogr. A 2005, 1066, 219–224. [Google Scholar] [CrossRef]
- Abe, Y.; Hiasa, K.; Hirata, I.; Okazaki, Y.; Nogami, K.; Mizumachi, W.; Yoshida, Y.; Suzuki, K.; Okazaki, M.; Akagawa, Y. Detection of synthetic RGDS(PO3H2)PA peptide adsorption using a titanium surface plasmon resonance biosensor. J. Mater. Sci. Mater. Electron. 2011, 22, 657–661. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Leech, A.P.; Hubbard, R.E. Comparative Assessment of Different Histidine-Tags for Immobilization of Protein onto Surface Plasmon Resonance Sensorchips. Anal. Chem. 2011, 83, 1800–1807. [Google Scholar] [CrossRef]
- Oshannessy, D.; Brighamburke, M.; Soneson, K.; Hensley, P.; Brooks, I. Determination of Rate and Equilibrium Binding Constants for Macromolecular Interactions Using Surface Plasmon Resonance: Use of Nonlinear Least Squares Analysis Methods. Anal. Biochem. 1993, 212, 457–468. [Google Scholar] [CrossRef]
- Dupont, D.; Johansson, A.; Marchin, S.; Rolet-Repecaud, O.; Marchesseau, S.; Leonil, J. Topography of the Casein Micelle Surface by Surface Plasmon Resonance (SPR) Using a Selection of Specific Monoclonal Antibodies. J. Agric. Food Chem. 2011, 59, 8375–8384. [Google Scholar] [CrossRef]
- Qu, J.-H.; Leirs, K.; Escudero, R.; Strmšek, Ž.; Jerala, R.; Spasic, D.; Lammertyn, J. Novel Regeneration Approach for Creating Reusable FO-SPR Probes with NTA Surface Chemistry. Nanomaterials 2021, 11, 186. [Google Scholar] [CrossRef]
- Hochuli, E.; Döbeli, H.; Schacher, A. New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J. Chromatogr. A 1987, 411, 177–184. [Google Scholar] [CrossRef]
- Nieba, L.; Nieba-Axmann, S.E.; Persson, A.; Hämäläinen, M.; Edebratt, F.; Hansson, A.; Lidholm, J.; Magnusson, K.; Karlsson, Å.F.; Plückthun, A. BIACORE Analysis of Histidine-Tagged Proteins Using a Chelating NTA Sensor Chip. Anal. Biochem. 1997, 252, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.-H.; Horta, S.; Delport, F.; Sillen, M.; Geukens, N.; Sun, D.-W.; Vanhoorelbeke, K.; Declerck, P.; Lammertyn, J.; Spasic, D. Expanding a Portfolio of (FO-) SPR Surface Chemistries with the Co(III)-NTA Oriented Immobilization of His6-Tagged Bioreceptors for Applications in Complex Matrices. ACS Sens. 2020, 5, 960–969. [Google Scholar] [CrossRef]
- Hu, W.-P.; Chang, G.-L.; Chen, S.-J.; Kuo, Y.-M. Kinetic analysis of β-amyloid peptide aggregation induced by metal ions based on surface plasmon resonance biosensing. J. Neurosci. Methods 2006, 154, 190–197. [Google Scholar] [CrossRef]
- Achilleos, C.; Tailhardat, M.; Courtellemont, P.; Le Varlet, B.; Dupont, D. Investigation of surface plasmon resonance biosensor for skin sensitizers studies. Toxicol. Vitr. 2009, 23, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Daghestani, H.N.; Day, B.W. Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors. Sensors 2010, 10, 9630–9646. [Google Scholar] [CrossRef] [Green Version]
- Akduman, B.; Uygun, M.; Uygun, D.A.; Antalík, M. Fe3O4 magnetic core coated by silver and functionalized with N-acetyl cysteine as novel nanoparticles in ferritin adsorption. J. Nanoparticle Res. 2013, 15, 1–10. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Park, J.; Kang, S.; Kim, M. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors 2015, 15, 10481–10510. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, G.; Zhang, G. Effect of Surface Wettability on Ion-Specific Protein Adsorption. Langmuir 2012, 28, 14642–14653. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-J.; Bi, L.-J.; Zhang, X.-E.; Zhou, Y.-F.; Zhang, J.-B.; Chen, Y.-Y.; Li, W.; Zhang, Z.-P. Reversible immobilization of proteins with streptavidin affinity tags on a surface plasmon resonance biosensor chip. Anal. Bioanal. Chem. 2006, 386, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Drake, A.W.; Klakamp, S.L. A strategic and systematic approach for the determination of biosensor regeneration conditions. J. Immunol. Methods 2011, 371, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Andersson, P.O.; Lundquist, M.; Tegler, L.; Börjegren, S.; Baltzer, L.; Österlund, L. A Novel ATR-FTIR Approach for Characterisation and Identification of Ex Situ Immobilised Species. ChemPhysChem 2007, 8, 712–722. [Google Scholar] [CrossRef]
- Millhauser, G.L. Copper and the Prion Protein: Methods, Structures, Function, and Disease. Annu. Rev. Phys. Chem. 2007, 58, 299–320. [Google Scholar] [CrossRef]
- Kogelberg, H.; Miranda, E.; Burnet, J.; Ellison, D.; Tolner, B.; Foster, J.; Picón, C.; Thomas, G.J.; Meyer, T.; Marshall, J.F.; et al. Generation and Characterization of a Diabody Targeting the αvβ6 Integrin. PLoS ONE 2013, 8, e73260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, J.; Wang, C.; Tao, Y.; Tan, Y.; Yang, D.; Gu, Y.; Deng, H.; Bai, Y.; Lü, H.; Wan, Y.; et al. Determination of 3-nitrotyrosine in human urine samples by surface plasmon resonance immunoassay. Sensors Actuators B Chem. 2011, 153, 164–169. [Google Scholar] [CrossRef]
- Singh, P. SPR Biosensors: Historical Perspectives and Current Challenges. Sensors Actuators B Chem. 2016, 229, 110–130. [Google Scholar] [CrossRef]
- Muhr, L.; Pontvianne, S.; Selmeczi, K.; Paris, C.; Boschi-Muller, S.; Canabady-Rochelle, L. Chromatographic separation simulation of metal-chelating peptides from surface plasmon resonance binding parameters. J. Sep. Sci. 2020, 43, 2031–2041. [Google Scholar] [CrossRef] [PubMed]
- Gerontas, S.; Asplund, M.; Hjorth, R.; Bracewell, D.G. Integration of scale-down experimentation and general rate modelling to predict manufacturing scale chromatographic separations. J. Chromatogr. A 2010, 1217, 6917–6926. [Google Scholar] [CrossRef] [PubMed]
- Yon, R.J.; Kyprianou, P.; Winzor, D.J.; Smith, V.R.; Fearnley, I.M.; Walker, J.E.; Stevens, F.J.; Schiffer, M. Sensitivity and other factors affecting biospecific desorption in chromatography of proteins. A study by computer simulation. Biochem. J. 1980, 185, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Schmidt-Traub, H. (Ed.) Preparative Chromatography of Fine Chemicals and Pharmaceutical Agents; Wiley-VCH: Weinheim, Germany, 2005. [Google Scholar]
- Bellot, J.; Condoret, J. Liquid chromatography modelling: A review. Process Biochem. 1991, 26, 363–376. [Google Scholar] [CrossRef]
- Du, H.; Zhang, X.; Wang, J.; Yao, X.; Hu, Z. Novel approaches to predict the retention of histidine-containing peptides in immobilized metal-affinity chromatography. Proteomics 2008, 8, 2185–2195. [Google Scholar] [CrossRef]
- Harscoat-Schiavo, C.; Raminosoa, F.; Ronat-Heit, E.; Vanderesse, R.; Marc, I. Modeling the separation of small peptides by cation-exchange chromatography: Liquid Chromatography. J. Sep. Sci. 2010, 33, 2447–2457. [Google Scholar] [CrossRef]
- Badgett, M.J.; Boyes, B.; Orlando, R. Peptide retention prediction using hydrophilic interaction liquid chromatography coupled to mass spectrometry. J. Chromatogr. A 2018, 1537, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Le Maux, S.; Nongonierma, A.B.; FitzGerald, R.J. Improved short peptide identification using HILIC–MS/MS: Retention time prediction model based on the impact of amino acid position in the peptide sequence. Food Chem. 2015, 173, 847–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, T. Calculation of peptide retention coefficients in normal-phase liquid chromatography. J. Chromatogr. A 1998, 808, 105–112. [Google Scholar] [CrossRef]
- Guo, D.; Mant, C.T.; Taneja, A.K.; Hodges, R.S. Prediction of peptide retention times in reversed-phase high-performance liquid chromatography II. Correlation of observed and predicted peptide retention times factors and influencing the retention times of peptides. J. Chromatogr. A 1986, 359, 519–532. [Google Scholar] [CrossRef]
- Boateng, B.O.; Fever, M.; Edwards, D.; Petersson, P.; Euerby, M.R.; Sutcliffe, O.B. Chromatographic retention behaviour, modelling and optimization of a UHPLC-UV separation of the regioisomers of the Novel Psychoactive Substance (NPS) methoxphenidine (MXP). J. Pharm. Biomed. Anal. 2018, 153, 238–247. [Google Scholar] [CrossRef]
- García-Álvarez-Coque, M.; Torres-Lapasió, J.; Baeza-Baeza, J. Models and objective functions for the optimisation of selectivity in reversed-phase liquid chromatography. Anal. Chim. Acta 2006, 579, 125–145. [Google Scholar] [CrossRef]
- Jandera, P. Can the theory of gradient liquid chromatography be useful in solving practical problems? J. Chromatogr. A 2006, 1126, 195–218. [Google Scholar] [CrossRef]
- Ng, B.K.; Tan, T.T.; Shellie, R.A.; Dicinoski, G.W.; Haddad, P.R. Computer-assisted simulation and optimisation of retention in ion chromatography. Trac Trends Anal. Chem. 2016, 80, 625–635. [Google Scholar] [CrossRef]
- Pfeifer, N.; Leinenbach, A.; Huber, C.G.; Kohlbacher, O. Statistical learning of peptide retention behavior in chromatographic separations: A new kernel-based approach for computational proteomics. BMC Bioinform. 2007, 8, 468. [Google Scholar] [CrossRef] [Green Version]
- Petritis, K.; Kangas, L.J.; Ferguson, P.L.; Anderson, G.A.; Paša-Tolić, L.; Lipton, M.S.; Auberry, K.J.; Strittmatter, E.F.; Shen, Y.; Zhao, R.; et al. Use of Artificial Neural Networks for the Accurate Prediction of Peptide Liquid Chromatography Elution Times in Proteome Analyses. Anal. Chem. 2003, 75, 1039–1048. [Google Scholar] [CrossRef]
- Sharma, S.; Agarwal, G.P. Interactions of Proteins with Immobilized Metal Ions: A Comparative Analysis Using Various Isotherm Models. Anal. Biochem. 2001, 288, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-H.; Wu, T.-T.; Suen, S.-Y.; Lin, S.-C. Equilibrium adsorption of poly(His)-tagged proteins on immobilized metal affinity chromatographic adsorbents. Biochem. Eng. J. 2011, 54, 1–9. [Google Scholar] [CrossRef]
- Tercinier, L.; Ye, A.; Anema, S.; Singh, A.; Singh, H. Adsorption of milk proteins on to calcium phosphate particles. J. Colloid Interface Sci. 2013, 394, 458–466. [Google Scholar] [CrossRef]
- Latour, R.A. The langmuir isotherm: A commonly applied but misleading approach for the analysis of protein adsorption behavior. J. Biomed. Mater. Res. Part A 2014, 103, 949–958. [Google Scholar] [CrossRef]
- Lan, Q.; Bassi, A.S.; Zhu, J.-X.; Margaritis, A. A modified Langmuir model for the prediction of the effects of ionic strength on the equilibrium characteristics of protein adsorption onto ion exchange/affinity adsorbents. Chem. Eng. J. 2001, 81, 179–186. [Google Scholar] [CrossRef]
- Shekhawat, L.K.; Chandak, M.; Rathore, A.S. Mechanistic modeling of hydrophobic interaction chromatography for monoclonal antibody purification: Process optimization in the quality by design paradigm. J. Chem. Technol. Biotechnol. 2017, 92, 2527–2537. [Google Scholar] [CrossRef]
- Ghosal, P.S.; Gupta, A.K. Determination of thermodynamic parameters from Langmuir isotherm constant-revisited. J. Mol. Liq. 2016, 225, 137–146. [Google Scholar] [CrossRef]
- Epstein, J.; Michael, J.; Mandona, C.; Marques, F.; Dias-Cabral, A.; Thrash, M. Modeling Langmuir isotherms with the Gillespie stochastic algorithm. J. Chromatogr. A 2015, 1380, 81–87. [Google Scholar] [CrossRef]
- Vunnum, S.; Gallant, S.R.; Kim, Y.J.; Cramer, S.M. Immobilized metal affinity chromatography: Modeling of nonlinear multicomponent equilibrium. Chem. Eng. Sci. 1995, 50, 1785–1803. [Google Scholar] [CrossRef]
- Arnell, R.; Ferraz, N.; Fornstedt, T. Analytical Characterization of Chiral Drug−Protein Interactions: Comparison between the Optical Biosensor (Surface Plasmon Resonance) Assay and the HPLC Perturbation Method. Anal. Chem. 2006, 78, 1682–1689. [Google Scholar] [CrossRef]
- Vicente, T.; Mota, J.P.; Peixoto, C.; Alves, P.; Carrondo, M.J. Modeling protein binding and elution over a chromatographic surface probed by surface plasmon resonance. J. Chromatogr. A 2010, 1217, 2032–2041. [Google Scholar] [CrossRef] [PubMed]
- Vicente, T.; Mota, J.P.; Peixoto, C.; Alves, P.; Carrondo, M.J. Analysis of adsorption of a baculovirus bioreaction bulk on an ion-exchange surface by surface plasmon resonance. J. Biotechnol. 2010, 148, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Hahn, T.; Sommer, A.; Osberghaus, A.; Heuveline, V.; Hubbuch, J. Adjoint-based estimation and optimization for column liquid chromatography models. Comput. Chem. Eng. 2014, 64, 41–54. [Google Scholar] [CrossRef]
- Gritti, F.; Guiochon, G. Adsorption mechanism of acids and bases in reversed-phase liquid chromatography in weak buffered mobile phases designed for liquid chromatography/mass spectrometry. J. Chromatogr. A 2009, 1216, 1776–1788. [Google Scholar] [CrossRef] [PubMed]
- Jakobsson, N.; Degerman, M.; Stenborg, E.; Nilsson, B. Model based robustness analysis of an ion-exchange chromatography step. J. Chromatogr. A 2007, 1138, 109–119. [Google Scholar] [CrossRef]
- Close, E.J.; Salm, J.R.; Bracewell, D.G.; Sorensen, E. Modelling of industrial biopharmaceutical multicomponent chromatography. Chem. Eng. Res. Des. 2014, 92, 1304–1314. [Google Scholar] [CrossRef] [Green Version]
- Heuer, C.; Seidel-Morgenstern, A.; Hugo, P. Experimental investigation and modelling of closed-loop recycling in preparative chromatography. Chem. Eng. Sci. 1995, 50, 1115–1127. [Google Scholar] [CrossRef]
- Guélat, B.; Ströhlein, G.; Lattuada, M.; Delegrange, L.; Valax, P.; Morbidelli, M. Simulation model for overloaded monoclonal antibody variants separations in ion-exchange chromatography. J. Chromatogr. A 2012, 1253, 32–43. [Google Scholar] [CrossRef]
- Glueckauf, E. Theory of chromatography. VII. The general theory of two solutes following non-linear isotherms. Discuss. Faraday Soc. 1949, 7, 12–25. [Google Scholar] [CrossRef]
- Rhee, H.-K.; Tondeur, D.; Rodrigues, A.E. Equilibrium Theory of Multicomponent Chromatography in Percolation Processes: Theory and Application; Springer: Berlin/Heidelberg, Germany, 1985; pp. 285–328. [Google Scholar]
- Rhee, H.K.; Amundson, N.R. On the Theory of Multicomponent Chromatography. Philosophical transactions of the Royal Society of London. Ser. A Math. Phys. Sci. 1970, 267, 419–455. [Google Scholar]
- Carta, G.; Jungbauer, A. Protein Chromatography: Process Development and Scale-Up; Wiley-VCH: Weinheim, Germany, 2010. [Google Scholar]
- Ng, C.K.; Osuna-Sanchez, H.; Valéry, E.; Sørensen, E.; Bracewell, D.G. Design of high productivity antibody capture by protein A chromatography using an integrated experimental and modeling approach. J. Chromatogr. B 2012, 899, 116–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziomek, G.; Antos, D.; Tobiska, L.; Seidel-Morgenstern, A. Comparison of possible arrangements of five identical columns in preparative chromatography. J. Chromatogr. A 2006, 1116, 179–188. [Google Scholar] [CrossRef] [PubMed]
Protein Source | Enzymes Used for Proteolysis | Metal-Chelating Activity | Peptide Sequence | Reference |
---|---|---|---|---|
Sesame | Papain, Alcalase, Trypsin | Zn2+ and Fe2+ | SM | [15] |
NCS | ||||
Alaska pollock skin | Trypsin, Flavourzyme | Fe2+ | SCH | [57] |
Soybean | Protease M | Ca2+ | DEGEQPFPFP | [45] |
Tilapia scales | Pepsin, Flavourzyme | Ca2+ | NGNNGEAGKIG | [52] |
Antarctic krill | Trypsin | Ca2+ | VLGYIQIR | [58] |
Oyster | Pepsin | Zn2+ | HLRQEEKEEVTV GSLK | [36] |
Rapeseed | Alcalase | Zn2+ | AR | [56] |
NSM | ||||
EPSH | ||||
Defatted walnut flake | Neutral protease | Fe3+ | LAGNPDDEFRPQ | [59] |
VEDELVAVV | ||||
Pacific cod skin gelatin | Trypsin, Alcalase, Flavourzyme | Fe2+ | GPAGPHGPPGKDGR | [53] |
AGPHGPPGKDGR | ||||
Scad (Decapterus maruadsi) by-products | Alcalase | Fe3+ | QKGTYDDYVEGL | [54] |
Casein | Trypsin | EDVPSER | [39] | |
Fe2+ | HKEMPFPK | |||
NMAINPSK | ||||
AVPYPQR | ||||
Peony seed | Alcalase | Fe2+ | SMRKPPG | [60] |
Hard | Borderline | Soft | |
---|---|---|---|
Properties | High charge density, hardly polarizable, prefer ionic interaction | Intermediate | Low charge density, polarizable, prefer covalent interactions |
Acids | H+, Li+, Na+, K+, Be2+, Mg2+, Ca2+, Sr2+, Sn2+, Cr3+, Co3+, Fe3+, As3+, Ir3+, Al3+, Sc3+, Ga3+, In3+, La3+, Si4+, Ti4+, Zr4+, Th4+, Pu4+ | Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Pb2+, Mn2+ | Cu+, Ag+, Au+, Ti+, Hg+, Cs+, Pd2+, Cd2+, Pt2+, Hg2+ |
Bases | Carboxylate group (aspartic and glutamic acid), hydroxyl group (serine, threonine, tyrosine), phosphorylated amino acids | Aromatic nitrogen (histidine, tryptophan), amides (asparagine, glutamine), aliphatic nitrogen | Cyanides, sulphur groups (cysteine, methionine) |
IMAC | SPR | |
---|---|---|
Constituents | Same metal ion immobilized (e.g., Ni2+) | |
Same complexing agent (e.g., NTA) | ||
Matrix to support the complexing agent (e.g., agarose) | Matrix present too (e.g., carboxymethylated dextrane) | |
Experimental steps | Sample loading using a phosphate buffer at pH 7.4 | Same sample loading added with Tween 20 for microfluidic |
Elution by competition (imidazole; isocratic or gradient mode) | Elution by competition (imidazole, isocratic mode only) | |
EDTA Striping and metal ion regeneration (e.g., NiSO4) | ||
Flow rate: 1 mL/min for 1 mL bed volume | Flow rate: (20 μL/min) | |
Main results | Sorption isotherm used to illustrate the interaction between the metal ion and the biomolecules | |
Time of retention (tR) of peptide | Dissociation constant (KD) | |
IMC: Imidazole concentration enabling elution | Rmax | |
Advantages and disadvantages | Use of high volumes of buffers (~mL) | Use of small volumes for buffers (~μL) |
Peptides separation | Peptide screening |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irankunda, R.; Camaño Echavarría, J.A.; Paris, C.; Stefan, L.; Desobry, S.; Selmeczi, K.; Muhr, L.; Canabady-Rochelle, L. Metal-Chelating Peptides Separation Using Immobilized Metal Ion Affinity Chromatography: Experimental Methodology and Simulation. Separations 2022, 9, 370. https://doi.org/10.3390/separations9110370
Irankunda R, Camaño Echavarría JA, Paris C, Stefan L, Desobry S, Selmeczi K, Muhr L, Canabady-Rochelle L. Metal-Chelating Peptides Separation Using Immobilized Metal Ion Affinity Chromatography: Experimental Methodology and Simulation. Separations. 2022; 9(11):370. https://doi.org/10.3390/separations9110370
Chicago/Turabian StyleIrankunda, Rachel, Jairo Andrés Camaño Echavarría, Cédric Paris, Loïc Stefan, Stéphane Desobry, Katalin Selmeczi, Laurence Muhr, and Laetitia Canabady-Rochelle. 2022. "Metal-Chelating Peptides Separation Using Immobilized Metal Ion Affinity Chromatography: Experimental Methodology and Simulation" Separations 9, no. 11: 370. https://doi.org/10.3390/separations9110370
APA StyleIrankunda, R., Camaño Echavarría, J. A., Paris, C., Stefan, L., Desobry, S., Selmeczi, K., Muhr, L., & Canabady-Rochelle, L. (2022). Metal-Chelating Peptides Separation Using Immobilized Metal Ion Affinity Chromatography: Experimental Methodology and Simulation. Separations, 9(11), 370. https://doi.org/10.3390/separations9110370