Preparation and Application of Graphene–Based Materials for Heavy Metal Removal in Tobacco Industry: A Review
Abstract
:1. Introduction
2. Physicochemical Properties and Fabrications of Graphene
2.1. Physicochemical Property
2.2. Fabrications of Graphene
2.2.1. Mechanical Exfoliation Method
2.2.2. Chemical Redox Method
2.2.3. Chemical Vapor Deposition Method
2.2.4. Epitaxial Growth Method
2.2.5. Electrochemical Method
2.2.6. Organic Synthesis Method
3. Graphene–Based Materials for Heavy Metal Removal
3.1. Influencing Factors on Heavy Metal Removal
3.1.1. Solution pH
3.1.2. Adsorbent Dose
3.1.3. Heavy Metal Concentrations
3.1.4. Treatment Time and Kinetics
3.1.5. Temperature and Thermodynamics
3.2. Heavy Metal Removal Performance by Graphene–Based Materials
4. Modified Graphene Materials for Heavy Metal Removal in the Tobacco Industry
4.1. Modification of Graphene Materials
4.2. Modified Graphene Materials for Heavy Metal Removal
4.3. Modified Graphene Materials for Heavy Metal Removal in the Tobacco Industry
5. Conclusions, Challenges, and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Cr | Chromium |
Cd | cadmium |
As | arsenic |
Hg | mercury |
Pb | lead |
Pt | platinum |
GO | graphene oxide |
CVD | chemical vapor deposition |
HOPG | highly oriented pyrolytic graphite |
RGO | reduced GO |
CRG | chemically reduced graphene |
ARG | annealing reduced graphene |
GO–DXR | GO–doxorubicin hydrochloride nanohybrid |
MCGO | magnetic chitosan/graphene oxide |
APhen | 5–amino–1,10–phenanthroline |
DCC | N,N′–dicyclohexylcarbodiimide |
MGO | magnetic graphene oxide |
EDTA | ethylenediaminetetraacetic acid |
ENDS | Electronic Nicotine Delivery Systems |
LOD | limit of detection |
References
- Ma, J.; Qin, G.; Zhang, Y.; Sun, J.; Wang, S.; Jiang, L. Heavy metal removal from aqueous solutions by calcium silicate powder from waste coal fly-ash. J. Clean. Prod. 2018, 182, 776–782. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, Y.; Zheng, J.; Shang, L.; Shi, Y.; Wu, Q.; Liu, X.; Wang, Y.; Shi, L.; Shao, Q. Synthesis and characterization of ZnNiCr-layered double hydroxides with high adsorption activities for Cr(VI). Adv. Compos. Hybrid Mater. 2021, 4, 819–829. [Google Scholar] [CrossRef]
- Wang, B.; Wu, T.; Angaiah, S.; Murugadoss, V.; Ryu, J.E.; Wujcik, E.K.; Lu, N.; Young, D.P.; Gao, Q.; Guo, Z. Development of nanocomposite adsorbents for heavy metal removal from wastewater. ES Mater. Manuf. 2018, 2, 35–44. [Google Scholar] [CrossRef]
- Deng, Z.; Sun, S.; Li, H.; Pan, D.; Patil, R.R.; Guo, Z.; Seok, I. Modification of coconut shell-based activated carbon and purification of wastewater. Adv. Compos. Hybrid Mater. 2021, 4, 65–73. [Google Scholar] [CrossRef]
- Ouni, L.; Ramazani, A.; Fardood, S.T. An overview of carbon nanotubes role in heavy metals removal from wastewater. Front. Chem. Sci. Eng. 2019, 13, 274–295. [Google Scholar] [CrossRef]
- Yin, C.; Wang, C.; Hu, Q. Selective removal of As(V) from wastewater with high efficiency by glycine-modified Fe/Zn-layered double hydroxides. Adv. Compos. Hybrid Mater. 2021, 4, 360–370. [Google Scholar] [CrossRef]
- Si, Y.; Li, J.; Cui, B.; Tang, D.; Yang, L.; Murugadoss, V.; Maganti, S.; Huang, M.; Guo, Z. Janus phenol-formaldehyde resin and periodic mesoporous organic silica nanoadsorbent for the removal of heavy metal ions and organic dyes from polluted water. Adv. Compos. Hybrid Mater. 2022, 5, 1180–1195. [Google Scholar] [CrossRef]
- Chai, J.; Hu, Q.; Qiu, B. Conductive polyaniline improves Cr(VI) bio-reduction by anaerobic granular sludge. Adv. Compos. Hybrid Mater. 2021, 4, 1137–1145. [Google Scholar] [CrossRef]
- Bashir, A.; Malik, L.A.; Ahad, S.; Manzoor, T.; Bhat, M.A.; Dar, G.N.; Pandith, A.H. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ. Chem. Lett. 2019, 17, 729–754. [Google Scholar] [CrossRef]
- Khulbe, K.C.; Matsuura, T. Removal of heavy metals and pollutants by membrane adsorption techniques. Appl. Water Sci. 2018, 8, 19. [Google Scholar] [CrossRef]
- Bashir, M.S.; Ramzan, N.; Najam, T.; Abbas, G.; Gu, X.; Arif, M.; Qasim, M.; Bashir, H.; Shah, S.S.A.; Sillanpää, M. Metallic nanoparticles for catalytic reduction of toxic hexavalent chromium from aqueous medium: A state-of-the-art review. Sci. Total Environ. 2022, 829, 154475. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.S.; Gao, W.Q.; Chang, G.Z.; Luo, S.; Jiao, W.Z.; Liu, Y.Z. Removal of heavy metal lead(II) using nanoscale zero-valent iron with different preservation methods. Adv. Powder Technol. 2019, 30, 581–589. [Google Scholar] [CrossRef]
- Nazir, M.A.; Najam, T.; Shahzad, K.; Wattoo, M.A.; Hussain, T.; Tufail MKShah, S.S.A.; Rehman, A.U. Heterointerface engineering of water stable ZIF-8@ZIF-67: Adsorption of rhodamine B from water. Surf. Interfaces 2022, 34, 102324. [Google Scholar] [CrossRef]
- Nazir, M.A.; Najam, T.; Jabeen, S.; Wattoo, M.A.; Bashir, M.S.; Shah, S.S.A.; Rehman, A.U. Facile synthesis of Tri-metallic layered double hydroxides (NiZnAl-LDHs): Adsorption of Rhodamine-B and methyl orange from water. Inorg. Chem. Commun. 2022, 145, 110008. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, H.; Ma, C.; Gu, H.; Lou, H.; Lyu, S.; Liang, C.; Kong, J.; Gu, J. A superfast hexavalent chromium scavenger: Magnetic nanocarbon bridged nanomagnetite network with excellent recyclability. J. Hazard. Mater. 2018, 353, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Anastopoulos, I.; Robalds, A.; Tran, H.N.; Mitrogiannis, D.; Giannakoudakis, D.A.; Hosseini-Bandegharaei, A.; Dotto, G.L. Removal of heavy metals by leaves-derived biosorbents. Environ. Chem. Lett. 2019, 17, 755–766. [Google Scholar] [CrossRef]
- Xie, X.; Gao, H.; Luo, X.; Zhang, Y.; Qin, Z.; Ji, H. Polyethyleneimine-modified magnetic starch microspheres for Cd(II) adsorption in aqueous solutions. Adv. Compos. Hybrid Mater. 2022, 5, 2772–2786. [Google Scholar] [CrossRef]
- Yu, G.; Lu, Y.; Guo, J.; Patel, M.; Bafana, A.; Wang, X.; Qiu, B.; Jeffryes, C.; Wei, S.; Guo, Z.; et al. Carbon nanotubes, graphene, and their derivatives for heavy metal removal. Adv. Compos. Hybrid Mater. 2018, 1, 56–78. [Google Scholar] [CrossRef]
- Yuan, X.; An, N.; Zhu, Z.; Sun, H.; Zheng, J.; Jia, M.; Lu, C.; Zhang, W.; Liu, N. Hierarchically porous nitrogen-doped carbon materials as efficient adsorbents for removal of heavy metal ions. Process Saf. Environ. Prot. 2018, 119, 320–329. [Google Scholar] [CrossRef]
- Huang, Y.; Zeng, X.; Guo, L.; Lan, J.; Zhang, L.; Cao, D. Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks. Sep. Purif. Technol. 2018, 194, 462–469. [Google Scholar] [CrossRef]
- Dong, Z.; Zhang, F.; Wang, D.; Liu, X.; Jin, J. Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal. J. Solid State Chem. 2015, 224, 88–93. [Google Scholar] [CrossRef]
- Vilela, D.; Parmar, J.; Zeng, Y.; Zhao, Y.; Sánchez, S. Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano Lett. 2016, 16, 2860–2866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, J.Y.; Mubarak, N.M.; Abdullah, E.C.; Nizamuddin, S.; Khalid, M.; Inamuddin. Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals—A review. J. Ind. Eng. Chem. 2018, 66, 29–44. [Google Scholar] [CrossRef]
- Cai, J.; Tian, J.; Gu, H.; Guo, Z. Amino carbon nanotube modified reduced graphene oxide aerogel for oil/water separation. ES Mater. Manuf. 2019, 6, 68–74. [Google Scholar] [CrossRef]
- Deng, H.; Yin, J.; Ma, J.; Zhou, J.; Zhang, L.; Gao, L.; Jiao, T. Exploring the enhanced catalytic performance on nitro dyes via a novel template of flake-network Ni-Ti LDH/GO in-situ deposited with Ag3PO4 NPs. Appl. Surf. Sci. 2021, 543, 148821. [Google Scholar] [CrossRef]
- Xie, W.; Yao, F.; Gu, H.; Du, A.; Lei, Q.; Naik, N.; Guo, Z. Magnetoresistive and piezoresistive polyaniline nanoarrays in-situ polymerized surrounding magnetic graphene aerogel. Adv. Compos. Hybrid Mater. 2022, 5, 1003–1016. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Menazea, A.A.; Ezzat, H.A.; Omara, W.; Basyouni, O.H.; Ibrahim, S.A.; Mohamed, A.A.; Tawfik, W.; Ibrahim, M.A. Chitosan/graphene oxide composite as an effective removal of Ni, Cu, As, Cd and Pb from wastewater. Comput. Theor. Chem. 2020, 1189, 112980. [Google Scholar] [CrossRef]
- Liu, H.; Mao, Y. Graphene oxide-based nanomaterials for uranium adsorptive uptake. ES Mater. Manuf. 2021, 13, 3–22. [Google Scholar] [CrossRef]
- Sherlala, A.I.A.; Raman, A.A.A.; Bello, M.M.; Asghar, A. A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere 2018, 193, 1004–1017. [Google Scholar] [CrossRef]
- Peng, W.J.; Li, H.Q.; Liu, Y.Y.; Song, S.X. A review on heavy metal ions adsorption from water by graphene oxide and its composites. J. Mol. Liq. 2017, 230, 496–504. [Google Scholar] [CrossRef]
- Abu-Nada, A.; McKay, G.; Abdala, A. Recent advances in applications of hybrid graphene materials for metals removal from wastewater. Nanomaterials 2020, 10, 595. [Google Scholar] [CrossRef] [Green Version]
- De Beni, E.; Giurlani, W.; Fabbri, L.; Emanuele, R.; Santini, S.; Sarti, C.; Martellini, T.; Piciollo, E.; Cincinelli, A.; Innocenti, M. Graphene-based nanomaterials in the electroplating industry: A suitable choice for heavy metal removal from wastewater. Chemospehre 2022, 292, 133448. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, J. The application of graphene-based materials for the removal of heavy metals and radionuclides from water and wastewater. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1042–1105. [Google Scholar] [CrossRef]
- Kong, Q.; Shi, X.; Ma, W.; Zhang, F.; Yu, T.; Zhao, F.; Zhao, D.; Wei, C. Strategies to improve the adsorption properties of graphene-based adsorbent towards heavy metal ions and their compound pollutants: A review. J. Hazard. Mater. 2021, 415, 125690. [Google Scholar] [CrossRef]
- Xu, J.; Cao, Z.; Zhang, Y.; Yuan, Z.; Lou, Z.; Xu, X.; Wang, X. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere 2018, 195, 351–364. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, Y.; Ning, Z.; Xu, Y. A catalytic microwave process for superfast preparation of high-quality reduced graphene oxide. Angew. Chem. Int. Ed. 2017, 56, 15677–15682. [Google Scholar] [CrossRef] [PubMed]
- Fallah, S.; Mamaghani, H.R.; Yegani, R.; Hajinajaf, N.; Pourabbas, B. Use of graphene substrates for wastewater treatment of textile industries. Adv. Compos. Hybrid Mater. 2020, 3, 187–193. [Google Scholar] [CrossRef]
- He, H.; Klinowski, J.; Forster, M.; Lerf, A. A new structural model for graphite oxide. Chem. Phys. Lett. 1998, 287, 53–56. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, W.; Liu, H.; Gu, H. Hyperelastic magnetic reduced graphene oxide three-dimensional framework with superb oil and organic solvent adsorption capability. Adv. Compos. Hybrid Mater. 2020, 3, 473–484. [Google Scholar] [CrossRef]
- Osman, A.; Elhakeem, A.; Kaytbay, S.; Ahmed, A. A comprehensive review on the thermal, electrical, and mechanical properties of graphene-based multi-functional epoxy composites. Adv. Compos. Hybrid Mater. 2022, 5, 547–605. [Google Scholar] [CrossRef]
- Zhu, Q.; Huang, Y.; Li, Y.; Zhou, M.; Xu, S.; Liu, X.; Liu, C.; Yuan, B.; Guo, Z. Aluminum dihydric tripolyphosphate/polypyrrole-functionalized graphene oxide waterborne epoxy composite coatings for impermeability and corrosion protection performance of metals. Adv. Compos. Hybrid Mater. 2021, 4, 780–792. [Google Scholar] [CrossRef]
- Şenel, M.C.; Gürbüz, M. Synergistic effect of graphene/boron nitride binary nanoparticles on aluminum hybrid composite properties. Adv. Compos. Hybrid Mater. 2021, 4, 1248–1260. [Google Scholar] [CrossRef]
- Al-Gaashani, R.; Najjar, A.; Zakaria, Y.; Mansour, S.; Atieh, M.A. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int. 2019, 45, 14439–14448. [Google Scholar] [CrossRef]
- Backes, C.; Abdelkader, A.M.; Alonso, C.; Andrieux-Ledier, A.; Arenal, R.; Azpeitia, J.; Balakrishnan, N.; Banszerus, L.; Barjon, J.; Bartali, R.; et al. Production and processing of graphene and related materials. 2D Mater. 2020, 7, 022001. [Google Scholar] [CrossRef]
- Sumdani, M.G.; Islam, M.R.; Yahaya, A.N.A.; Safie, S.I. Recent advances of the graphite exfoliation processes and structural modification of graphene: A review. J. Nanopart. Res. 2021, 23, 253. [Google Scholar] [CrossRef]
- Bohm, S.; Ingle, A.; Bohm, H.L.M.; Fenech-Salerno, B.; Wu, S.; Torrisi, F. Graphene production by cracking. Philos. Trans. A Math. Phys. Eng. Sci. 2021, 379, 20200293. [Google Scholar] [CrossRef]
- Sinclair, R.C.; Suter, J.L.; Coveney, P.V. Micromechanical exfoliation of graphene on the atomistic scale. Phys. Chem. Chem. Phys. 2019, 21, 5716–5722. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.; Qi, X.-D.; Zhu, Y.-L.; Zhou, H.-J.; Chen, F.; Fu, Q. A facile way to large-scale production of few-layered graphene via planetary ball mill. Chin. J. Polym. Sci. 2016, 34, 1270–1280. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Y.; Zhang, Y.; Wang, L.; Yang, G.; Shen, F.; Deng, S.; Zhang, X.; He, Y.; Luo, L. A simplified chemical reduction method for preparation of graphene: Dispersity, reducibility and mechanism. Ceram. Int. 2016, 42, 19042–19046. [Google Scholar] [CrossRef]
- Ren, S.; Rong, P.; Yu, Q. Preparations, properties and applications of graphene in functional devices: A concise review. Ceram. Int. 2018, 44, 11940–11955. [Google Scholar] [CrossRef]
- Wan, Y.; Chen, L.; Tang, W.C.; Li, J.L. Effect of graphene on tribological properties of Ni based composite coatings prepared by oxidation reduction method. J. Mater. Res. Technol. 2020, 9, 3796–3804. [Google Scholar] [CrossRef]
- Li, L.; He, M.; Feng, Y.; Wei, H.; You, X.; Yu, H.; Wang, Q.; Wang, J. Adsorption of xanthate from aqueous solution by multilayer graphene oxide: An experimental and molecular dynamics simulation study. Adv. Compos. Hybrid Mater. 2021, 4, 725–732. [Google Scholar] [CrossRef]
- Talyzin, A.V.; Mercier, G.; Klechikov, A.; Hedenström, M.; Johnels, D.; Wei, D.; Cotton, D.; Opitz, A.; Moons, E. Brodie vs. Hummers graphite oxides for preparation of multi-layered materials. Carbon 2017, 115, 430–440. [Google Scholar] [CrossRef] [Green Version]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef]
- Ullah, Z.; Riaz, S.; Li, Q.; Atiq, S.; Saleem, M.; Azhar, M.; Naseem, S.; Liu, L.W. A comparative study of graphene growth by APCVD, LPCVD and PECVD. Mater. Res. Express 2018, 5, 035606. [Google Scholar] [CrossRef]
- Jones, J.; Pilli, A.; Lee, V.; Beatty, J.; Beauclair, B.; Chugh, N.; Kelber, J. Atomic layer deposition of h-BN(0001) multilayers on Ni(111) and chemical vapor deposition of graphene on h-BN(0001)/Ni(111). J. Vac. Sci. Technol. 2019, 37, 060903. [Google Scholar] [CrossRef]
- Nam, J.; Kim, D.-C.; Yun, H.; Shin, D.H.; Nam, S.; Lee, W.K.; Hwang, J.Y.; Lee, S.W.; Weman, H.; Kim, K.S. Chemical vapor deposition of graphene on platinum: Growth and substrate interaction. Carbon 2017, 111, 733–740. [Google Scholar] [CrossRef] [Green Version]
- Dato, A.; Radmilovic, V.; Lee, Z.; Phillips, J.; Frenklach, M. Substrate-free gas-phase synthesis of graphene sheets. Nano Lett. 2008, 8, 2012–2016. [Google Scholar] [CrossRef]
- Vlassiouk, I.; Fulvio, P.; Meyer, H.; Lavrik, N.; Dai, S.; Datskos, P.; Smirnov, S. Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon 2013, 54, 58–67. [Google Scholar] [CrossRef]
- Wu, R.; Ding, Y.; Yu, K.M.; Zhou, K.; Zhu, Z.; Ou, X.; Zhang, Q.; Zhuang, M.; Li, W.-D.; Xu, Z.; et al. Edge-epitaxial growth of graphene on cu with a hydrogen-free approach. Chem. Mater. 2019, 31, 2555–2562. [Google Scholar] [CrossRef]
- Imaeda, H.; Koyama, T.; Kishida, H.; Kawahara, K.; Ago, H.; Sakakibara, R.; Norimatsu, W.; Terasawa, T.; Bao, J.F.; Kusunoki, M. Acceleration of photocarrier relaxation in graphene achieved by epitaxial growth: Ultrafast photoluminescence decay of monolayer graphene on SiC. J. Phys. Chem. C 2018, 122, 19273–19279. [Google Scholar] [CrossRef]
- Berger, C.; Song, Z.M.; Li, X.B.; Wu, X.S.; Brown, N.; Naud, C.; Mayou, D.; Li, T.B.; Hass, J.; Marchenkov, A.N.; et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.W.; Jang, B.; Kim, H.; Lee, J.; Park, J.Y.; Kang, S.O.; Choa, Y.H. Highly water-dispersible graphene nanosheets from electrochemical exfoliation of graphite. Front. Chem. 2021, 9, 699231. [Google Scholar] [CrossRef]
- Liu, F.; Wang, C.J.; Sui, X.; Riaz, M.A.; Xu, M.Y.; Wei, L.; Chen, Y. Synthesis of graphene materials by electrochemical exfoliation: Recent progress and future potential. Carbon Energy 2019, 1, 173–199. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Lowe, S.E.; Simon, G.P.; Zhong, Y.L. Electrochemical exfoliation of graphite and production of functional graphene. Curr. Opin. Colloid Interface Sci. 2015, 20, 329–338. [Google Scholar] [CrossRef]
- Tang, H.; He, P.; Huang, T.; Cao, Z.; Zhang, P.; Wang, G.; Wang, X.; Ding, G.; Xie, X. Electrochemical method for large size and few-layered water-dispersible graphene. Carbon 2019, 143, 559–563. [Google Scholar] [CrossRef]
- Tran-Van, A.F.; Wegner, H.A. Strategies in organic synthesis for condensed arenes, coronene, and graphene. In Polyarenes I; Siegel, J.S., Wu, Y.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 121–157. [Google Scholar] [CrossRef]
- Dössel, L.; Gherghel, L.; Feng, X.; Müllen, K. Graphene nanoribbons by chemists: Nanometer-sized, soluble, and defect-free. Angew. Chem. Int. Ed. 2011, 50, 2540–2543. [Google Scholar] [CrossRef]
- Gao, F.; Gu, H.; Wang, H.; Wang, X.; Xiang, B.; Guo, Z. Magnetic amine-functionalized polyacrylic acid-nanomagnetite for hexavalent chromium removal from polluted water. RSC Adv. 2015, 5, 60208–60219. [Google Scholar] [CrossRef]
- Wu, Q.; Gao, L.; Huang, M.; Mersal, G.A.M.; Ibrahim, M.M.; El-Bahy, Z.M.; Shi, X.; Jiang, Q. Aminated lignin by ultrasonic method with enhanced arsenic (V) adsorption from polluted water. Adv. Compos. Hybrid Mater. 2022, 5, 1044–1053. [Google Scholar] [CrossRef]
- Bai, S.; Wang, L.; Ma, F.; Zhu, S.; Xiao, T.; Yu, T.; Wang, Y. Self-assembly biochar colloids mycelial pellet for heavy metal removal from aqueous solution. Chemosphere 2020, 242, 125182. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Li, L.; Qu, Z.; Xu, H.; Xu, J.; Yan, N. A novel method for the sequential removal and separation of multiple heavy metals from wastewater. J. Hazard. Mater. 2018, 342, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.; Li, H.; Chen, Y.; Ren, F.; Tian, F.; Gu, Y.; Zhang, H.; Huang, X. Highly efficient and selectivity removal of heavy metal ions using single-layer NaxKyMnO2 nanosheet: A combination of experimental and theoretical study. Chemosphere 2021, 275, 130068. [Google Scholar] [CrossRef]
- Zaimee, M.Z.A.; Sarjadi, M.S.; Rahman, M.L. Heavy metals removal from water by efficient adsorbents. Water 2021, 13, 2659. [Google Scholar] [CrossRef]
- Chen, X.; Hossain, M.F.; Duan, C.; Lu, J.; Tsang, Y.F.; Islam, M.S.; Zhou, Y. Isotherm models for adsorption of heavy metals from water—A review. Chemosphere 2022, 307, 135545. [Google Scholar] [CrossRef]
- Rout, D.R.; Jena, H.M. Removal of phenol from aqueous solution using reduced graphene oxide as adsorbent: Isotherm, kinetic, and thermodynamic studies. Environ. Sci. Pollut. Res. 2022, 29, 32105–32119. [Google Scholar] [CrossRef]
- Wang, J.; Chen, B. Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials. Chem. Eng. J. 2015, 281, 379–388. [Google Scholar] [CrossRef]
- Xue, X.; Xu, J.; Baig, S.A.; Xu, X. Synthesis of graphene oxide nanosheets for the removal of Cd(II) ions from acidic aqueous solutions. J. Taiwan Inst. Chem. Eng. 2016, 59, 365–372. [Google Scholar] [CrossRef]
- Kuila, T.; Bose, S.; Mishra, A.K.; Khanra, P.; Kim, N.H.; Lee, J.H. Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 2012, 57, 1061–1105. [Google Scholar] [CrossRef]
- Stankovich, S.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006, 44, 3342–3347. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J. Phys. Chem. C 2008, 112, 17554–17558. [Google Scholar] [CrossRef]
- Adel, M.; Ahmed, M.A.; Mohamed, A.A. Synthesis and characterization of magnetically separable and recyclable crumbled MgFe2O4/reduced graphene oxide nanoparticles for removal of methylene blue dye from aqueous solutions. J. Phys. Chem. Solids 2021, 149, 109760. [Google Scholar] [CrossRef]
- Gabris, M.A.; Jume, B.H.; Rezaali, M.; Shahabuddin, S.; Nodeh, H.R.; Saidur, R. Novel magnetic graphene oxide functionalized cyanopropyl nanocomposite as an adsorbent for the removal of Pb(II) ions from aqueous media: Equilibrium and kinetic studies. Environ. Sci. Pollut. Res. 2018, 25, 27122–27132. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Wang, W.; Xie, W.; Wei, X.; Liu, H.; Wei, S.; Gu, H.; Guo, Z. Carbon microfibers with tailored surface functionalities supporting iron/nickel bisalloy for highly efficient hexavalent chromium recovery. Carbon 2020, 168, 640–649. [Google Scholar] [CrossRef]
- Fan, L.; Luo, C.; Sun, M.; Li, X.; Qiu, H. Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids Surf. B 2013, 103, 523–529. [Google Scholar] [CrossRef]
- Kumar, A.S.K.; Jiang, S.-J. Chitosan-functionalized graphene oxide: A novel adsorbent an efficient adsorption of arsenic from aqueous solution. J. Environ. Chem. Eng. 2016, 4, 1698–1713. [Google Scholar] [CrossRef]
- Abaszadeh, M.; Hosseinzadeh, R.; Tajbakhsh, M.; Ghasemi, S. The synthesis of functionalized magnetic graphene oxide with 5-amino-1,10-phenanthroline and investigation of its dual application in C-N coupling reactions and adsorption of heavy metal ions. J. Mol. Struct. 2022, 1261, 132832. [Google Scholar] [CrossRef]
- Chi, Z.; Zhu, Y.; Liu, W.; Huang, H.; Li, H. Selective removal of As(III) using magnetic graphene oxide ion-imprinted polymer in porous media: Potential effect of external magnetic field. J. Environ. Chem. Eng. 2021, 9, 105671. [Google Scholar] [CrossRef]
- Xing, C.; Xia, A.; Yu, L.; Dong, L.; Hao, Y.; Qi, X. Enhanced removal of Pb(II) from aqueous solution using edta-modified magnetic graphene oxide. Clean-Soil Air Water 2021, 49, 2000272. [Google Scholar] [CrossRef]
- Kostelli, G.; Kourea, K.; Ikonomidis, I. Effects of combustible tobacco smoking and novel tobacco products on oxidative stress: Different sides of the same coin? Curr. Opin Toxicol. 2020, 20–21, 41–47. [Google Scholar] [CrossRef]
- Nirmala, N.; Shriniti, V.; Aasresha, K.; Arun, J.; Gopinath, K.; Dawn, S.; Sheeladevi, A.; Priyadharsini, P.; Birindhadevi, K.; Chi, N.T.L.; et al. Removal of toxic metals from wastewater environment by graphene-based composites: A review on isotherm and kinetic models, recent trends, challenges and future directions. Sci. Total Environ. 2022, 840, 156564. [Google Scholar] [CrossRef] [PubMed]
- Moroz, I.; Scapolio, L.G.B.; Cesarino, I.; Leão, A.L.; Bonanomi, G. Toxicity of cigarette butts and possible recycling solutions-a literature review. Environ. Sci. Pollut. Res. 2021, 28, 10450–10473. [Google Scholar] [CrossRef] [PubMed]
- Lerner, C.A.; Sundar, I.K.; Watson, R.M.; Elder, A.; Jones, R.; Done, D.; Kurtzman, R.; Ossip, D.J.; Robinson, R.; McIntosh, S.; et al. Environmental health hazards of e-cigarettes and their components: Oxidants and copper in e-cigarette aerosols. Environ. Pollut. 2015, 198, 100–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palisoc, S.T.; Valeza, N.C.; Natividad, M.T. Fabrication of an effective gold nanoparticle/graphene/nafion modified glassy carbon electrode for high sensitive detection of trace Cd2+, Pb2+ and Cu2+ in tobacco and tobacco products. Int. J. Electrochem. Sci. 2017, 12, 3859–3872. [Google Scholar] [CrossRef]
- Guo, C.; Wang, C.; Sun, H.; Dai, D.; Gao, H.T. A simple electrochemical sensor based on rGO/MoS2/CS modified GCE for highly sensitive detection of Pb(II) in tobacco leaves. RSC Adv. 2021, 11, 29590–29597. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.L.; Zhuang, Y.T.; Song, X.Y.; Wang, J.-H. Lyophilized carbon nanotubes/graphene oxide modified cigarette filter for the effective removal of cadmium and chromium from mainstream smoke. Chem. Eng. J. 2015, 280, 58–65. [Google Scholar] [CrossRef]
Materials | Synthesis Method | Heavy Metal | Treatment Conditions | Maximum Adsorption Capacity (mg g−1) | Ref. |
---|---|---|---|---|---|
GO | Modified Hummer’s method | Cd(II) | Room temperature, pH = 5, 10 mg L−1 Cd(II), 24 h equilibration time | 35.7 | [79] |
GO | Hummer’s method | Cd(II) | T = 303.15 K, pH = 4.00, 0.50 g L−1 adsorbents, 0.02~5 g L−1 Cd(II), 12 h equilibration time | 44.64 | [80] |
Magnetic chitosan/GO | Modified Hummer’s method | Pb(II) | T = 30 ± 0.2 °C, pH = 5, 0.8 g L−1 adsorbents, 0.02~14 mg L−1 Cd(II), 12 h equilibration time | 76.94 | [87] |
Chitosan–functionalized GO | Improved Hummer’s method | As(V)/As(III) | T = 30 °C, pH = 5.5, 8 g L−1 adsorbents, 30~500 ppm As(V)/As(III) | 71.9/64.2, respectively | [88] |
MGO@APhen | Pb(II) | Room temperature, pH = 6.5, 0.5 g L−1 adsorbents, 10 ppm Pb(II) | The removal efficiency of 97.2% | [89] | |
MGO ion–imprinted polymer | Modified Hummer’s method | As(III) | T = 25 °C, pH = 5, 5 g L−1 adsorbents, 0.5~20 mg L−1 As(III), 24 h equilibration time | 49.42 | [90] |
MGO–EDTA | Hummer’s and Offeman’s methods | Pb(II) | T = 20 °C, pH = 1~10, 0.5 g L−1 adsorbents, 10~150 mg L−1 As(III), 3 h equilibration time | 211.3 | [91] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Zeng, J.; Wu, Y.; Wang, Q.; Wu, S.; Gu, H. Preparation and Application of Graphene–Based Materials for Heavy Metal Removal in Tobacco Industry: A Review. Separations 2022, 9, 401. https://doi.org/10.3390/separations9120401
Xu X, Zeng J, Wu Y, Wang Q, Wu S, Gu H. Preparation and Application of Graphene–Based Materials for Heavy Metal Removal in Tobacco Industry: A Review. Separations. 2022; 9(12):401. https://doi.org/10.3390/separations9120401
Chicago/Turabian StyleXu, Xiaojiang, Junling Zeng, Yue Wu, Qiaoying Wang, Shengchao Wu, and Hongbo Gu. 2022. "Preparation and Application of Graphene–Based Materials for Heavy Metal Removal in Tobacco Industry: A Review" Separations 9, no. 12: 401. https://doi.org/10.3390/separations9120401
APA StyleXu, X., Zeng, J., Wu, Y., Wang, Q., Wu, S., & Gu, H. (2022). Preparation and Application of Graphene–Based Materials for Heavy Metal Removal in Tobacco Industry: A Review. Separations, 9(12), 401. https://doi.org/10.3390/separations9120401