Application of Time of Flight Mass Spectrometry in the Identification of Dendrobium devonianum Paxt and Dendrobium officinale Kimura et Migo Grown in Longling Area of Yunnan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Chemicals and Reagents
2.3. Sample Preparation and Analysis
2.3.1. Sample Preparation Method
2.3.2. Instrumental Analysis Method
2.3.3. Data Processing and Marker Identification Methods
3. Results and Discussion
3.1. Optimum Selection of Extraction Solvents
3.2. Stability and Repeatability of Instrument
3.3. Identification of Dendrobium devonianum and Dendrobium officinale
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Plant List Dendrobium officinale Kimura & Migo. Available online: http://www.theplantlist.org/tpl/record/kew-58561 (accessed on 30 March 2022).
- Si, J.-P.; Zhang, Y.; Luo, Y.-B.; Liu, J.-J.; Liu, Z.-J. Herbal textual research on relationship between Chinese medicine “Shihu” (Dendrobium spp.) and “TiepiShihu” (D. catenatum). China J. Chin. Mater. Med. 2017, 42, 2001–2005. [Google Scholar]
- Zuo, S.-M.; Fu, J.-S.; Yu, H.-D.; Yun, Y.-H. Effect on Metabolites of Dendrobium officinale by Different Cultivation Substrates Based on Derivative GC-MS Method. Chin. J. Trop. Crop. 2022, 43, 634–643. [Google Scholar]
- Tang, H.; Zhao, T.; Sheng, Y.; Zheng, T.; Fu, L.; Zhang, Y. Dendrobium officinale Kimura et Migo: A review on its ethnopharmacology, phytochemistry, pharmacology, and industrialization. Evid.-Based Complement. Altern. Med. 2017, 2017, 7436259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.; Ji, H.; Fan, K.; Xu, H.; Huang, Y.; Zheng, Y.; Xu, Q.; Li, C.; Zhao, L.; Li, Y.; et al. Targeting Gut Microbiota and Host Metabolism with Dendrobium officinale Dietary Fiber to Prevent Obesity and Improve Glucose Homeostasis in Diet-Induced Obese Mice. Mol. Nutr. Food Res. 2022, 2100772. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.; Wang, P.; Ma, Z.; Peng, L.; Wang, Z.; Chen, Z. Ultrasonic treatment of Dendrobium officinale polysaccharide enhances antioxidant and anti-inflammatory activity in a mouse D-galactose-induced aging model. Food Sci. Nutr. 2022. [Google Scholar] [CrossRef]
- Xie, H.; Fang, J.; Farag, M.A.; Li, Z.; Sun, P.; Shao, P. Dendrobium officinale leaf polysaccharides regulation of immune response and gut microbiota composition in cyclophosphamide-treated mice. Food Chem. X 2022, 13, 100235. [Google Scholar] [CrossRef]
- Zhang, A.L.; Yu, M.; Xu, H.H.; Si, J.P. Constituents of Dendrobium devonianum and their antioxidant activity. China J. Chin. Mater. Med. 2013, 38, 844–847. [Google Scholar]
- Wang, D.; Fan, B.; Wang, Y.; Zhang, L.; Wang, F. Optimum extraction, characterization, and antioxidant activities of polysaccharides from flowers of Dendrobium devonianum. Int. J. Anal. Chem. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.-L.; Zhao, Z.-R.; Liu, H.; Jiao, D.; Wu, Y.-G. Research progress of Dendrobium devonianum Paxt. Chin. Tradit. Pat. Med. 2020, 42, 2990–2998. [Google Scholar]
- Deng, Y.; Li, M.; Chen, L.-X.; Chen, X.-Q.; Lu, J.-H.; Zhao, J.; Li, S.-P. Chemical characterization and immunomodulatory activity of acetylated polysaccharides from Dendrobium devonianum. Carbohydr. Polym. 2018, 180, 238–245. [Google Scholar] [CrossRef]
- Li, T.; He, X. Comparative study on the macroscopical identification characters of twenty-seven herbal medicines of Dendrobium. West China J. Pharm. Sci. 2016, 31, 54–57. [Google Scholar]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2020; Volume 1.
- Chu, C.; Yin, H.; Xia, L.; Cheng, D.; Yan, J.; Zhu, L. Discrimination of Dendrobium officinale and Its Common Adulterants by Combination of Normal Light and Fluorescence Microscopy. Molecules 2014, 19, 3718–3730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, C.; Luo, Y.; Yuan, Y.; Dong, X.; Zhao, Y.; Huang, L. Conventional octaplex PCR for the simultaneous identification of eight mainstream closely related Dendrobium species. Ind. Crops Prod. 2018, 112, 569–576. [Google Scholar] [CrossRef]
- Zhu, S.; Niu, Z.; Xue, Q.; Wang, H.; Xie, X.; Ding, X. Accurate authentication of Dendrobium officinale and its closely related species by comparative analysis of complete plastomes. Acta Pharm. Sin. B 2018, 8, 969–980. [Google Scholar] [CrossRef]
- Wang, Y.; Zuo, Z.-T.; Huang, H.-Y.; Wang, Y.-Z. Original plant traceability of Dendrobium species using multi-spectroscopy fusion and mathematical models. R. Soc. Open Sci. 2019, 6, 190399. [Google Scholar] [CrossRef] [Green Version]
- Lv, C.; He, Y.; Kang, C.; Zhou, L.; Wang, T.; Yang, J.; Guo, L. Tracing the Geographical Origins of Dendrobe (Dendrobium spp.) by Near-Infrared Spectroscopy Sensor Combined with Porphyrin and Chemometrics. J. Anal. Methods Chem. 2020, 2020, 8879957. [Google Scholar] [CrossRef]
- Xie, L.-L.-F.; Shi, M.-M.; Gong, X.-H.; Wang, D.; Wang, D.-J.; Han, B.-X.; Ou, Y.-Z. The Main Components and Methanol Extracts HPLC Fingerprint of Dendrobium officinale from Different Areas. Nat. Prod. Res. Dev. 2018, 30, 87–93. [Google Scholar]
- Yan, M.-Q.; Chen, S.-H.; Lv, G.-Y.; Zhou, G.-F.; Liu, X. HPLC specific chromatogram of Dendrobium officinale. China J. Chin. Mater. Med. 2013, 38, 516–519. [Google Scholar]
- Ye, Z.; Dai, J.-R.; Zhang, C.-G.; Lu, Y.; Wu, L.-L.; Gong, A.G.W.; Xu, H.; Tsim, K.W.K.; Wang, Z.-T. Chemical Differentiation of Dendrobium officinale and Dendrobium devonianum by Using HPLC Fingerprints, HPLC-ESI-MS, and HPTLC Analyses. Evid.-Based Complement. Altern. Med. 2017, 2017, 8647212. [Google Scholar] [CrossRef] [Green Version]
- Alseekh, S.; Aharoni, A.; Brotman, Y.; Contrepois, K.; D’Auria, J.; Ewald, J.; Ewald, J.C.; Fraser, P.D.; Giavalisco, P.; Hall, R.D.; et al. Mass spectrometry-based metabolomics: A guide for annotation, quantification and best reporting practices. Nat. Methods 2021, 18, 747–756. [Google Scholar] [CrossRef]
- Yang, J.; Han, X.; Wang, H.-Y.; Yang, J.; Kuang, Y.; Ji, K.-Y.; Yang, Y.; Pang, K.; Yang, S.-X.; Qin, J.-C.; et al. Comparison of metabolomics of Dendrobium officinale in different habitats by UPLC-Q-TOF-MS. Biochem. Syst. Ecol. 2020, 89, 104007. [Google Scholar] [CrossRef]
- Zuo, S.-M.; Yu, H.-D.; Zhang, W.; Zhong, Q.; Chen, W.; Chen, W.; Yun, Y.-H.; Chen, H. Comparative Metabolomic Analysis of Dendrobium officinale under Different Cultivation Substrates. Metabolites 2020, 10, 325. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Fan, J.; Liu, Q.; Luo, H.; Tang, Q.; Li, C.; Zhao, J.; Zhang, X. Phytochemical profiles of edible flowers of medicinal plants of Dendrobium officinale and Dendrobium devonianum. Food Sci. Nutr. 2021, 9, 6575–6586. [Google Scholar] [CrossRef] [PubMed]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2020; Volume 4.
- Yuan, Y.; Tang, X.; Jia, Z.; Li, C.; Ma, J.; Zhang, J. The Effects of Ecological Factors on the Main Medicinal Components of Dendrobium officinale under Different Cultivation Modes. Forests 2020, 11, 94. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Su, Q.; Bai, L.; Li, M.; Liu, J.; Liu, X.; Zhang, C.; Jiang, Z.; He, J.; Shi, J.; et al. Recent research progress on natural small molecule bibenzyls and its derivatives in Dendrobium species. Eur. J. Med. Chem. 2020, 204, 112530. [Google Scholar] [CrossRef]
- Wang, Y.-H. Traditional uses, chemical constituents, pharmacological activities, and toxicological effects of Dendrobium leaves: A review. J. Ethnopharmacol. 2021, 270, 113851. [Google Scholar] [CrossRef]
- Xu, J.; Han, Q.-B.; Li, S.-L.; Chen, X.-J.; Wang, X.-N.; Zhao, Z.-Z.; Chen, H.-B. Chemistry, bioactivity and quality control of Dendrobium, a commonly used tonic herb in traditional Chinese medicine. Phytochem. Rev. 2013, 12, 341–367. [Google Scholar] [CrossRef]
Peak | Retention Time/Min | Component Name | Formula | Found At Mass | Mass Error (ppm) | Adduct/Charge | p-Value | Fold Change |
---|---|---|---|---|---|---|---|---|
1 | 0.53 | Citric acid | C6H8O7 | 191.0199 | 0.8 | [M − H]− | 8.37 × 10−4 | 0.3676 |
2 | 0.57 | Shikimic acid | C7H10O5 | 173.0457 | 0.9 | [M − H]− | 3.73 × 10−4 | 0.3967 |
3 | 1.09 | Vanillic acid | C8H8O4 | 169.0495 | −0.3 | [M + H]+ | 1.38 × 10−8 | 18.185 |
4 | 1.23 | Ethyl gallate | C9H10O5 | 199.0602 | 0.7 | [M + H]+ | 2.48 × 10−8 | 7.5549 |
5 | 1.30 | Phenprobamate | C9H11NO2 | 164.0716 | −0.7 | [M − H]− | 8.43 × 10−3 | 0.3215 |
6 | 1.59 | 4′-Hydroxyacetophenone | C8H8O2 | 137.0602 | 3.6 | [M + H]+ | 1.08 × 10−7 | 4.2651 |
7 | 1.78 | 4-Hydroxybenzoic acid | C7H6O3 | 139.0388 | −1.2 | [M + H]+ | 1.35 × 10−10 | 5.7547 |
8 | 2.16 | 3-O-Caffeoylquinic acid methyl ester | C17H20O9 | 369.1167 | −3.6 | [M + H]+ | 1.16 × 10−8 | 15.996 |
9 | 2.98 | Protocatechuic aldehyde | C7H6O3 | 137.0245 | 0.5 | [M − H]− | 1.35 × 10−10 | 5.7547 |
10 | 3.49 | Caffeic acid | C9H8O4 | 179.0355 | 2.7 | [M − H]− | 3.14 × 10−4 | 0.3564 |
11 | 3.59 | Orcinol glucosid | C13H18O7 | 285.0969 | −3.9 | [M − H]− | 6.06 × 10−10 | 5.9221 |
12 | 4.24 | Daphnetin | C9H6O4 | 177.0193 | −0.3 | [M − H]− | 3.70 × 10−5 | 0.2891 |
13 | 4.73 | Cantharidin | C10H12O4 | 197.0812 | 2.0 | [M + H]+ | 8.30 × 10−9 | 3.2472 |
14 | 5.38 | Topotecan | C23H23N3O5 | 420.1583 | 4.2 | [M − H]− | 1.71 × 10−7 | 11.844 |
15 | 5.68 | Genipin | C11H14O5 | 227.0920 | 2.5 | [M + H]+ | 2.09 × 10−10 | 5.7112 |
16 | 6.51 | p-Anisic acid | C8H8O3 | 153.0548 | 1.0 | [M + H]+ | 1.48 × 10−5 | 0.1837 |
17 | 6.56 | Acanthoside B | C28H36O13 | 581.2220 | −1.5 | [M + H]+ | 2.65 × 10−12 | 36.214 |
18 | 6.69 | 4-Acetoxy-3-methoxycinnamic acid-H | C12H12O5 | 235.0603 | −3.7 | [M − H]− | 8.99 × 10−4 | 0.4932 |
19 | 6.70 | 6, 7-Dimethoxycoumarin | C11H10O4 | 207.0653 | 0.3 | [M + H]+ | 2.93 × 10−9 | 5.8539 |
20 | 6.70 | (+)-Lirioresinol B | C22H26O8 | 417.1542 | −3.2 | [M − H]− | 2.19 × 10−4 | 2.0176 |
21 | 6.84 | Raspberry ketone | C10H12O2 | 165.0909 | −0.4 | [M + H]+ | 1.30 × 10−5 | 0.1281 |
22 | 6.84 | Ethyl caffeate | C11H12O4 | 207.0660 | −1.4 | [M − H]− | 3.84 × 10−3 | 2.1844 |
23 | 6.95 | Eriodictyol | C15H12O6 | 287.0561 | 0.1 | [M − H]− | 3.24 × 10−8 | 3.5502 |
24 | 7.37 | Germacrone | C15H22O | 219.1746 | 1.3 | [M + H]+ | 3.11 × 10−3 | 0.0930 |
25 | 7.37 | Curcumol | C15H24O2 | 237.1850 | 0.3 | [M + H]+ | 2.74 × 10−3 | 0.0770 |
26 | 7.37 | (+)-Nootkatone | C15H22O | 219.1746 | 1.3 | [M + H]+ | 3.11 × 10−3 | 0.1936 |
27 | 7.39 | Amoenylin | C17H20O5 | 303.1230 | −2.5 | [M − H]− | 3.31 × 10−3 | 7.5125 |
28 | 7.42 | 4-Methoxy-2, 5, 9-trihydroxy-9, 10-dihydrophenanthrene | C15H14O4 | 257.0815 | −1.8 | [M − H]− | 3.89 × 10−11 | 5.6239 |
29 | 7.77 | Nobilonine | C17H27NO3 | 294.2051 | −4.2 | [M + H]+ | 9.19 × 10−5 | 3.2548 |
30 | 7.96 | Kaempferide | C16H12O6 | 299.0554 | −2.4 | [M − H]− | 5.25 × 10−3 | 2.6050 |
31 | 8.11 | Denbinobin | C16H12O5 | 283.0605 | −2.6 | [M − H]− | 4.09 × 10−6 | 127.68 |
32 | 8.66 | Dendrocandin B | C27H30O8 | 481.1847 | −4.4 | [M − H]− | 5.34 × 10−10 | 5.0332 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, T.; Chen, X.-L.; Wang, J.; Hu, Z.-X.; Wu, G.-W.; Sha, L.-J.; Cheng, L.; Liu, H.-C. Application of Time of Flight Mass Spectrometry in the Identification of Dendrobium devonianum Paxt and Dendrobium officinale Kimura et Migo Grown in Longling Area of Yunnan, China. Separations 2022, 9, 108. https://doi.org/10.3390/separations9050108
Lin T, Chen X-L, Wang J, Hu Z-X, Wu G-W, Sha L-J, Cheng L, Liu H-C. Application of Time of Flight Mass Spectrometry in the Identification of Dendrobium devonianum Paxt and Dendrobium officinale Kimura et Migo Grown in Longling Area of Yunnan, China. Separations. 2022; 9(5):108. https://doi.org/10.3390/separations9050108
Chicago/Turabian StyleLin, Tao, Xing-Lian Chen, Jing Wang, Zheng-Xu Hu, Guang-Wei Wu, Ling-Jie Sha, Long Cheng, and Hong-Cheng Liu. 2022. "Application of Time of Flight Mass Spectrometry in the Identification of Dendrobium devonianum Paxt and Dendrobium officinale Kimura et Migo Grown in Longling Area of Yunnan, China" Separations 9, no. 5: 108. https://doi.org/10.3390/separations9050108
APA StyleLin, T., Chen, X. -L., Wang, J., Hu, Z. -X., Wu, G. -W., Sha, L. -J., Cheng, L., & Liu, H. -C. (2022). Application of Time of Flight Mass Spectrometry in the Identification of Dendrobium devonianum Paxt and Dendrobium officinale Kimura et Migo Grown in Longling Area of Yunnan, China. Separations, 9(5), 108. https://doi.org/10.3390/separations9050108