A Review of the Removal of Dyestuffs from Effluents onto Biochar
Abstract
:1. Introduction
2. Dye Classifications
2.1. Reactive Dyes
2.2. Disperse Dyes
2.3. Vat Dyes
2.4. Direct Dyes
2.5. Basic Dye
2.6. Acid Dye
2.7. Azo Dyes
2.8. Sulfur Dyes
2.9. Aniline Dyes
2.10. Metal Complex Dyes
2.11. Mordant Dyes
3. Dye Removal Technologies
3.1. Physical Process Treatments
3.2. Chemical Process Treatments
3.3. Biological-Based Processes
4. Adsorption Process Technologies
4.1. Adsorbent Properties and Adsorption Mechanism
4.2. Adsorbents
- i.
- Reasonably a decent surface area and pore volume;
- ii.
- Appropriate pore size dissemination and pore network;
- iii.
- Adsorbent functional groups of the surface charge and appropriate type;
- iv.
- Surface functional group types and charge on colored dye ions/group;
- v.
- pH of the solution that is appropriate for uptake.
5. Adsorption of Dye onto Biochar Materials for Dye Removal
5.1. Biochar as a Dye Removal Adsorbent
Dye | Biochar Feedstock | Pyrolysis Conditions | Pore Volume (cm3/g) | BET Surface Area (m2/g) | Adsorption Capacity (mg/g) or Dye Removal (%) | Isotherm Type | Kinetic Model | Parameters | Mechanism | Reference | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature (K) | Heating Rate (K/min) | Time (min) | pH | Equilibrium Time (min) | |||||||||
MB | Date palm fronds | 973 | - | 240 | 0.134 | 430 | 205 | - | - | 6 | 36 | - | [104] |
MG | Tapioca peel | 1073 | 10 | 180 | - | - | 32% | Langmuir, Freundlich | Pseudo I-order, Pseudo-II order | 2–10 | 0–180 | - | [99] |
Rh B | Tapioca peel | 1073 | 10 | 180 | - | - | 66% | Langmuir, Freundlich | Pseudo I-order, Pseudo-II order | 2–10 | 0–180 | - | [99] |
MB | Chlorella sp. microalgae | MW heating (2450 MHz, 800 W) | - | - | - | 3 | 110 | Freundlich, Temkin | Pseudo I-order, Pseudo-II order, Elovich | 2–10 | 7200 | Boyd, Intraparticle diffusion | [105] |
MG | Rice husk | 673–873 | - | 60 | - | - | 65 | Langmuir, Freundlich | Pseudo I-order, Pseudo-II order, Elovich | 2, 4, 6, 8 | 1440 | - | [100] |
MG | Crab shell | 1073 | - | 120 | 0.086 | 82 | 12,500 | Langmuir | Pseudo-II order | 7 | 2 | Electrostatic attraction, Hydrogen bonding, π-π interactions | [101] |
MB | Areca leaf | 473 | 5 | 60 | - | 21 | 120 | Langmuir, Freundlich | Pseudo I-order, Pseudo-II order | 7 | 720 | Electrostatic attraction | [106] |
MB | Wodyetia Bifurcate | 973 | 10 | 30 | - | - | 150 | Sips | Pseudo I-order, Pseudo-II order | - | 30 | - | [107] |
MG | Waste wheat straw/wheat bran | 1073 | 15 | 90 | - | - | 1740 | Langmuir | Pseudo-II order | 2, 4, 6, 8, 10 | - | Electrostatic interaction, Chemisorption | [102] |
CV | Waste wheat straw/wheat bran | 1073 | 15 | 90 | - | - | 175 | Langmuir | Pseudo-II order | 2, 4, 6, 8, 10 | - | Electrostatic interaction, Chemisorption | [102] |
MB | Switchgrass | 873 | - | 60 | 0.029 | 255 | 40 | Langmuir | Pseudo-II order | 6 | - | Intraparticle diffusion | [108] |
MB | Switchgrass- | 1173 | - | 60 | 0.058 | 640 | 200 | Langmuir | Pseudo-II order | 6 | - | Intraparticle diffusion | [108] |
CV | Mango leaves | 1073 | - | 60 | - | 170 | 180 | - | 8 | 48 | - | [110] | |
MG | Ulothrix zonata algae | 1073 | 15 | 90 | - | 130 | 5300 | Freundlich | Pseudo-II order | 2, 4, 6, 10 | 840 | Chemisorption | [103] |
CV | Ulothrix zonata algae | 1073 | 15 | 90 | - | 130 | 1220 | Freundlich | Pseudo-II order | 2, 4, 6, 10 | 840 | Chemisorption | [103] |
BR 9 | Bovine bones | 1073 | 10 | 60 | 0.271 | 90 | 50 | Langmuir, Freundlich | Pseudo-II order | 7 | 180 | - | [111] |
BR 9 | Bovine bones | 1073 | 10 | 180 | 0.193 | 95 | 50 | Pseudo I-order | 7 | 180 | - | [111] | |
MB | Sugarcane bagasse | 773 | 10 | 90 | - | 260 | 70 | Langmuir, Freundlich | Pseudo I-order, Pseudo-II order | 7.4 | 180 | Intraparticle diffusion | [109] |
Dye | Biochar Feedstock | Pyrolysis Conditions | Pore Volume (cm3/g) | BET Surface Area (m2/g) | Adsorption Capacity (mg/g) or Dye Removal (%) | Isotherm Type | Kinetic Model | Adsorbent Parameters | Mechanism | Reference | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature (K) | Heating Rate (K/min) | Time (min) | pH | Equilibrium Time (min) | |||||||||
CR | Chlorella sp. microalgal | MW heating (2450 MHz, 800 W) | - | - | - | 3 | 160 | Langmuir, Freundlich, Temkin | Pseudo I-order, Pseudo II-order, Elovich | 2–10 | 240 | Boyd, Intraparticle diffusion | [105] |
CR | Rice husk | 773 | 5 | 180 | - | - | 66–97% | Langmuir, Freundlich | - | 2, 4, 6, 7, 9, 11 | 5760 | - | [97] |
RR 120 | Eucheuma spinosum | 573–873 | 10 | 120 | - | - | 330 | Langmuir, Freundlich, Temkin | Pseudo I-order, Pseudo II-order, Elovich | 3–9 | 20 | Electrostatic interaction, Ion exchange, Metal complexation, Hydrogen bonding | [127] |
CR | Phoenix dactylifera leaves | 673 | - | - | - | 1 | 25 | Langmuir, Freundlich | Pseudo I-order, Pseudo II-order | 5.8 | 120 | - | [125] |
CR | Cotton stalks | 673 | 8 | 90 | - | - | 250 | Langmuir, Freundlich, Temkin, Dubinin-Radushkevich | Pseudo I-order, Pseudo II-order | 2–10 | 180 | Electrostatic attraction | [126] |
CR | Orange peel | 1073 | 15 | 15 | - | 20 | - | - | - | - | [123] | ||
Remazol BV 5R | Green marine algae (Caulerpa scalpelliformis) | 573–773 | 5 | 120 | - | - | 70% | Langmuir, Freundlich, Sips, T | Pseudo I-order, Pseudo II-order | 2–5 | - | - | [128] |
Remazol BO 3R | Green marine algae (Caulerpa scalpelliformis) | 573–773 | 5 | 120 | - | - | 77% | Langmuir, Freundlich, Sips, Temkin | Pseudo I-order, Pseudo II-order | 2–5 | - | - | [128] |
Remazol BO 3R | Green marine algae (Caulerpa scalpelliformis) | 573–773 | 5 | 120 | - | - | 75% | Langmuir, Freundlich, Sips, Temkin | Pseudo I-order, Pseudo II-order | 2–5 | - | - | [128] |
Remazol BO 3R | Crab shell | 1073 | - | 120 | 0.086 | 82 | 20,315 | Langmuir | Pseudo I-order, Pseudo II-order | 4 | 2 | Electrostatic attraction, Hydrogen bonding, π-π interactions | [101] |
CR | Activated Carbon | 723 | 20 | 120 | - | - | 230 | Freundlich | - | 2–10 | 120 | - | [124] |
CR | Spirulina platensis algae | 723 | 20 | 120 | - | - | Freundlich | - | 2–10 | 120 | - | [96] | |
CR | Waste wheat straw/wheat bran | 1073 | 15 | 90 | - | - | 90 | Langmuir | Pseudo II-order | 2, 4, 6, 8, 10 | - | Chemisorption, Electrostatic interaction | [102] |
OG | Switchgrass | 873 | - | 60 | 0.029 | 255 | 8 | Langmuir | Pseudo II-order | 6 | - | Outer boundary | [108] |
CR | Switchgrass | 873 | - | 60 | 0.029 | 255 | 8 | Langmuir | Pseudo II-order | 6 | - | Outer boundary | [108] |
CR | Switchgrass | 1173 | 60 | 0.058 | 640 | 20 | Langmuir | Pseudo II-order | 6 | - | Outer boundary | [108] | |
CR | Ulothrix zonata algae | 1073 | 15 | 90 | - | 130 | 345 | Freundlich | Pseudo II-order | 2, 4, 6, 10 | 840 | Chemisorption | [103] |
MO | Corn cob | 873 | 15 | 120 | - | 470 | 90 | Freundlich | Pseudo II-order | 5.6 | - | Physiochemical | [129] |
5.2. Dye Removal Using Adsorption onto Modified Biochars
Dye | Biochar Modified Feedstock | Pyrolysis Conditions | Pore Volume (cm3/g) | BET Surface Area (m2/g) | Adsorption Capacity (mg/g) or Dye Removal (%) | Isotherm Type | Kinetic Model | Adsorbent Parameters | Mechanism | Reference | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature (K) | Heating Rate (K/min) | Time (min) | pH | Equilibrium Time (min) | |||||||||
CR | Rubber seeds + NaOH | 1073 | - | 360 | - | - | 460 | Langmuir, Freundlich, Dubinin-Radushkevich | - | 6–7 | 120 | - | [152] |
CR | Shorea robusta leaf extract + Agnps | 573 | - | 180 | - | 21 | 20 | Langmuir, Freundlich, Temkin, Dubinin-Radushkevich | Pseudo I-order, Pseudo II-order, Intraparticle diffusion, Elovich | 2–10 | 90 | Electrostatic attraction, Hydrogen bonding | [153] |
CR | Shorea robusta leaf extract | 573 | - | 180 | - | 1 | 2 | - | 2–10 | 60 | Electrostatic attraction | [153] | |
MO | Food waste + ultrasound + H2O2 | 573 | 5 | 420 | - | - | 69% | - | 7 | 60 | - | [43] | |
CR | Phoenix dactylifera leaves + Mn | 673 | - | - | - | - | 120 | Langmuir, Freundlich | Pseudo I-order, Pseudo II-order | 2.5, 4.5, 5.8, 8.2, 11.2 | 120 | Electrostatic interaction | [125] |
Reactive yellow (RY) | Marine Chlorella + ultrasound | 723–923 | 10 | 60 | - | 350 | 50 | Langmuir, Freundlich, Temkin | Pseudo I-order, Pseudo II-order | 2.0–10.0 | 2 | Electrostatic interaction, Electrostatic repulsion | [154] |
Reactive blue (RB 19)/Acid orange (AO) II/Direct red | Sludge-rice husk composite | 773 | 7 | 120 | 0.058 | 30 | 39, 42, 60 | Langmuir, Freundlich, Temkin, Dubinin-Radushkevich | Pseudo I-order, Pseudo II-order, Intraparticle diffusion, Elovich | 7 | 1440 | - | [155] |
CR | Arjuna (Terminalia Arjuna) seeds | - | - | - | - | 170 | 92 ± 5% | - | - | - | - | [156] | |
CR | Cotton stalks | 673 | 8 | 90 | - | - | 560 | Langmuir, Freundlich, Temkin, Dubinin-Radushkevich | Pseudo I-order, Pseudo II-order, Intraparticle diffusion | 2–10 | 180 | Electrostatic attraction | [126] |
CR | Orange peel + CO2 + steam | 973 | - | 10 | - | 305 | 140 | Freundlich | Pseudo II-order | 2–3 | 1440 | Electrostatic interaction | [123] |
CR | Litchi peel + hydro-thermal | 1123 | 60 | 0.588 | 1005 | 400 | Freundlich | Elovich | 4 | 720 | Hydrogen bonding, π-π interactions, Pore-filling, Electrostatic interaction | [150] | |
CR | Spirulina/alginate/paper | 723 | 20 | 120 | - | - | 40 | Langmuir, Freundlich, Temkin, Dubinin-Radushkevich | Pseudo I-order, Pseudo II-order, Intraparticle diffusion | 6–8 | 0–120 | Electrostatic attraction, Hydrogen bonding, π-π, | [157] |
Acid chrome blue/MO | Pine nutshell | 973 | 10 | 120 | - | - | 30, 10 | Langmuir, Freundlich | Pseudo I-order, Pseudo II-order | 3 | 1200 | Electrostatic interaction, π-π interactions | [158] |
6. Conclusions
- ➢
- The dye adsorption potential/capacity is highly linked to surface area, therefore, the greater the pyrolysis temperature, the greater the dye adsorption capacity;
- ➢
- The biochar yield decreases as the temperature rises. However, this is only true up to roughly 1073 K;
- ➢
- As the micropore and small mesopore walls burn away at temperatures beyond 1073–1123 K, pore volume increases, resulting in fewer but larger pores;
- ➢
- It is important to consider the reaction conditions of temperature, time, and heating rate based upon the type of dyestuff as well as the pyrolysis temperature. The thickness of the pores is also affected by both the type of raw materials and the pyrolysis temperature—dye molecules vary enormously in size, and even small dye molecules are relatively large in comparison to many chemical molecules;
- ➢
- Dye is strongly attracted to oppositely charged sites, so the nature of surface sites on the biochar, depending on raw material and temperature, is extremely important;
- ➢
- Slow pyrolysis yields the best biochar and has the best property control because it produces more biochar, guarantees better pore development, and has a narrower spectrum of pore size distribution.
- ➢
- Acid or alkali chemical treatment produces biochars with negative and positive surface sites or groups; at temperatures above 823 K, these biochars are known as activated carbons;
- ➢
- Before pyrolysis treatment, sulfur doping of the feedstocks generates biochars carbons with a decent affinity for hazardous heavy metal ions;
- ➢
- Iron oxide-doped modified chars have demonstrated to be particularly attractive adsorbents for both anions and metal cations, as well as chromate, using ion exchange;
- ➢
- Coating the biochars has been exceedingly successful; for instance, coating with chitosan provided adsorption capabilities of 5-fold and 20-fold w/w, placing these altered biochars in the super-adsorbent category.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akakuru, O.U.; Iqbal, Z.M.; Wu, A. TiO2 Nanoparticles Properties and Applications. In TiO2 Nanoparticles: Applications in Nanobiotechnology and Nanomedicine; John Wiley & Sons, Ltd.: Weinhein, Germany, 2020; pp. 1–66. ISBN 9783527825448. [Google Scholar]
- Oyewo, O.A.; Elemike, E.E.; Onwudiwe, D.C.; Onyango, M.S. Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater. Int. J. Biol. Macromol. 2020, 164, 2477–2496. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Xia, M.; Chu, Y.; Khan, M.A.; Lei, W.; Wang, F.; Muhmood, T.; Wang, A. Adsorption and Desorption of Pb(II) on l-Lysine Modified Montmorillonite and the simulation of Interlayer Structure. Appl. Clay Sci. 2019, 169, 40–47. [Google Scholar] [CrossRef]
- Khan, S.; Malik, A. Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye. Environ. Sci. Pollut. Res. 2018, 25, 4446–4458. [Google Scholar] [CrossRef] [PubMed]
- Kishor, R.; Purchase, D.; Saratale, G.D.; Saratale, R.G.; Ferreira, L.F.R.; Bilal, M.; Chandra, R.; Bharagava, R.N. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J. Environ. Chem. Eng. 2021, 9, 105012. [Google Scholar] [CrossRef]
- McKay, G.; Parthasarathy, P.; Sajjad, S.; Saleem, J.; Alherbawi, M. Dye removal using biochars. In Sustainable Biochar for Water and Wastewater Treatment; Mohan, D., Pittman, C.U., E.Mlsna, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 429–471. [Google Scholar]
- Forgacs, E.; Cserháti, T.; Oros, G. Removal of synthetic dyes from wastewaters: A review. Environ. Int. 2004, 30, 953–971. [Google Scholar] [CrossRef]
- Velusamy, S.; Roy, A.; Sundaram, S.; Kumar Mallick, T. A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxide-Based Adsorption Strategies for Textile Wastewater Treatment. Chem. Rec. 2021, 21, 1570–1610. [Google Scholar] [CrossRef]
- Global Textile Dyes Industry Report 2015—Forecasts to 2020. Available online: https://www.prnewswire.com/news-releases/global-textile-dyes-industry-report-2015---forecasts-to-2020-498532981.html (accessed on 15 May 2021).
- Afroze, S.; Sen, T.K. A Review on Heavy Metal Ions and Dye Adsorption from Water by Agricultural Solid Waste Adsorbents. Water Air Soil Pollut. 2018, 229, 1–50. [Google Scholar] [CrossRef]
- Wang, K.; Wei, T.; Li, Y.; He, L.; Lv, Y.; Chen, L.; Ahmad, A.; Xu, Y.; Shi, Y. Flocculation-to-adsorption transition of novel salt-responsive polyelectrolyte for recycling of highly polluted saline textile effluents. Chem. Eng. J. 2021, 413, 127410. [Google Scholar] [CrossRef]
- Al-Degs, Y.; Khraisheh MA, M.; Allen, S.J.; Ahmad, M.N. Ahmad Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Res. 2000, 34, 927–935. [Google Scholar] [CrossRef]
- Al-Degs, Y.S.; El-Barghouthi, M.I.; El-Sheikh, A.H.; Walker, G.M. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dye. Pigment. 2008, 77, 16–23. [Google Scholar] [CrossRef]
- Chiou, M.S.; Kuo, W.S.; Li, H.Y. Removal of Reactive Dye from Wastewater by Adsorption Using ECH Cross-Linked Chitosan Beads as Medium. J. Environ. Sci. Heal. Part A 2007, 38, 2621–2631. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, J.N. Metal complex dyes. In Handbook of Textile and Industrial Dyeing Principles, Processes and Types of Dyes; Clark, M., Ed.; Woodhead Publishing Series in Textiles: Cambridge, UK, 2011; pp. 446–463. [Google Scholar]
- Yusuf, A. Vat Dyes-Properties-Dyeing Mechanism-A Comprehensive Look (2020). Available online: https://textiletuts.com/vat-dyes/ (accessed on 2 March 2022).
- ULLMANN’S Encyclopedia of Industrial Chemistry; Arpe, H.-J. (Ed.) Wiley: Weinheim, Germany, 2000. [Google Scholar]
- Asif Tahir, M.; Bhatti, H.N.; Iqbal, M. Solar Red and Brittle Blue direct dyes adsorption onto Eucalyptus angophoroides bark: Equilibrium, kinetics and thermodynamic studies. J. Environ. Chem. Eng. 2016, 4, 2431–2439. [Google Scholar] [CrossRef]
- Gupta, V.K.; Mohan, D.; Sharma, S.; Sharma, M. Removal of Basic Dyes (Rhodamine B and Methylene Blue) from Aqueous Solutions Using Bagasse Fly Ash. Sep. Sci. Technol. 2007, 35, 2097–2113. [Google Scholar] [CrossRef]
- Allen, S.J.; Mckay, G.; Porter, J.F. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. J. Colloid Interface Sci. 2004, 280, 322–333. [Google Scholar] [CrossRef]
- Fan, Q.; Hoskote, S.; Hou, Y. Reduction of colorants in nylon flock dyeing effluent. J. Hazard. Mater. 2004, 112, 123–131. [Google Scholar] [CrossRef]
- Ho, Y.S.; Chiang, C.C. Sorption Studies of Acid Dye by Mixed Sorbents. Adsorption 2001, 7, 139–147. [Google Scholar] [CrossRef]
- Valix, M.; Cheung, W.H.; McKay, G. Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption. Chemosphere 2004, 56, 493–501. [Google Scholar] [CrossRef]
- Yu, M.C.; Skipper, P.L.; Tannenbaum, S.R.; Chan, K.K.; Ross, R.K. Arylamine exposures and bladder cancer risk. Mutat. Res. Mol. Mech. Mutagen. 2002, 506–507, 21–28. [Google Scholar] [CrossRef]
- Rovina, K.; Prabakaran, P.P.; Siddiquee, S.; Shaarani, S.M. Methods for the analysis of Sunset Yellow FCF (E110) in food and beverage products- a review. TrAC Trends Anal. Chem. 2016, 85, 47–56. [Google Scholar] [CrossRef]
- Nikfar, S.; Jaberidoost, M. Dyes and Colorants. In Encyclopedia of Toxicology: Third Edition; Academic Press: Cambridge, MA, USA, 2014; pp. 252–261. ISBN 9780123864543. [Google Scholar]
- Goswami, P.; Sulfur, M.B. Dyes. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons: Hoboken, NJ, USA, 2000; pp. 1–31. [Google Scholar]
- Thakur, S.; Qanungo, K. Removal of aniline blue from aqueous solution using adsorption: A mini review. Mater. Today Proc. 2021, 37, 2290–2293. [Google Scholar] [CrossRef]
- Baker, J.R. Principles of Biological Microtechnique; Methuen: London, UK, 1958. [Google Scholar]
- Gupta, V.K. Suhas Application of low-cost adsorbents for dye removal—A review. J. Environ. Manage. 2009, 90, 2313–2342. [Google Scholar] [CrossRef] [PubMed]
- Ip, A.W.M.; Barford, J.P.; McKay, G. Biodegradation of Reactive Black 5 and bioregeneration in upflow fixed bed bioreactors packed with different adsorbents. J. Chem. Technol. Biotechnol. 2010, 85, 658–667. [Google Scholar] [CrossRef]
- Mcyotto, F.; Wei, Q.; Macharia, D.K.; Huang, M.; Shen, C.; Chow, C.W.K. Effect of dye structure on color removal efficiency by coagulation. Chem. Eng. J. 2021, 405, 126674. [Google Scholar] [CrossRef]
- Bayramoglu, M.; Eyvaz, M.; Kobya, M. Treatment of the textile wastewater by electrocoagulation: Economical evaluation. Chem. Eng. J. 2007, 128, 155–161. [Google Scholar] [CrossRef]
- Hasani, G.; Maleki, A.; Daraei, H.; Ghanbari, R.; Safari, M.; McKay, G.; Yetilmezsoy, K.; Ilhan, F.; Marzban, N. A comparative optimization and performance analysis of four different electrocoagulation-flotation processes for humic acid removal from aqueous solutions. Process Saf. Environ. Prot. 2019, 121, 103–117. [Google Scholar] [CrossRef]
- Al-Ahmed, Z.A.; Al-Radadi, N.S.; Ahmed, M.K.; Shoueir, K.; El-Kemary, M. Dye removal, antibacterial properties, and morphological behavior of hydroxyapatite doped with Pd ions. Arab. J. Chem. 2020, 13, 8626–8637. [Google Scholar] [CrossRef]
- Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 2001, 77, 247–255. [Google Scholar] [CrossRef]
- Samsami, S.; Mohamadi, M.; Sarrafzadeh, M.H.; Rene, E.R.; Firoozbahr, M. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Saf. Environ. Prot. 2020, 143, 138–163. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Z.; Zhang, J. Zeolite imidazolate framework hybrid nanofiltration (NF) membranes with enhanced permselectivity for dye removal. J. Memb. Sci. 2017, 532, 76–86. [Google Scholar] [CrossRef]
- Tang, L.; Xiao, F.; Wei, Q.; Liu, Y.; Zou, Y.; Liu, J.; Sand, W.; Chow, C. Removal of active dyes by ultrafiltration membrane pre-deposited with a PSFM coagulant: Performance and mechanism. Chemosphere 2019, 223, 204–210. [Google Scholar] [CrossRef]
- Ellouze, E.; Souissi, S.; Jrad, A.; Amar, R.B.; Salah, A. Ben Performances of nanofi ltration and reverse osmosis in textile industry waste water treatment. Desalin. Water Treat. 2012, 22, 182–186. [Google Scholar] [CrossRef]
- Ammar, A.; Dofan, I.; Jegatheesan, V.; Muthukumaran, S.; Shu, L. Comparison between nanofiltration and forward osmosis in the treatment of dye solutions. Desalin. Water Treat. 2014, 54, 853–861. [Google Scholar] [CrossRef]
- Balcik-Canbolat, C.; Sengezer, C.; Sakar, H.; Karagunduz, A.; Keskinler, B. Recovery of real dye bath wastewater using integrated membrane process: Considering water recovery, membrane fouling and reuse potential of membranes. Environ. Technol. 2016, 38, 2668–2676. [Google Scholar] [CrossRef]
- Chu, J.H.; Kang, J.K.; Park, S.J.; Lee, C.G. Application of magnetic biochar derived from food waste in heterogeneous sono-Fenton-like process for removal of organic dyes from aqueous solution. J. Water Process Eng. 2020, 37, 101455. [Google Scholar] [CrossRef]
- Anantha, M.S.; Olivera, S.; Hu, C.; Jayanna, B.K.; Reddy, N.; Venkatesh, K.; Muralidhara, H.B.; Naidu, R. Comparison of the photocatalytic, adsorption and electrochemical methods for the removal of cationic dyes from aqueous solutions. Environ. Technol. Innov. 2020, 17, 100612. [Google Scholar] [CrossRef]
- Cheremisinoff, P.N. Biomanagement of Wastewater and Wastes; Prentice Hall: New York, NY, USA, 1993. [Google Scholar]
- Santos, A.; Yustos, P.; Rodríguez, S.; Garcia-Ochoa, F.; De Gracia, M. Decolorization of Textile Dyes by Wet Oxidation Using Activated Carbon as Catalyst. Ind. Eng. Chem. Res. 2007, 46, 2423–2427. [Google Scholar] [CrossRef]
- Chang, D.J.; Chen, I.P.; Chen, M.T.; Lin, S.S. Wet air oxidation of a reactive dye solution using CoAlPO4-5 and CeO2 catalysts. Chemosphere 2003, 52, 943–949. [Google Scholar] [CrossRef]
- Boudissa, F.; Mirilà, D.; Arus, V.A.; Terkmani, T.; Semaan, S.; Proulx, M.; Nistor, I.D.; Roy, R.; Azzouz, A. Acid-treated clay catalysts for organic dye ozonation—Thorough mineralization through optimum catalyst basicity and hydrophilic character. J. Hazard. Mater. 2019, 364, 356–366. [Google Scholar] [CrossRef]
- Faria, P.C.C.; Órfão, J.J.M.; Pereira, M.F.R. Activated carbon and ceria catalysts applied to the catalytic ozonation of dyes and textile effluents. Appl. Catal. B Environ. 2009, 88, 341–350. [Google Scholar] [CrossRef]
- Chaudhuri, S.K.; Sur, B. Oxidative Decolorization of Reactive Dye Solution Using Fly Ash as Catalyst. J. Environ. Eng. 2000, 126, 583–594. [Google Scholar] [CrossRef]
- Christie, R.M. Handbook of Textile and Industrial Dyeing- 17-Fluorescent Dyes; M.Clark, Ed.; Woodhead Publishing: Cambridge, UK, 2011; ISBN 9781845696955. [Google Scholar]
- Raghavacharya, C. Colour removal from industrial effluents. Chem. Eng. World 1997, 32, 53–54. [Google Scholar]
- Sarasa, J.; Roche, M.P.; Ormad, M.P.; Gimeno, E.; Puig, A.; Ovelleiro, J.L. Treatment of a wastewater resulting from dyes manufacturing with ozone and chemical coagulation. Water Res. 1998, 32, 2721–2727. [Google Scholar] [CrossRef]
- Farzaneh, H.; Loganathan, K.; Saththasivam, J.; McKay, G. Ozone and ozone/hydrogen peroxide treatment to remove gemfibrozil and ibuprofen from treated sewage effluent: Factors influencing bromate formation. Emerg. Contam. 2020, 6, 225–234. [Google Scholar] [CrossRef]
- Oliveira, G.A.R.; Ferraz, E.R.A.; Chequer, F.M.D.; Grando, M.D.; Angeli, J.P.F.; Tsuboy, M.S.; Marcarini, J.C.; Mantovani, M.S.; Osugi, M.E.; Lizier, T.M.; et al. Chlorination treatment of aqueous samples reduces, but does not eliminate, the mutagenic effect of the azo dyes Disperse Red 1, Disperse Red 13 and Disperse Orange 1. Mutat. Res. Toxicol. Environ. Mutagen. 2010, 703, 200–208. [Google Scholar] [CrossRef]
- Martínez, F.; Calleja, G.; Melero, J.A.; Molina, R. Heterogeneous photo-Fenton degradation of phenolic aqueous solutions over iron-containing SBA-15 catalyst. Appl. Catal. B Environ. 2005, 60, 181–190. [Google Scholar] [CrossRef]
- Silvestri, S.; Stefanello, N.; Sulkovski, A.A.; Foletto, E.L. Preparation of TiO2 supported on MDF biochar for simultaneous removal of methylene blue by adsorption and photocatalysis. J. Chem. Technol. Biotechnol. 2020, 95, 2723–2729. [Google Scholar] [CrossRef]
- Mian, M.M.; Liu, G. Recent progress in biochar-supported photocatalysts: Synthesis, role of biochar, and applications. RSC Adv. 2018, 8, 14237–14248. [Google Scholar] [CrossRef] [Green Version]
- Pinna, M.; Binda, G.; Altomare, M.; Marelli, M.; Dossi, C.; Monticelli, D.; Spanu, D.; Recchia, S. Biochar Nanoparticles over TiO2 Nanotube Arrays: A Green Co-Catalyst to Boost the Photocatalytic Degradation of Organic Pollutants. Catalysts 2021, 11, 1048. [Google Scholar] [CrossRef]
- Chen, Q.; Lin, G.; Meng, L.; Zhou, L.; Hu, L.; Nong, J.; Li, Y.; Wang, J.; Hu, K.; Yu, Q. Enhanced photoelectric performance of TiO2 nanotubes sensitized with carbon dots derived from bagasse. Chem. Phys. Lett. 2020, 749, 137428. [Google Scholar] [CrossRef]
- Hislop, K.A.; Bolton, J.R. The Photochemical Generation of Hydroxyl Radicals in the UV−vis/Ferrioxalate/H2O2 System. Environ. Sci. Technol. 1999, 33, 3119–3126. [Google Scholar] [CrossRef]
- Jeong, J.; Yoon, J. pH effect on OH radical production in photo/ferrioxalate system. Water Res. 2005, 39, 2893–2900. [Google Scholar] [CrossRef] [PubMed]
- Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.M. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ. 2001, 31, 145–157. [Google Scholar] [CrossRef]
- Vaghela, S.S.; Jethva, A.D.; Mehta, B.B.; Dave, S.P.; Adimurthy, S.; Ramachandraiah, G. Laboratory Studies of Electrochemical Treatment of Industrial Azo Dye Effluent. Environ. Sci. Technol. 2005, 39, 2848–2855. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.; Buckley, C.A. Treatment of a textile dye in the anaerobic baffled reactor. Water SA 2003, 29, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Shoukat, R.; Khan, S.J.; Jamal, Y. Hybrid anaerobic-aerobic biological treatment for real textile wastewater. J. Water Process Eng. 2019, 29, 100804. [Google Scholar] [CrossRef]
- Banat, F.; Al-Asheh, S.; Al-Makhadmeh, L. Utilization of raw and activated date pits for the removal of phenol from aqueous solutions. Chem. Eng. Technol. 2004, 27, 80–86. [Google Scholar] [CrossRef]
- Aragaw, T.A.; Bogale, F.M. Biomass-Based Adsorbents for Removal of Dyes From Wastewater: A Review. Front. Environ. Sci. 2021, 9, 558. [Google Scholar] [CrossRef]
- McKay, G. Waste colour removal from textile effluents. Am. Dyest. Report. 1980, 68, 29–36. [Google Scholar]
- Saleem, J.; Shahid, U.B.; Hijab, M.; Mackey, H.; McKay, G. Production and applications of activated carbons as adsorbents from olive stones. Biomass Convers. Biorefinery 2019, 9, 775–802. [Google Scholar] [CrossRef] [Green Version]
- Cooney, D. Adsorption Design for Wastewater Treatment; CRC Press; Lewis Publishers: Boca Raton, FL, USA, 1998; ISBN 978-1566703338. [Google Scholar]
- Dotto, G.L.; McKay, G. Current scenario and challenges in adsorption for water treatment. J. Environ. Chem. Eng. 2020, 8, 103988. [Google Scholar] [CrossRef]
- Zhu, S.; Khan, M.A.; Kameda, T.; Xu, H.; Wang, F.; Xia, M.; Yoshioka, T. New insights into the capture performance and mechanism of hazardous metals Cr3+ and Cd2+ onto an effective layered double hydroxide based material. J. Hazard. Mater. 2022, 426, 128062. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Chen, Y.; Khan, M.A.; Xu, H.; Wang, F.; Xia, M. In-Depth Study of Heavy Metal Removal by an Etidronic Acid-Functionalized Layered Double Hydroxide. ACS Appl. Mater. Interfaces 2022, 14, 7450–7463. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Khan, M.A.; Wang, F.; Bano, Z.; Xia, M. Exploration of adsorption mechanism of 2-phosphonobutane-1,2,4-tricarboxylic acid onto kaolinite and montmorillonite via batch experiment and theoretical studies. J. Hazard. Mater. 2021, 403, 123810. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.T. Adsorbents: Fundamentals and Applications; John Wiley & Sons: New York, NY, USA, 2003; ISBN 9780471297413. [Google Scholar]
- Crini, G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol. 2006, 97, 1061–1085. [Google Scholar] [CrossRef] [PubMed]
- Abdolali, A.; Guo, W.S.; Ngo, H.H.; Chen, S.S.; Nguyen, N.C.; Tung, K.L. Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: A critical review. Bioresour. Technol. 2014, 160, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.T.; Rodriguez-Reinoso, F. Garcia, A.N.; Marcilla, A. CO2 activation of olive stones carbonized different experimental conditions. Carbons 1997, 35, 159–162. [Google Scholar] [CrossRef]
- Rodriguez-Reinoso, F.; Molina-Sabio, M. Activated carbons from lignocellulosic materials by chemical and or physical activation—an Overview. Carbon N. Y. 1992, 30, 1111–1118. [Google Scholar] [CrossRef]
- Allen, S.J.; McKay, G.; Khader, K.Y.H. Equilibrium adsorption isotherms for basic dyes onto lignite. J. Chem. Technol. Biotechnol. 1989, 45, 291–302. [Google Scholar] [CrossRef]
- Rouquerol, J.; Sing, K.S.W. Adsorption by Powders and Porous Solids: Principles, Methodology And Applications; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Lam, K.F.; Yeung, K.L.; McKay, G. A rational approach in the design of mesoporous adsorbents. Langmuir 2006, 22, 9632–9641. [Google Scholar] [CrossRef]
- Parthasarathy, P.; Al-Ansari, T.; Mackey, H.R.; Sheeba Narayanan, K.; McKay, G. A review on prominent animal and municipal wastes as potential feedstocks for solar pyrolysis for biochar production. Fuel 2022, 316, 123378. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Balouch, A.; Abdullah. Remediation of toxic fluoride from aqueous media by various techniques. Int. J. Environ. Anal. Chem. 2019, 101, 482–505. [Google Scholar] [CrossRef]
- Mui, E.L.K.; Cheung, W.H.; Valix, M.; McKay, G. Dye adsorption onto activated carbons from tyre rubber waste using surface coverage analysis. J. Colloid Interface Sci. 2010, 347, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Osagie, C.; Othmani, A.; Ghosh, S.; Malloum, A.; Kashitarash Esfahani, Z.; Ahmadi, S. Dyes adsorption from aqueous media through the nanotechnology: A review. J. Mater. Res. Technol. 2021, 14, 2195–2218. [Google Scholar] [CrossRef]
- Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresour. Technol. 2014, 160, 191–202. [Google Scholar] [CrossRef]
- Mui, E.L.K.; Cheung, W.H.; Valix, M.; McKay, G. Dye adsorption onto char from bamboo. J. Hazard. Mater. 2010, 177, 1001–1005. [Google Scholar] [CrossRef]
- Patel, M.; Kumar, R.; Pittman, C.U.; Mohan, D. Ciprofloxacin and acetaminophen sorption onto banana peel biochars: Environmental and process parameter influences. Environ. Res. 2021, 201, 111218. [Google Scholar] [CrossRef]
- Vimal, V.; Patel, M.; Mohan, D. Aqueous carbofuran removal using slow pyrolyzed sugarcane bagasse biochar: Equilibrium and fixed-bed studies. RSC Adv. 2019, 9, 26338–26350. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.K.; Tyagi, I.; Agarwal, S.; Singh, R.; Chaudhary, M.; Harit, A.; Kushwaha, S. Column operation studies for the removal of dyes and phenols using a low cost adsorbent. Glob. J. Environ. Sci. Manag. 2016, 2, 1–10. [Google Scholar] [CrossRef]
- Yang, G.; Wu, L.; Xian, Q.; Shen, F.; Wu, J.; Zhang, Y. Removal of Congo Red and Methylene Blue from Aqueous Solutions by Vermicompost-Derived Biochars. PLoS ONE 2016, 11, e0154562. [Google Scholar] [CrossRef]
- Sewu, D.D.; Boakye, P.; Woo, S.H. Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste. Bioresour. Technol. 2017, 224, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Nautiyal, P.; Subramanian, K.A.; Dastidar, M.G. Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: Alternate use of waste of biodiesel industry. J. Environ. Manage. 2016, 182, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Chowdhary, P.; Ahmad, A.; Shekher Giri, B.; Chaturvedi, P. Hydrothermal liquefaction of rice husk and cow dung in Mixed-Bed-Rotating Pyrolyzer and application of biochar for dye removal. Bioresour. Technol. 2020, 309, 123294. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Zhang, M.; Wang, Y.; Chen, J.; Zhang, J. Biochars prepared from rabbit manure for the adsorption of rhodamine B and Congo red: Characterisation, kinetics, isotherms and thermodynamic studies. Water Sci. Technol. 2020, 81, 436–444. [Google Scholar] [CrossRef]
- Vigneshwaran, S.; Sirajudheen, P.; Karthikeyan, P.; Meenakshi, S. Fabrication of sulfur-doped biochar derived from tapioca peel waste with superior adsorption performance for the removal of Malachite green and Rhodamine B dyes. Surfaces Interfaces 2021, 23, 100920. [Google Scholar] [CrossRef]
- Ganguly, P.; Sarkhel, R.; Das, P. Synthesis of pyrolyzed biochar and its application for dye removal: Batch, kinetic and isotherm with linear and non-linear mathematical analysis. Surfaces Interfaces 2020, 20, 100616. [Google Scholar] [CrossRef]
- Dai, L.; Zhu, W.; He, L.; Tan, F.; Zhu, N.; Zhou, Q.; He, M.; Hu, G. Calcium-rich biochar from crab shell: An unexpected super adsorbent for dye removal. Bioresour. Technol. 2018, 267, 510–516. [Google Scholar] [CrossRef]
- Yang, S.S.; Chen, Y.D.; Kang, J.H.; Xie, T.R.; He, L.; Xing, D.F.; Ren, N.Q.; Ho, S.H.; Wu, W.M. Generation of high-efficient biochar for dye adsorption using frass of yellow mealworms (larvae of Tenebrio molitor Linnaeus) fed with wheat straw for insect biomass production. J. Clean. Prod. 2019, 227, 33–47. [Google Scholar] [CrossRef]
- Di Chen, Y.; Lin, Y.C.; Ho, S.H.; Zhou, Y.; Ren, N. qi Highly efficient adsorption of dyes by biochar derived from pigments-extracted macroalgae pyrolyzed at different temperature. Bioresour. Technol. 2018, 259, 104–110. [Google Scholar] [CrossRef]
- Zubair, M.; Mu’azu, N.D.; Jarrah, N.; Blaisi, N.I.; Aziz, H.A.; Al-Harthi, A.M. Adsorption Behavior and Mechanism of Methylene Blue, Crystal Violet, Eriochrome Black T, and Methyl Orange Dyes onto Biochar-Derived Date Palm Fronds Waste Produced at Different Pyrolysis Conditions. Water. Air. Soil Pollut. 2020, 231, 1–19. [Google Scholar] [CrossRef]
- Yu, K.L.; Lee, X.J.; Ong, H.C.; Chen, W.H.; Chang, J.S.; Lin, C.S.; Show, P.L.; Ling, T.C. Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: Equilibrium, kinetic and mechanism modeling. Environ. Pollut. 2021, 272, 115986. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Liu, N.; Bian, S.; Li, J.; Xu, S.; Zhang, Y. Enhancing the adsorption capability of areca leaf biochar for methylene blue by K2FeO4-catalyzed oxidative pyrolysis at low temperature. RSC Adv. 2019, 9, 42343–42350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- dos Santos, K.J.L.; dos Santos, G.E.; de Sá, Í.M.G.L.; Ide, A.H.; Duarte, J.L.d.S.; de Carvalho, S.H.V.; Soletti, J.I.; Meili, L. Wodyetia bifurcata biochar for methylene blue removal from aqueous matrix. Bioresour. Technol. 2019, 293, 122093. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Wang, J.J.; Meng, Y.; Wei, Z.; DeLaune, R.D.; Seo, D.C. Adsorption/desorption behavior of cationic and anionic dyes by biochars prepared at normal and high pyrolysis temperatures. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 572, 274–282. [Google Scholar] [CrossRef]
- Biswas, S.; Mohapatra, S.S.; Kumari, U.; Meikap, B.C.; Sen, T.K. Batch and continuous closed circuit semi-fluidized bed operation: Removal of MB dye using sugarcane bagasse biochar and alginate composite adsorbents. J. Environ. Chem. Eng. 2020, 8, 103637. [Google Scholar] [CrossRef]
- Vyavahare, G.; Jadhav, P.; Jadhav, J.; Patil, R.; Aware, C.; Patil, D.; Gophane, A.; Yang, Y.H.; Gurav, R. Strategies for crystal violet dye sorption on biochar derived from mango leaves and evaluation of residual dye toxicity. J. Clean. Prod. 2019, 207, 296–305. [Google Scholar] [CrossRef]
- Côrtes, L.N.; Druzian, S.P.; Streit, A.F.M.; Godinho, M.; Perondi, D.; Collazzo, G.C.; Oliveira, M.L.S.; Cadaval, T.R.S.; Dotto, G.L. Biochars from animal wastes as alternative materials to treat colored effluents containing basic red 9. J. Environ. Chem. Eng. 2019, 7, 103446. [Google Scholar] [CrossRef]
- Lafi, W.K. Production of activated carbon from acorns and olive seeds. Biomass Bioenergy 2001, 20, 57–62. [Google Scholar] [CrossRef]
- Hameed, B.H.; Din, A.T.M.; Ahmad, A.L. Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. J. Hazard. Mater. 2007, 141, 819–825. [Google Scholar] [CrossRef]
- Sayğili, H.; Güzel, F. Performance of new mesoporous carbon sorbent prepared from grape industrial processing wastes for malachite green and congo red removal. Chem. Eng. Res. Des. 2015, 100, 27–38. [Google Scholar] [CrossRef]
- Salamat, S.; Hadavifar, M.; Rezaei, H. Preparation of nanochitosan-STP from shrimp shell and its application in removing of malachite green from aqueous solutions. J. Environ. Chem. Eng. 2019, 7, 103328. [Google Scholar] [CrossRef]
- Li, Z.; Chen, K.; Chen, Z.; Li, W.; Biney, B.W.; Guo, A.; Liu, D. Removal of malachite green dye from aqueous solution by adsorbents derived from polyurethane plastic waste. J. Environ. Chem. Eng. 2021, 9, 104704. [Google Scholar] [CrossRef]
- Danish, M.; Ahmad, T.; Hashim, R.; Said, N.; Akhtar, M.N.; Mohamad-Saleh, J.; Sulaiman, O. Comparison of surface properties of wood biomass activated carbons and their application against rhodamine B and methylene blue dye. Surfaces Interfaces 2018, 11, 1–13. [Google Scholar] [CrossRef]
- Da Silva Lacerda, V.; López-Sotelo, J.B.; Correa-Guimarães, A.; Hernández-Navarro, S.; Sánchez-Báscones, M.; Navas-Gracia, L.M.; Martín-Ramos, P.; Martín-Gil, J. Rhodamine B removal with activated carbons obtained from lignocellulosic waste. J. Environ. Manage. 2015, 155, 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabryanty, R.; Valencia, C.; Soetaredjo, F.E.; Putro, J.N.; Santoso, S.P.; Kurniawan, A.; Ju, Y.H.; Ismadji, S. Removal of crystal violet dye by adsorption using bentonite—alginate composite. J. Environ. Chem. Eng. 2017, 5, 5677–5687. [Google Scholar] [CrossRef] [Green Version]
- Pal, A.; Pan, S.; Saha, S. Synergistically improved adsorption of anionic surfactant and crystal violet on chitosan hydrogel beads. Chem. Eng. J. 2013, 217, 426–434. [Google Scholar] [CrossRef]
- Duman, O.; Tunç, S.; Gürkan Polat, T. Adsorptive removal of triarylmethane dye (Basic Red 9) from aqueous solution by sepiolite as effective and low-cost adsorbent. Microporous Mesoporous Mater. 2015, 210, 176–184. [Google Scholar] [CrossRef]
- Kizilkaya, B. Usage of Biogenic Apatite (Fish Bones) on Removal of Basic Fuchsin Dye from Aqueous Solution. J. Dispers. Sci. Technol. 2012, 33, 1596–1602. [Google Scholar] [CrossRef]
- Yek, P.N.Y.; Peng, W.; Wong, C.C.; Liew, R.K.; Ho, Y.L.; Wan Mahari, W.A.; Azwar, E.; Yuan, T.Q.; Tabatabaei, M.; Aghbashlo, M.; et al. Engineered biochar via microwave CO2 and steam pyrolysis to treat carcinogenic Congo red dye. J. Hazard. Mater. 2020, 395, 122636. [Google Scholar] [CrossRef]
- Das, L.; Sengupta, S.; Das, P.; Bhowal, A.; Bhattacharjee, C. Experimental and Numerical modeling on dye adsorption using pyrolyzed mesoporous biochar in Batch and fixed-bed column reactor: Isotherm, Thermodynamics, Mass transfer, Kinetic analysis. Surfaces Interfaces 2021, 23, 100985. [Google Scholar] [CrossRef]
- Iqbal, J.; Shah, N.S.; Sayed, M.; Niazi, N.K.; Imran, M.; Khan, J.A.; Khan, Z.U.H.; Hussien, A.G.S.; Polychronopoulou, K.; Howari, F. Nano-zerovalent manganese/biochar composite for the adsorptive and oxidative removal of Congo-red dye from aqueous solutions. J. Hazard. Mater. 2021, 403, 123854. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.M.; Imran, M.; Hussain, T.; Naeem, M.A.; Al-Kahtani, A.A.; Shah, G.M.; Ahmad, S.; Farooq, A.; Rizwan, M.; Majeed, A.; et al. Effective sequestration of Congo red dye with ZnO/cotton stalks biochar nanocomposite: MODELING, reusability and stability. J. Saudi Chem. Soc. 2021, 25, 101176. [Google Scholar] [CrossRef]
- Gurav, R.; Bhatia, S.K.; Choi, T.R.; Choi, Y.K.; Kim, H.J.; Song, H.S.; Lee, S.M.; Lee Park, S.; Lee, H.S.; Koh, J.; et al. Application of macroalgal biomass derived biochar and bioelectrochemical system with Shewanella for the adsorptive removal and biodegradation of toxic azo dye. Chemosphere 2021, 264, 128539. [Google Scholar] [CrossRef] [PubMed]
- Gokulan, R.; Avinash, A.; Prabhu, G.G.; Jegan, J. Remediation of remazol dyes by biochar derived from Caulerpa scalpelliformis—An eco-friendly approach. J. Environ. Chem. Eng. 2019, 7, 103297. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, G.; Li, W.; Zhang, L.; Chen, T.; Ding, L. Degradation of methyl orange through hydroxyl radical generated by optically excited biochar: Performance and mechanism. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 601, 125034. [Google Scholar] [CrossRef]
- Janoš, P.; Buchtová, H.; Rýznarová, M. Sorption of dyes from aqueous solutions onto fly ash. Water Res. 2003, 37, 4938–4944. [Google Scholar] [CrossRef]
- Janoš, P.; Šedivý, P.; Rýznarová, M.; Grötschelová, S. Sorption of basic and acid dyes from aqueous solutions onto oxihumolite. Chemosphere 2005, 59, 881–886. [Google Scholar] [CrossRef]
- Janoš, P.; Coskun, S.; Pilařová, V.; Rejnek, J. Removal of basic (Methylene Blue) and acid (Egacid Orange) dyes from waters by sorption on chemically treated wood shavings. Bioresour. Technol. 2009, 100, 1450–1453. [Google Scholar] [CrossRef]
- Bouhemal, N.; Addoun, F. Adsorption of dyes from aqueous solution onto activated carbons prepared from date pits: The effect of adsorbents pore size distribution. Desalin. Water Treat. 2009, 7, 242–250. [Google Scholar] [CrossRef]
- Bouchemal, N.; Azoudj, Y.; Merzougui, Z.; Addoun, F. Adsorption modeling of orange G dye on mesoporous activated carbon prepared from algerian date pits using experimental designs. Desalin. Water Treat. 2012, 45, 284–290. [Google Scholar] [CrossRef]
- Li, Y.; Meas, A.; Shan, S.; Yang, R.; Gai, X. Production and optimization of bamboo hydrochars for adsorption of Congo red and 2-naphthol. Bioresour. Technol. 2016, 207, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, L.; Xia, H.; Peng, J.; Zhang, S.; Cheng, S.; Shu, J. Kinetics and isotherms studies for congo red adsorption on mesoporous Eupatorium adenophorum-based activated carbon via microwave-induced H3PO4 activation. J. Mol. Liq. 2016, 224, 737–744. [Google Scholar] [CrossRef]
- Absalan, G.; Asadi, M.; Kamran, S.; Sheikhian, L.; Goltz, D.M. Removal of reactive red-120 and 4-(2-pyridylazo) resorcinol from aqueous samples by Fe3O4 magnetic nanoparticles using ionic liquid as modifier. J. Hazard. Mater. 2011, 192, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Oueslati, K.; Lima, E.C.; Ayachi, F.; Cunha, M.R.; Ben Lamine, A. Modeling the removal of Reactive Red 120 dye from aqueous effluents by activated carbon. Water Sci. Technol. 2020, 82, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.A.; Rahman, N.K. Equilibrium, kinetics and thermodynamic of Remazol Brilliant Orange 3R dye adsorption on coffee husk-based activated carbon. Chem. Eng. J. 2011, 170, 154–161. [Google Scholar] [CrossRef]
- Rápó, E.; Posta, K.; Suciu, M.; Szép, R.; Tonk, S. Adsorptive Removal of Remazol Brilliant Violet-5R Dye from Aqueous Solutions using Calcined Eggshell as Biosorbent. Acta Chim. Slov. 2019, 66, 648–658. [Google Scholar] [CrossRef]
- Arulkumar, M.; Sathishkumar, P.; Palvannan, T. Optimization of Orange G dye adsorption by activated carbon of Thespesia populnea pods using response surface method-ology. J. Hazard. Mater. 2011, 186, 827–834. [Google Scholar] [CrossRef]
- Kundu, S.; Chowdhury, I.H.; Naskar, M. Synthesis of hexagonal shaped nanoporous carbon for efficient adsorption of methyl orange dye. J. Mol. Liq. 2017, 234, 417–423. [Google Scholar] [CrossRef]
- Rahman, N.; Dafader, N.C.; Miah, A.R.; Shahnaz, S. Efficient removal of methyl orange from aqueous solution using amidoxime adsorbent. Int. J. Environ. Stud. 2018, 76, 594–607. [Google Scholar] [CrossRef]
- Ghany, H.M.A. Production of a new activated carbon prepared from palm fronds by thermal activation. Int. J. Eng. Technol. Manag. Res. 2019, 6, 34–43. [Google Scholar] [CrossRef]
- Vigneshwaran, S.; Sirajudheen, P.; Nikitha, M.; Ramkumar, K.; Meenakshi, S. Facile synthesis of sulfur-doped chitosan/biochar derived from tapioca peel for the removal of organic dyes: Isotherm, kinetics and mechanisms. J. Mol. Liq. 2021, 326, 115303. [Google Scholar] [CrossRef]
- Carrier, M.; Hardie, A.G.; Uras, Ü.; Görgens, J.; Knoetze, J. Production of char from vacuum pyrolysis of South-African sugar cane bagasse and its characterization as activated carbon and biochar. J. Anal. Appl. Pyrolysis 2012, 96, 24–32. [Google Scholar] [CrossRef]
- Zubair, M.; Manzar, M.S.; Mu’azu, N.D.; Anil, I.; Blaisi, N.I.; Al-Harthi, M.A. Functionalized MgAl-layered hydroxide intercalated date-palm biochar for Enhanced Uptake of Cationic dye: Kinetics, isotherm and thermodynamic studies. Appl. Clay Sci. 2020, 190, 105587. [Google Scholar] [CrossRef]
- Yao, X.; Ji, L.; Guo, J.; Ge, S.; Lu, W.; Chen, Y.; Cai, L.; Wang, Y.; Song, W. An abundant porous biochar material derived from wakame (Undaria pinnatifida) with high adsorption performance for three organic dyes. Bioresour. Technol. 2020, 318, 124082. [Google Scholar] [CrossRef] [PubMed]
- Palapa, N.R.; Taher, T.; Rahayu, B.R.; Mohadi, R.; Rachmat, A.; Lesbani, A. CuAl LDH/Rice husk biochar composite for enhanced adsorptive removal of cationic dye from aqueous solution. Bull. Chem. React. Eng. Catal. 2020, 15, 525–537. [Google Scholar] [CrossRef]
- Wu, J.; Yang, J.; Feng, P.; Huang, G.; Xu, C.; Lin, B. High-efficiency removal of dyes from wastewater by fully recycling litchi peel biochar. Chemosphere 2020, 246, 125734. [Google Scholar] [CrossRef]
- Tsai, W.T.; Chen, H.R. Removal of malachite green from aqueous solution using low-cost chlorella-based biomass. J. Hazard. Mater. 2010, 175, 844–849. [Google Scholar] [CrossRef]
- Nizam, N.U.M.; Hanafiah, M.M.; Mahmoudi, E.; Halim, A.A.; Mohammad, A.W. The removal of anionic and cationic dyes from an aqueous solution using biomass-based activated carbon. Sci. Rep. 2021, 11, 8623. [Google Scholar] [CrossRef]
- Shaikh, W.A.; Islam, R.U.; Chakraborty, S. Stable silver nanoparticle doped mesoporous biochar-based nanocomposite for efficient removal of toxic dyes. J. Environ. Chem. Eng. 2021, 9, 104982. [Google Scholar] [CrossRef]
- Hernández-Zamora, M.; Cristiani-Urbina, E.; Martínez-Jerónimo, F.; Perales-Vela, H.V.; Ponce-Noyola, T.; Montes-Horcasitas, M. del C.; Cañizares-Villanueva, R.O. Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris. Environ. Sci. Pollut. Res. 2015, 22, 10811–10823. [Google Scholar] [CrossRef]
- Chen, S.; Qin, C.; Wang, T.; Chen, F.; Li, X.; Hou, H.; Zhou, M. Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: Adsorption capacity, isotherm, kinetic, thermodynamics and mechanism. J. Mol. Liq. 2019, 285, 62–74. [Google Scholar] [CrossRef]
- Goswami, M.; Chaturvedi, P.; Kumar Sonwani, R.; Dutta Gupta, A.; Rani Singhania, R.; Shekher Giri, B.; Nath Rai, B.; Singh, H.; Yadav, S.; Sharan Singh, R. Application of Arjuna (Terminalia arjuna) seed biochar in hybrid treatment system for the bioremediation of Congo red dye. Bioresour. Technol. 2020, 307, 123203. [Google Scholar] [CrossRef] [PubMed]
- Fawzy, M.A.; Gomaa, M. Use of algal biorefinery waste and waste office paper in the development of xerogels: A low cost and eco-friendly biosorbent for the effective removal of congo red and Fe (II) from aqueous solutions. J. Environ. Manage. 2020, 262, 110380. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Gao, Y. Cetyl trimethyl ammonium bromide modified magnetic biochar from pine nut shells for efficient removal of acid chrome blue K. Bioresour. Technol. 2020, 312, 123564. [Google Scholar] [CrossRef] [PubMed]
- Hadi, P.; Xu, M.; Ning, C.; Sze Ki Lin, C.; McKay, G. A critical review on preparation, characterization and utilization of sludge-derived activated carbons for wastewater treatment. Chem. Eng. J. 2015, 260, 895–906. [Google Scholar] [CrossRef]
- Raj, A.; Yadav, A.; Rawat, A.P.; Singh, A.K.; Kumar, S.; Pandey, A.K.; Sirohi, R.; Pandey, A. Kinetic and thermodynamic investigations of sewage sludge biochar in removal of Remazol Brilliant Blue R dye from aqueous solution and evaluation of residual dyes cytotoxicity. Environ. Technol. Innov. 2021, 23, 101556. [Google Scholar] [CrossRef]
Dye | Modified Biochar Feedstock | Pyrolysis Conditions | Pore Volume (cm3/g) | BET Surface Area (m2/g) | Adsorption Capacity (mg/g) or Dye Removal (%) | Isotherm Type | Kinetic Model | Adsorbent Parameters | Mechanism | Reference | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature (K) | Heating Rate (K/min) | Time | pH | Equilibrium Time (min) | |||||||||
MB | Date palm fronds | 1073 | 20 | 240 | - | 70 | 210 | - | - | 7 | 180 | - | [144] |
MG | Tapioca peel + S- doped | 1073 | 10 | 180 | - | 145 | 30 | Langmuir, Freundlich | Pseudo I-order, Pseudo II-order | 2–10 | 1080 | - | [99] |
Rh B | Tapioca peel + S- doped | 1073 | 10 | 180 | - | 145 | 30 | Langmuir, Freundlich | Pseudo I-order, Pseudo II-order | 2–10 | 1080 | - | [99] |
MB | Areca leaf + K2FeO4− | 473 | 5 | 60 | - | 20 | 250 | Langmuir, Freundlich | Pseudo I-order, Pseudo II-order | 7 | 720 | Electrostatic attraction | [106] |
MG | Chitosan-tapioca peel + S-doped | 873 | - | 120 | - | 120 | 50 | Langmuir, Freundlich | Pseudo I-order, Pseudo II-order | 2–12 | 160 | Electrostatic attraction, Hydrogen bonding | [145] |
Rh B | Chitosan-tapioca peel + S-doped | 873 | - | 120 | - | 120 | 40 | Langmuir, Freundlich | Pseudo I-order, Pseudo II-order | 2–12 | 160 | Electrostatic attraction, Hydrogen bonding, π-π interactions | [145] |
MB | Sugarcane bagasse + steam | 1073 | 10 | 120 | 0.356 | 570 | 5220 | Langmuir, Freundlich | - | 7.4 | 180 | - | [146] |
MB | Date palm fronds with Fe/Mn | 973 | 3 | 240 | - | 430 | 300 | Langmuir, Freundlich | Pseudo I-order, Pseudo II-order, Intraparticle diffusion, Elovich | 4–10 | 240 | Surface adsorption, π-π interactions, Ion exchange, Pore-filling | [147] |
MB | Wakame Undaria pinnatifida leaves with calcination | 1073 | 10 | 120 | - | 1160 | 840 | Langmuir, Freundlich | Pseudo I-order, Pseudo II-order | 2–12 | 300 | Surface adsorption, Hydrogen bonding, π-π interactions, Pore-filling | [148] |
Rh B | Wakame Undaria pinnatifida leaves with calcination | 1073 | 10 | 120 | - | 1160 | 530 | Langmuir, Freundlich | Pseudo I-order, Pseudo II-order | 2–12 | 300 | Surface adsorption, Hydrogen bonding, π-π interactions, Pore-filling | [148] |
MG | Wakame Undaria pinnatifida leaves with calcination | 1073 | 10 | 120 | - | 1160 | 4065 | Langmuir, Freundlich | Pseudo I-order, Pseudo II-order | 2–12 | 300 | Surface adsorption, Hydrogen bonding, π-π interactions, Pore-filling | [148] |
MG | Corn straw | 773 | - | 180 | - | 35 | 520 | Langmuir, Freundlich, Temkin | Pseudo I-order, Pseudo II-order, Intra diffusion | 2–9 | 20 | [76] | |
MG | Rice husk + Cu + Al | 353 | - | 60 | 0.350 | 200 | 470 | Langmuir, Freundlich | 9 | 200 | Pore-filling, π- π interactions | [149] | |
MG | Litchi peel + HC | 1123 | 60 | 0.588 | 1010 | 2470 | Freundlich | Elovich | 8 | 720 | Hydrogen bonding, π-π interactions, Pore-filling, Electrostatic interaction | [150] | |
MG | Sugarcane bagasse + ZnCl2 | 1073 | - | 120 | 0.0235 | 50 | 90 | Freundlich | Pseudo II-order | 8 | - | Boyd | [124] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parthasarathy, P.; Sajjad, S.; Saleem, J.; Alherbawi, M.; Mckay, G. A Review of the Removal of Dyestuffs from Effluents onto Biochar. Separations 2022, 9, 139. https://doi.org/10.3390/separations9060139
Parthasarathy P, Sajjad S, Saleem J, Alherbawi M, Mckay G. A Review of the Removal of Dyestuffs from Effluents onto Biochar. Separations. 2022; 9(6):139. https://doi.org/10.3390/separations9060139
Chicago/Turabian StyleParthasarathy, Prakash, Samra Sajjad, Junaid Saleem, Mohammad Alherbawi, and Gordon Mckay. 2022. "A Review of the Removal of Dyestuffs from Effluents onto Biochar" Separations 9, no. 6: 139. https://doi.org/10.3390/separations9060139
APA StyleParthasarathy, P., Sajjad, S., Saleem, J., Alherbawi, M., & Mckay, G. (2022). A Review of the Removal of Dyestuffs from Effluents onto Biochar. Separations, 9(6), 139. https://doi.org/10.3390/separations9060139