Nanoporosity and Isosteric Enthalpy of Adsorption of CH4, H2, and CO2 on Natural Chabazite and Exchanged
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. X-ray Analysis (XRD)
3.2. X-ray Fluorescence (XRF)
3.3. Scanning Electron Microscopy (SEM)
3.4. N2 Adsorption
3.4.1. Dubinin–Astakhov (DA) Approach
3.4.2. Differential Curves of Comparison Plots (DCCP) Method
3.5. Adsorption of CO2, CH4, and H2 on Chabazite at Low Coverage Degrees
3.6. Isosteric Enthalpy of Adsorption
4. Discussion
4.1. DRX
4.2. XRF
4.3. SEM
4.4. N2 Adsorption
4.4.1. Dubinin–Astakhov (DA) Approach
4.4.2. Differential Curves of Comparison Plots (DCCP) Method
4.5. Adsorption of CO2, CH4, and H2 on Chabazite at Zero Coverage
4.6. Isosteric Enthalpy of Adsorption
- −qst (CO2): Na: 1 > 3 > 2; Ca: 1> 3 > 2; Ca: 2 > 3 > 1 and Mg: 3 > 1 > 2
- −qst (CH4): Mg: 1 > 2 > 3; Ca: 2 > 1 > 3; Na: 1 > 2 > 3, while for
- −qst (H2): Mg: 1 > 2 > 3, Ca: 2 > 3 > 1, and Na: 2 > 3 > 1.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Quiroz-Estrada, K. Uso de Zeolitas Nanoporosas con Efecto Trapdoor Aplicadas a la Adsorción de CO2. Ph.D. Thesis, IPN, Mexico City, México, June 2020. [Google Scholar]
- Secretaría del Medio Ambiente de la Ciudad de México. Inventario de Emisiones de la Ciudad de México 2016. Dirección General de Gestión de la Calidad del Aire, Dirección de Programas de Calidad del Aire e Inventario de Emisiones. Ciudad de México. Septiembre 2018. Available online: http://www.aire.cdmx.gob.mx/descargas/publicaciones/flippingbook/inventario-emisiones-2016/mobile/inventario-emisiones-2016.pdf (accessed on 4 March 2022).
- Li, Y.D.; Yi, H.H.; Tang, X.L.; Li, F.R.; Yuan, Q. Adsorption separation of CO2/CH4 gas mixture on the commercial zeolites at atmospheric pressure. J. Chem. Eng. 2013, 229, 50–56. [Google Scholar] [CrossRef]
- Yuan, B.; Wu, X.; Chen, Y.; Huang, J.; Luo, H.; Deng, S. Adsorption of CO2, CH4, and N2 on Ordered mesoporous carbon: Approach for greenhouse gases capture and biogas up-grading. Environ. Sci. Technol. 2013, 47, 5474–5480. [Google Scholar] [CrossRef] [PubMed]
- Palomino, M.; Corma, A.; Rey, F.; Valencia, S. New Insights on CO2−CH4 Separation Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs. Langmuir 2009, 26, 1910–1917. [Google Scholar] [CrossRef]
- Banaei, M.; Anbia, M.; Kazemipour, M. Enhancement of CO2/CH4 Adsorptive Selectivity by Functionalized Nano Zeolite. J. Ultrafine Grained Nanostructured Mater. 2018, 51, 174–182. [Google Scholar]
- Feng, L.; Shen, Y.; Wu, T.; Bing, L.; Zhang, D.; Tang, Z. Adsorption equilibrium isotherms and thermodynamic analysis of CH4, CO2, CO, N2 and H2 on NaY Zeolite. Adsorption 2020, 26, 1101–1111. [Google Scholar] [CrossRef]
- Becker, T.M.; Heinen, J.; Dubbeldam, D.; Lin, L.C.; Vlugt, T.J.H. Polarizable Force Fields for CO2 and CH4 Adsorption in M-MOF-74. J. Phys. Chem. C. 2017, 121, 4659–4673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palomino, M.; Corma, A.; Jordá, J.L.; Rey, F.; Valencia, S. Zeolite RHO: A highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification. Chem. Commun. Camb. 2012, 48, 215–217. [Google Scholar] [CrossRef]
- Guo, Y.; Sun, T.; Gu, Y.; Liu, X.; Ke, Q.; Wei, X.; Wang, S. Rational Synthesis of Chabazite (CHA) Zeolites with Controlled Si/Al Ratio and Their CO2/CH4/N2 Adsorptive Separation Performances. Chem.–Asian J. 2018, 13, 3222–3230. [Google Scholar] [CrossRef]
- Yue, Q.; Halamek, J.; Rainer, D.N.; Opanasenko, M. Tuning the CHA framework composition by isomorphous substitution for CO2/CH4 separation. Chem. Eng. J. 2022, 429, 131277. [Google Scholar] [CrossRef]
- Pour, A.A.; Sharifnia, S.; Salehi, R.N.; Ghodrati, M. Performance evaluation of clinoptilolite and 13X zeolites in CO2 separation from CO2/CH4 mixture. J. Nat. Gas Sci. Eng. 2015, 26, 1246–1253. [Google Scholar] [CrossRef]
- Campo, M.C.; Ribeiro, A.M.; Ferreira, A.F.P.; Santos, J.C.; Lutz, C.; Loureiro, J.M.; Rodrigues, A.E. Carbon dioxide removal for methane upgrade by a VSA process using an improved 13X zeolite. Fuel Process. Technol. 2016, 143, 185–194. [Google Scholar] [CrossRef]
- Breck, D.W. Zeolite Molecular Sieves: Structure, Chemistry and Use; John Wiley & Sons Inc.: New York, USA, 1984; pp. 77–78. [Google Scholar]
- IZA. Commission of Natural Zeolites, Chabazite Series, (n. d.). Available online: http://www.iza-online.org/natural/Datasheets/Chabazite/Chabazite.html (accessed on 3 February 2022).
- Yakubovich, O.V.; Massa, W.; Gavrilenko, P.G.; Pekov, I.V. Crystal structure of chabazite K. Crystallogr. Rep. 2005, 50, 544–553. [Google Scholar] [CrossRef]
- Shang, J.; Li, G.; Singh, R.; Xiao, P.; Liu, J.Z.; Webley, P.A. Determination of composition range for “molecular trapdoor” effect in chabazite zeolite. J. Phys. Chem. C. 2013, 117, 12841–12847. [Google Scholar] [CrossRef]
- Reid, R.C.; Prausnitz, J.M.; Sherwood, T.K. The Properties of Gases and Liquids; McGraw-Hill: New York, NY, USA, 1977. [Google Scholar]
- Quiroz, K.; Pacella, A.; Ballirano, P.; Hernández, M.A.; Felipe, C.; Esparza, M. Crystal chemical and structural characterization of natural and cation-exchanged Mexican erionite. Mineral 2020, 10, 772. [Google Scholar] [CrossRef]
- Saeidi, N.; Parvini, M. Accuracy of Dubinin-Astakhov and Dubinin-Radushkevich adsorption isotherm models in evaluating micropore volume of bentonite. Period. Polytech. Chem. Eng. 2016, 60, 123–129. [Google Scholar]
- Hernández, V.; Quiroz, K.; Hernández, M. Evaluation of nanopore size distribution by adsorption differential curves of clinoptilolite zeolites chemically modified. Mex. J. Mater. Sci. Eng. 2016, 3, 49–53. [Google Scholar]
- Majd, M.M.; Kordzadeh-Kermani, V.; Ghalandari, V.; Askari, A.; Sillanpää, M. Adsorption isotherm models: A comprehensive and systematic review (2010–2020). Sci. Total Environ. 2022, 812, 151334. [Google Scholar] [CrossRef]
- Diaz, E.; Ordoñez, S.; Vega, A.; Coca, L. Adsorption Characterization of Different Volatile Organic Compounds over alumina, zeolites and activated carbon using gas chromatography. J. Chromatogr. A 2009, 1049, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, M.A.; Pestryakov, A.; Portillo, R.; Salgado, M.A.; Rojas, F.; Rubio, E.; Ruiz, S.; Petranovskii, V. CO2 Sequestration by Natural Zeolite for Greenhouse Effect Control. Procedia Chem. 2015, 15, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Rouquerol, F.; Rouquerol, J.; Sing, K.S.W.; Llewellyn, P.; Maurin, G. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications; Academic Press: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Young, R.A. Introduction to the Rietveld method. In The Rietveld Method; Young, R.A., Ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 1993; p. 298. [Google Scholar]
- Quiroz, K.; Hernández, M.A.; Rojas, F.; Portillo, R.; Rubio, E.; López, L. N2 and CO2 adsorption by soils with high kaolinite content from San Juan Amecac, Puebla, México. Minerals 2016, 6, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Quiroz, K.; Hernández, M.Á.; Mendoza, C.F.; Santamaría, J.D.; Petranovskii, V.; Rubio, E. Critical Admission Temperature of H2 and CH4 in Nanopores of Exchanged ERI Zeolites. Nanomaterials 2019, 9, 160. [Google Scholar] [CrossRef] [Green Version]
- Subagyonoa, R.R.D.J.N.; Chaffeeb, A.L. CO2 adsorption on SBA-15: A molecular modelling. IOP Conf. Ser. Earth Environ. Sci. 2018, 144, 012045. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Ackley, M.W.; Rege, S.U.; Saxena, H. Application of natural zeolites in the purification and separation of gases. Micro Mesoporous Mater. 2003, 61, 25–42. [Google Scholar] [CrossRef]
- Krishna, R.; van Baten, J.M. How Reliable Is the Ideal Adsorbed Solution Theory for the Estimation of Mixture Separation Selectivities in Microporous Crystalline Adsorbents? ACS Omega 2021, 6, 15499–15513. [Google Scholar] [CrossRef] [PubMed]
Adsorbate | Kinetic Diameter, s, nm | Polarizibility, 10−24 cm3 | Length, nm | Width, nm | Quadrupole, A3 |
---|---|---|---|---|---|
CO2 | 0.33 | 1.9 | 0.26 | 0.18 | 0.64 |
CH4 | 0.38 | 2.6 | 0.2 | 0.2 | ----- |
H2 | 0.289 | 0.81, 0.9 | --- | ---- | ---- |
N2 | 0.364 | 1.4, 2.38 | 2.1 | 1.5 | 0.31 |
Mineralogical Phases | Card Number | wt% | Simplified Name |
---|---|---|---|
(Na,Ca)0.3(Al, Mg)2Si4O10(OH)2 x H2O | 00-003-0015 | 3.34 | Montmorillonite |
Ca3.16 Si36O72 (OH2)21.80 | 01-070-1859 | 39 | Ca-Clinoptilolite |
SiO2 | 01-085-0795 | <0.2 | Quartz |
(Ca3.64 K1.91 Mg1.2 Na1.15) [Al2.81Si9.19 O 23.92]•24.27H2O | 01-056-679 | 54 | Ca-Chabazite |
CHAN | CHACa1 | CHACa2 | CHACa3 | CHANa1 | CHANa2 | CHANa3 | CHAMg1 | CHAMg2 | CHAMg3 | |
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 59.6 | 57.9 | 57 | 57.9 | 55.7 | 54.4 | 61.2 | 59.4 | 55.3 | 58.2 |
Al2O3 | 14.5 | 14.6 | 15.2 | 14.2 | 13.9 | 14.7 | 15.7 | 14.4 | 14.4 | 15.4 |
CaO | 3.56 | 4.84 | 4.66 | 5.6 | 3.91 | 4.34 | 3.01 | 3.94 | 3.5 | 3.84 |
MgO | 2.59 | 1.85 | 1.6 | 1.83 | 1.69 | 1.6 | 1.8 | 2.6 | 2.9 | 2.7 |
Fe2O3 | 2.41 | 1.47 | 1.33 | 1.37 | 1.47 | 1.54 | 1.32 | 2.11 | 2.54 | 2.11 |
K2O | 2.33 | 1.94 | 2.05 | 2.04 | 2.06 | 1.66 | 2.19 | 2.43 | 1.8 | 2.09 |
Na2O | 1.35 | 0.98 | 0.85 | 0.69 | 1.31 | 1.57 | 1.64 | 1.11 | nd * | 0.85 |
TiO2 | 0.39 | 0.53 | 0.4 | 0.4 | 0.42 | 0.46 | 0.44 | 0.49 | 0.51 | 0.36 |
BaO | nd * | 0.28 | 0.27 | nd | 0.38 | 0.49 | nd | 0.44 | nd | Nd |
SrO | 0.21 | 0.24 | 0.25 | 0.23 | 0.13 | 0.18 | 0.2 | 0.29 | 0.27 | 0.23 |
Si/Al | 4.11 | 3.97 | 3.75 | 4.08 | 4.01 | 3.70 | 3.90 | 4.13 | 3.84 | 3.78 |
Sample | ASL m2 g−1 | ASB m2 g−1 | ASt m2 g−1 | CB | V∑ cm3 g−1 | W0t cm3 g−1 | Vmeso cm3 g−1 |
---|---|---|---|---|---|---|---|
CHAS | 769 | 538 | ----- | −62 | 0.2709 | 0.270 | ------ |
CHAN | 429 | 380 | 70.9 | −420 | 0.219 | 0.14 | 0.079 |
CHANa1 | 430 | 372 | 48.6 | −217 | 0.197 | 0.15 | 0.047 |
CHANa2 | 420 | 339 | 55.0 | −95 | 0.197 | 0.121 | 0.076 |
CHANa3 | 459 | 404 | 73.0 | −310 | 0.228 | 0.127 | 0.101 |
CHACa1 | 426 | 365 | 70.9 | −220 | 0.21 | 0.15 | 0.06 |
CHACa2 | 415 | 341 | 69.5 | −97 | 0.213 | 0.14 | 0.073 |
CHACa3 | 412 | 363 | 72.7 | −313 | 0.203 | 0.15 | 0.053 |
CHAMg1 | 391 | 334 | 61.2 | −109 | 0.194 | 0.102 | 0.082 |
CHAMg2 | 381 | 347 | 63.9 | −879 | 0.194 | 0.130 | 0.064 |
CHAMg3 | 375 | 323 | 57.4 | −195 | 0.185 | 0.130 | 0.055 |
Sample | E0 kJ/mol | N | W0 cm3 g−1 | Dp nm | Al |
---|---|---|---|---|---|
CHAS | 8.08 | 3.5 | 0.30 | 0.35 | ------ |
CHAN | 10.31 | 3.1 | 0.14 | 0.325 | 14.5 |
CHANa1 | 11.1 | 2.8 | 0.15 | 0.32 | 13.9 |
CHANa2 | 10.05 | 3.4 | 0.14 | 0.33 | 14.7 |
CHANa3 | 10.32 | 2.9 | 0.16 | 0.325 | 15.7 |
CHACa1 | 9.34 | 1.6 | 0.15 | 0.31 | 14.6 |
CHACa2 | 10.36 | 3 | 0.14 | 0.33 | 15.2 |
CHACa3 | 10.29 | 2.1 | 0.15 | 0.325 | 14.2 |
CHAMg1 | 9.65 | 3.5 | 0.12 | 0.335 | 14.4 |
CHAMg2 | 9.49 | 3.5 | 0.13 | 0.335 | 14.4 |
CHAMg3 | 9.88 | 3.4 | 0.13 | 0.33 | 15.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández, M.Á.; Quiroz-Estrada, K.; Hernandez-Salgado, G.I.; Portillo, R.I.; Santamaría-Juárez, J.D.; Velasco, M.d.l.Á.; Rubio, E.; Petranovskii, V. Nanoporosity and Isosteric Enthalpy of Adsorption of CH4, H2, and CO2 on Natural Chabazite and Exchanged. Separations 2022, 9, 150. https://doi.org/10.3390/separations9060150
Hernández MÁ, Quiroz-Estrada K, Hernandez-Salgado GI, Portillo RI, Santamaría-Juárez JD, Velasco MdlÁ, Rubio E, Petranovskii V. Nanoporosity and Isosteric Enthalpy of Adsorption of CH4, H2, and CO2 on Natural Chabazite and Exchanged. Separations. 2022; 9(6):150. https://doi.org/10.3390/separations9060150
Chicago/Turabian StyleHernández, Miguel Ángel, Karla Quiroz-Estrada, Gabriela I. Hernandez-Salgado, Roberto Ignacio Portillo, Juana Deisy Santamaría-Juárez, Ma de los Ángeles Velasco, Efraín Rubio, and Vitalii Petranovskii. 2022. "Nanoporosity and Isosteric Enthalpy of Adsorption of CH4, H2, and CO2 on Natural Chabazite and Exchanged" Separations 9, no. 6: 150. https://doi.org/10.3390/separations9060150
APA StyleHernández, M. Á., Quiroz-Estrada, K., Hernandez-Salgado, G. I., Portillo, R. I., Santamaría-Juárez, J. D., Velasco, M. d. l. Á., Rubio, E., & Petranovskii, V. (2022). Nanoporosity and Isosteric Enthalpy of Adsorption of CH4, H2, and CO2 on Natural Chabazite and Exchanged. Separations, 9(6), 150. https://doi.org/10.3390/separations9060150