Comparative Study of Natural Antioxidants from Glycine max, Anethum graveolensand Pimpinella anisum Seed and Sprout Extracts Obtained by Ultrasound-Assisted Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. Germination
2.3. Sample Preparation
2.4. HPTLC Analysis
2.5. FT-IR Analysis
2.6. Identification of Bioactive Compounds by HPLC-DAD
2.7. Total Polyphenol Content (TPC)
2.8. Total Flavonoids Content (TFC)
2.9. Total Antioxidant Capacity (TAC)
2.10. Free Radical Scavenging Activity DPPH
2.11. ABTS Radical Cation Decolorization Assay
2.12. Determination of Iron Binding Ability of Chelators
2.13. Molecular Modelling Study of Genistein
3. Results and Discussion
3.1. Germination
3.2. High Performance Thin Layer Chromatography Analysis (HPTLC)
3.3. FT-IR Spectra
3.4. Identification of Bioactive Compounds by HPLC-DAD
3.5. Total Polyphenol Content
3.6. Total Flavonoids Content (TFC)
3.7. Antioxidant Activity
3.7.1. Total Antioxidant Capacity (TAC)
3.7.2. Free Radical Scavenging Activity DPPH
3.7.3. ABTS Radical Cation Decolorization Assay
3.7.4. Iron Binding Ability of Chelators
3.8. Molecular Modelling Study of Genistein
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaur, N.; Chugh, V.; Gupta, A.K. Essential fatty acids as functional components of foods—A review. J. Food Sci. Technol. 2014, 51, 2289–2303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Wu, Z.; Zuo, G.; Lim, S.S.; Yan, H. Defatted seeds of oenotherabiennis as a potential functional food ingredient for diabetes. Foods 2021, 10, 538. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M.; Sánchez-Moreno, C.; de Pascual-Teresa, S. Flavonoid-flavonoid interaction and its effect on their antioxidant activity. Food Chem. 2010, 121, 691–696. [Google Scholar] [CrossRef]
- Pająk, P.; Socha, R.; Broniek, J.; Królikowska, K.; Fortuna, T. Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chem. 2019, 275, 69–76. [Google Scholar] [CrossRef]
- BrglezMojzer, E.; KnezHrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Sridhar, A.; Ponnuchamy, M.; Kumar, P.S.; Kapoor, A.; Vo, D.V.N.; Prabhakar, S. Techniques and Modeling of Polyphenol Extraction from Food: A Review; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; Volume 19, ISBN 0123456789. [Google Scholar]
- Wang, Z.; Zhang, Y.; Yan, H. In situ net fishing of α-glucosidase inhibitors from evening primrose (Oenothera biennis) defatted seeds by combination of LC-MS/MS{,} molecular networking{,} affinity-based ultrafiltration{,} and molecular docking. Food Funct. 2022, 13, 2545–2558. [Google Scholar] [CrossRef]
- Badole, S.L.; Bodhankar, S.L. Glycine Max (Soybean) Treatment for Diabetes; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 9780123971531. [Google Scholar]
- Lee, K.S.; Woo, S.Y.; Lee, M.J.; Kim, H.Y.; Ham, H.; Lee, D.J.; Choi, S.W.; Seo, W.D. Isoflavones and soyasaponins in the germ of Korean soybean [Glycine max (L.) Merr.] cultivars and their compound-enhanced BMP-2-induced bone formation. Appl. Biol. Chem. 2020, 63, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.M.; Yoon, H.; Lee, S.; Ko, H.C.; Shin, M.J.; Lee, M.C.; Oh, S.; Desta, K.T. Comparison of Isoflavone Composition and Content in Seeds of Soybean (Glycine max (L.) Merrill) Germplasms with Different Seed Coat Colors and Days to Maturity. Korean J. Plant Resour. 2020, 33, 558–577. [Google Scholar]
- Al-Maharik, N. Isolation of naturally occurring novel isoflavonoids: An update. Nat. Prod. Rep. 2019, 36, 1156–1195. [Google Scholar] [CrossRef]
- Messina, M.; Hughes, C. Efficacy of soyfoods and soybean isoflavone supplements for alleviating menopausal symptoms is positively related to initial hot flush frequency. J. Med. Food 2003, 6, 1–11. [Google Scholar] [CrossRef]
- Taku, K.; Melby, M.K.; Kronenberg, F.; Kurzer, M.S.; Messina, M. Extracted or synthesized soybean isoflavones reduce menopausal hot flash frequency and severity: Systematic review and meta-analysis of randomized controlled trials. Menopause 2012, 19, 776–790. [Google Scholar] [CrossRef] [PubMed]
- Nina Estrella, R.E.; Landa, A.I.; Lafuente, J.V.; Gargiulo, P.A. Effects of antidepressants and soybean association in depressive menopausal women. Acta Pol. Pharm. Drug Res. 2014, 71, 323–327. [Google Scholar]
- Jana, S.; Shekhawat, G. Anethum graveolens: An Indian traditional medicinal herb and spice. Pharmacogn. Rev. 2010, 4, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Memariani, Z.; Gorji, N.; Moeini, R.; Farzaei, M.H. Traditional Uses; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780128153543. [Google Scholar]
- Najaran, Z.T.; Hassanzadeh, M.K.; Nasery, M.; Emami, S.A. Dill (Anethum graveolens L.) Oils; Elsevier Inc.: Amsterdam, The Netherlands, 2016; ISBN 9780124166448. [Google Scholar]
- Wattanathorn, J.; Ohnon, W.; Thukhammee, W.; Muchmapura, S.; Wannanon, P.; Tong-Un, T. Cerebroprotective Effect against Cerebral Ischemia of the Combined Extract of Oryza sativa and Anethum graveolens in Metabolic Syndrome Rats. Oxid. Med. Cell. Longev. 2019, 2019, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Moon, H.J.; Xiang, L.P.; Jong, M.K.; Sung, W.K.; Jeong, H.P. Inhibition of cholinesterase and amyloid-β aggregation by resveratrol oligomers from Vitisamurensis. Phyther. Res. 2008, 22, 544–549. [Google Scholar] [CrossRef]
- Saghafi, N.; Karjalian, M.; Ghazanfarpour, M.; Khorsand, I.; Rakhshandeh, H.; Mirteimouri, M.; Babakhanian, M.; Khadivzadeh, T.; Najafzadeh, M.J.; Ghorbani, A.; et al. The effect of a vaginal suppository formulation of dill (Anethum graveolens) in comparison to clotrimazole vaginal tablet on the treatment of vulvovaginal candidiasis. J. Obstet. Gynaecol. 2018, 38, 985–988. [Google Scholar] [CrossRef] [PubMed]
- Afonso, A.C.; Oliveira, D.; Saavedra, M.J.; Borges, A.; Simões, M. Biofilms in diabetic foot ulcers: Impact, risk factors and control strategies. Int. J. Mol. Sci. 2021, 22, 8278. [Google Scholar] [CrossRef] [PubMed]
- Orav, A.; Raal, A.; Arak, E. Essential oil composition of Pimpinella anisum L. fruits from various European countries. Nat. Prod. Res. 2008, 22, 227–232. [Google Scholar] [CrossRef]
- Lee, J.B.; Yamagishi, C.; Hayashi, K.; Hayashi, T. Antiviral and immunostimulating effects of lignin-carbohydrate-protein complexes from Pimpinella anisum. Biosci. Biotechnol. Biochem. 2011, 75, 459–465. [Google Scholar] [CrossRef] [Green Version]
- Hosseinzadeh, H.; Tafaghodi, M.; Abedzadeh, S.; Taghiabadi, E. Effect of aqueous and ethanolic extracts of Pimpinella anisum L. seeds on milk production in rats. JAMS J. Acupunct. Meridian Stud. 2014, 7, 211–216. [Google Scholar] [CrossRef]
- BettaiebRebey, I.; AidiWannes, W.; Kaab, S.B.; Bourgou, S.; Tounsi, M.S.; Ksouri, R.; Fauconnier, M.L. Bioactive compounds and antioxidant activity of Pimpinella anisum L. accessions at different ripening stages. Sci. Hortic. 2019, 246, 453–461. [Google Scholar] [CrossRef]
- Huda, J.A.; Hameed, I.H.; Hamza, L.F. Anethum graveolens: Physicochemical properties, medicinal uses, antimicrobial effects, antioxidant effect, anti-inflammatory and analgesic effects: A review. Int. J. Pharm. Qual. Assur. 2017, 8, 88–91. [Google Scholar] [CrossRef]
- Shahamat, Z.; Abbasi-Maleki, S.; MohammadiMotamed, S. Evaluation of antidepressant-like effects of aqueous and ethanolic extracts of Pimpinella anisum fruit in mice. Avicenna J. Phytomedicine 2016, 6, 322–328. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. Anise (Pimpinella anisum L.), a dominant spice and traditional medicinal herb for both food and medicinal purposes. Cogent Biol. 2019, 5, 1673688. [Google Scholar] [CrossRef]
- Tabacaru, A.; Botezatu, A.V.D.; Horincar, G.; Furdui, B.; Dinica, R.M. Green accelerated synthesis, antimicrobial activity and seed germination test of quaternary ammonium salts of 1,2-bis(4-pyridyl)ethane. Molecules 2019, 24, 2424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fotsing Yannick Stéphane, F.; Kezetas Jean Jules, B.; El-Saber Batiha, G.; Ali, I.; Ndjakou Bruno, L. Extraction of Bioactive Compounds from Medicinal Plants and Herbs. In Natural Medicinal Plants; El-Shemy, H., Ed.; IntechOpen: London, UK, 2022; Chapter 9; pp. 1–39. [Google Scholar] [CrossRef]
- Maksoud, S.; Abdel-Massih, R.M.; Rajha, H.N.; Louka, N.; Chemat, F.; Barba, F.J.; Debs, E. Citrus aurantium l. Active constituents, biological effects and extraction methods. An updated review. Molecules 2021, 26, 5832. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Nn, A. A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Med. Aromat. Plants 2015, 4, 3–8. [Google Scholar] [CrossRef]
- Chaves, J.O.; de Souza, M.C.; Da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Machado, A.P.D.F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-De-Peredo, A.V.; Barbero, G.F.; et al. Extraction of Flavonoids from Natural Sources Using Modern Techniques. Front. Chem. 2020, 8, 507887. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Ashraf, M. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 2009, 14, 2167–2180. [Google Scholar] [CrossRef]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef] [Green Version]
- Heimler, D.; Romani, A.; Ieri, F. Plant polyphenol content, soil fertilization and agricultural management: A review. Eur. Food Res. Technol. 2017, 243, 1107–1115. [Google Scholar] [CrossRef]
- Adebooye, O.C. Phyto-constituents and anti-oxidant activity of the pulp of snake tomato (Trichosanthes cucumerina L.). African J. Tradit. Complement. Altern. Med. 2008, 5, 173–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Godbout, S.; Valéro, J.R. Extraction and Analysis of Polyphenols: Recent trends. Crit. Rev. Biotechnol. 2011, 31, 227–249. [Google Scholar] [CrossRef] [PubMed]
- Medi, M.; Jasprica, I.; Mornar, A.; Males, Z. Application of TLC in the Isolation and Analysis of Flavonoid. In Thin Layer Chromatography in Phytochemistry; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: London, UK, 2008; pp. 405–424. [Google Scholar]
- Zhang, Y.; Liu, C.; Zhang, Z.; Qi, Y.; Wu, G.; Li, S. Solvent gradient elution for comprehensive separation of constituents with wide range of polarity in Apocynumvenetum leaves by high-speed counter-current chromatography. J. Sep. Sci. 2010, 33, 2743–2748. [Google Scholar] [CrossRef] [PubMed]
- Busuioc, A.C.; Botezatu, A.V.D.; Furdui, B.; Vinatoru, C.; Maggi, F.; Caprioli, G.; Dinica, R.M. Comparative study of the chemical compositions and antioxidant activities of fresh juices from romaniancucurbitaceae varieties. Molecules 2020, 25, 5468. [Google Scholar] [CrossRef]
- Yeo, D.; Dinica, R.; Yapi, H.F.; Furdui, B.; Praisler, M.; Djaman, A.J.; N’Guessan, J.D. Évaluation de l’activité anti-inflammatoire et screening phytochimique des feuilles de Annona senegalensis. Therapie 2011, 66, 73–80. [Google Scholar] [CrossRef]
- Balanescu, F.; Mihaila, M.D.I.; Cârâc, G.; Furdui, B.; Vînătoru, C.; Avramescu, S.M.; Lisa, E.L.; Cudalbeanu, M.; Dinica, R.M. Flavonoid profiles of two new approved romanianocimum hybrids. Molecules 2020, 25, 4573. [Google Scholar] [CrossRef]
- Robu, S.; Chesaru, B.I.; Diaconu, C.; Dumitriubuzia, O.; Tutunaru, D.; Stanescu, U.; Lisa, E.L. Lavandula hybrida: Microscopic characterization and the evaluation of the essential oil. Farmacia 2016, 64, 914–917. [Google Scholar]
- El Moujahed, S.; Errachidi, F.; AbouOualid, H.; Botezatu-Dediu, A.V.; OuazzaniChahdi, F.; KandriRodi, Y.; Dinica, R.M. Extraction of insoluble fibrous collagen for characterization and crosslinking with phenolic compounds from pomegranate byproducts for leather tanning applications. RSC Adv. 2022, 12, 4175–4186. [Google Scholar] [CrossRef]
- Mao, S.; Wang, K.; Lei, Y.; Yao, S.; Lu, B.; Huang, W. Antioxidant synergistic effects of Osmanthus fragrans flowers with green tea and their major contributed antioxidant compounds. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cudalbeanu, M.; Ghinea, I.O.; Furdui, B.; Dah-Nouvlessounon, D.; Raclea, R.; Costache, T.; Cucolea, I.E.; Urlan, F.; Dinica, R.M. Exploring New Antioxidant and Mineral Compounds from Nymphaea alba Wild-Grown in Danube Delta Biosphere. Molecules 2018, 23, 1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, S.-L.; Shih, Y.-W.; Chiu, Y.-M.; Tseng, S.-F.; Li, C.-C.; Wu, C.-C. By-Products of the Black Soybean Sauce Manufacturing Process as Potential Antioxidant and Anti-Inflammatory Materials for Use as Functional Foods. Plants 2021, 10, 2579. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, R.; Rastogi, S.; Vijayakumar, M.; Shirwaikar, A.; Rawat, A.K.S.; Mehrotra, S.; Pushpangadan, P. Studies on the antioxidant activities of Desmodiumgangeticum. Biol. Pharm. Bull. 2003, 26, 1424–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudan, R.; Bhagat, M.; Gupta, S.; Singh, J.; Koul, A. Iron (FeII) chelation, ferric reducing antioxidant power, and immune modulating potential of arisaemajacquemontii (himalayan cobra lily). Biomed Res. Int. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adjimani, J.P.; Asare, P. Antioxidant and free radical scavenging activity of iron chelators. Toxicol. Rep. 2015, 2, 721–728. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.; et al. Gaussian 09, Revis. B.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Yearley, E.J.; Zhurova, E.A.; Zhurov, V.V.; Pinkerton, A.A. Binding of genistein to the estrogen receptor based on an experimental electron density study. J. Am. Chem. Soc. 2007, 129, 15013–15021. [Google Scholar] [CrossRef]
- Gosav, S.; Ion, A.; Praisler, M. DFT characterization of MDMA methylene homologue, a chemical compound with psychoactive properties. AIP Conf. Proc. 2019, 2075, 170027. [Google Scholar] [CrossRef]
- Gosav, S.; Paduraru, N.; Maftei, D.; Birsa, M.L.; Praisler, M. Quantum chemical study of a derivative of 3-substituted dithiocarbamic flavanone. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 172, 115–125. [Google Scholar] [CrossRef]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P. Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules 2016, 21, 748. [Google Scholar] [CrossRef] [Green Version]
- Reich, E. HPTLC of Medicinal Plants Identification and Quantification; Camag, Sonnenmattstrasse: Muttenz, Switzerland, 2013; pp. 1–58. [Google Scholar]
- Sajeeth, C.I.; Manna, P.K.; Manavalan, R.; Jolly, C.I. Quantitative estimation of Gallic Acid, Rutinand Quercetin in certain herbal plants by hptlc method. Der Chem. Sin. 2010, 1, 80–85. [Google Scholar]
- Alam, P.; Kamal, Y.T.; Alqasoumi, S.I.; Foudah, A.I.; Alqarni, M.H.; Yusufoglu, H.S. HPTLC method for simultaneous determination of ascorbic acid and gallic acid biomarker from freeze dry pomegranate juice and herbal formulation. Saudi Pharm. J. 2019, 27, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Puri, A.; Panda, B.P. Simultaneous estimation of glycosidic isoflavones in fermented and unfermented soybeans by TLC-densitometric method. J. Chromatogr. Sci. 2015, 53, 338–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandit, N.T.; Patravale, V.B. Design and optimization of a novel method for extraction of genistein. Indian J. Pharm. Sci. 2011, 73, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Shawky, E.; Sallam, S.M. Simultaneous Determination of Soyasaponins and Isoflavones in Soy (Glycine max L.) Products by HPTLC-densitometry-Multiple Detection. J. Chromatogr. Sci. 2017, 55, 1059–1065. [Google Scholar] [CrossRef]
- Liggins, J.; Bluck, L.J.C.; Runswick, S.; Atkinson, C.; Coward, W.A.; Bingham, S.A. Daidzein and genistein contents of vegetables. Br. J. Nutr. 2000, 84, 717–725. [Google Scholar] [CrossRef] [Green Version]
- Bhalla, Y.; Chadha, K.; Chadha, R.; Karan, M. Daidzein cocrystals: An opportunity to improve its biopharmaceutical parameters. Heliyon 2019, 5, e02669. [Google Scholar] [CrossRef]
- Rimbach, G.; Boesch-Saadatmandi, C.; Frank, J.; Fuchs, D.; Wenzel, U.; Daniel, H.; Hall, W.L.; Weinberg, P.D. Dietary isoflavones in the prevention of cardiovascular disease—A molecular perspective. Food Chem. Toxicol. 2008, 46, 1308–1319. [Google Scholar] [CrossRef]
- Sakthivelu, G.; Akitha Devi, M.K.; Giridhar, P.; Rajasekaran, T.; Ravishankar, G.A.; Nikolova, M.T.; Angelov, G.B.; Todorova, R.M.; Kosturkova, G.P. Isoflavone composition, phenol content, and antioxidant activity of soybean seeds from India and Bulgaria. J. Agric. Food Chem. 2008, 56, 2090–2095. [Google Scholar] [CrossRef]
- Sulistyowati, E.; Martono, S.; Riyanto, S.; Lukitaningsih, E.; Rohman, A. Rapid quantitative analysis of daidzein and genistein in soybeans (Glycine max (L). Merr.) using FTIR spectroscopy and multivariate calibration. J. Appl. Pharm. Sci. 2020, 10, 117–123. [Google Scholar] [CrossRef]
- Luan, F.; Tang, L.L.; Chen, X.X.; Liu, H.T. Simultaneous determination of daidzein, genistein and formononetin in coffee by capillary zone electrophoresis. Separations 2017, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Puri, A.; Panda, B.P.; Singh, H.; Singh, S.; Srivastava, A.; Tandon, P.; Bharti, P.; Kumar, S.; Maurya, R. Conformational analysis and vibrational study of daidzein by using FT-IR and FT-Raman spectroscopies and DFT calculations. J. Chromatogr. Sci. 2014, 53, 338–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, R.A.; Pasinetti, G.M. Flavonoids and isoflavonoids: From plant biology to agriculture and neuroscience. Plant Physiol. 2010, 154, 453–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thrane, M.; Paulsen, P.V.; Orcutt, M.W.; Krieger, T.M. Soy Protein: Impacts, Production, and Applications. In Sustainable Protein Sources; Elsevier: Amsterdam, The Netherlands, 2017; pp. 23–45. ISBN 9780128027769. [Google Scholar]
- Park, S.Y.; Kim, J.K.; Kim, E.H.; Kim, S.H.; Prabakaran, M.; Chung, I.M. Comparison of 12 Isoflavone Profiles of Soybean (Glycine max (L.) Merrill) Seed Sprouts from Three Different Countries. Korean J. Crop Sci. 2018, 63, 360–377. [Google Scholar] [CrossRef]
- Miadoková, E. Isoflavonoids—An overview of their biological activities and potential health benefits. Interdiscip. Toxicol. 2009, 2, 211–218. [Google Scholar] [CrossRef]
- Vitale, D.C.; Piazza, C.; Melilli, B.; Drago, F.; Salomone, S. Isoflavones: Estrogenic activity, biological effect and bioavailability. Eur. J. Drug Metab. Pharmacokinet. 2013, 38, 15–25. [Google Scholar] [CrossRef]
- Sajid, M.; Stone, S.R.; Kaur, P. Recent Advances in Heterologous Synthesis Paving Way for Future Green-Modular Bioindustries: A Review with Special Reference to Isoflavonoids. Front. Bioeng. Biotechnol. 2021, 9, 1–18. [Google Scholar] [CrossRef]
- Nikolić, I.; Savić-Gajić, I.; Tačić, A.; Savić, I. Classification and biological activity of phytoestrogens: A review. Adv. Technol. 2017, 6, 96–106. [Google Scholar] [CrossRef] [Green Version]
- De Franciscis, P.; Colacurci, N.; Riemma, G.; Conte, A.; Pittana, E.; Guida, M.; Schiattarella, A. A nutraceutical approach to menopausal complaints. Medicina 2019, 55, 544. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.G.; Brownmiller, C.R.; Lee, S.; Kang, H.W. Anti-Inflammatory and Antioxidant Effects of Anthocyanins of Trifolium pratense (Red Clover) in Lipopolysaccharide-Stimulated RAW-267.4 Macrophages. Nutrients 2020, 12, 1089. [Google Scholar] [CrossRef] [Green Version]
- Siriyong, T.; Subhadhirasakul, S.; Chanwanitsakul, S.; Phungtammasan, S.; Wichayaworanan, S.; Boonchu, K.; Phaenoi, N.; Siangchin, P.; Klaingkaew, K. Therapeutic effects of traditional Thai herbal blood and wind tonic formulations for treatment of menopausal symptoms. Explore 2021, 17, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Taralkar, S.V.; Chattopadhyay, S. A HPLC Method for Determination of Ursolic Acid and Betulinic Acids from their Methanolic Extracts of Vitex Negundo Linn. J. Anal. Bioanal. Tech. 2012, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Malenčić, D.; Cvejić, J.; Miladinović, J. Polyphenol content and antioxidant properties of colored soybean seeds from central Europe. J. Med. Food 2012, 15, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Aly, S.E.; Sabry, B.A.; Shaheen, M.S.; Hathout, A.S. Assessment of antimycotoxigenic and antioxidant activity of star anise (Illicium verum) in vitro. J. Saudi Soc. Agric. Sci. 2016, 15, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Kaur, N.; Chahal, K.K.; Kumar, A.; Singh, R.; Bhardwaj, U. Antioxidant activity of Anethum graveolens L. essential oil constituents and their chemical analogues. J. Food Biochem. 2019, 43, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Al-Ismail, K.M.; Aburjai, T. Antioxidant activity of water and alcohol extracts of chamomile flowers, anise seeds and dill seeds. J. Sci. Food Agric. 2004, 84, 173–178. [Google Scholar] [CrossRef]
- Peiretti, P.G.; Karamać, M.; Janiak, M.; Longato, E.; Meineri, G.; Amarowicz, R.; Gai, F. Phenolic composition and antioxidant activities of soybean (Glycine max (L.) Merr.) plant during growth cycle. Agronomy 2019, 9, 153. [Google Scholar] [CrossRef] [Green Version]
Genistin | Daidzin | PAsd | AGsd | GMsp | PAsd | AGsp | GMsp | Corresponding Functional Groups |
---|---|---|---|---|---|---|---|---|
IR (ATR, cmWe d) Bands | ||||||||
3325.72 s | 3320.01 s | 3331.43 | 3320.10 | 3321.20 | 3336.78 s | 3286.57 s | 3288.10 s | υ–O-H |
2972.93 m | 2944.06 m | 2944.72 | 2944.06 | 2981.61 | 2916.32 | 2917.38 m | 2917.38 | υC-H |
1652.96 w | 1653.14 | 1653.00 | 1653.14 | 1640.02 | 1633.98 | 1743.61 | 1634.57 | υC=O |
1418.82 w | 1414.28 | 1410.66; 1448.87 | 1414.28; 1448.75 | 1417.78 | 1412.30 | 1457.03 | 1406.89 | υ-C=C-H, aromatic |
1045.28 s | 1020.93 | 1019.44 | 1020.93 | 1044.23; 1084.92 | 1070.48 | 1057.81 | 1067.67 | υ –O-C |
Compounds | RT | GM-sd | GM-sp | AG-sd | AG-sp | PA-sd | PA-sp |
---|---|---|---|---|---|---|---|
Hydroxybenzoic acids | |||||||
Gallic acid | 4.40 | n.d. | n.d. | n.d. | n.d. | 579.65 ± 1.84 | n.d. |
Catechin | 19.02 | n.d. | 30.45 ± 0.77 | n.d. | n.d. | n.d. | n.d. |
Epicatechin | 23.29 | n.d. | 29.44 ± 0.79 | n.d. | n.d. | 370.99 ± 1.62 | n.d. |
Hydrocinnamic acids | |||||||
Chlorogenic acid | 20.50 | n.d. | n.d. | n.d. | n.d. | 886.88 ± 3.31 | 632.38 ± 5.76 |
Acid tanic | 2.36 | 763.18 ± 1.6 | 39.64 ± 1.17 | n.d. | n.d. | 96.68 ± 1.7 | 40.00 ± 3.78 |
p-Coumaric acid | 28.90 | n.d. | 128.37 ± 1.32 | n.d. | n.d. | n.d. | n.d. |
Flavonols | |||||||
Rutin | 44.71 | 86.19 ± 0.98 | 42.01 ± 0.44 | n.d. | n.d. | 661.58 ± 0.71 | n.d. |
Quercetin | 38.03 | n.d. | - | 491.65 ± 2.23 | n.d. | 341.08 ± 2.34 | 243.07 ± 2.56 |
Quercetin-3-galactoside | 29.13 | 12.76 ± 3.22 | 76.09 ± 1.08 | - | n.d. | 231.62 ± 1.55 | 76.62 ± 1.06 |
Flavanone | |||||||
Naringenin | 38.95 | 505.86 ± 1.11 | n.d. | 380.53 ± 1.87 | n.d. | n.d. | 82.69 ± 3.9 |
Naringin | 30.74 | 36.17 ± 0.76 | 12.51 ± 1.14 | n.d. | n.d. | n.d. | 803.07 ± 2.03 |
Isoflavone | |||||||
Daidzein | 25.57 | 110.18 ± 0.98 | 303.86 ± 2.8 | 633.69 ± 0.83 | 750.76 ± 2.29 | 349.72 ± 5.6 | 537.37 ± 6.36 |
Genistein | 38.79 | 39.02 ± 1.22 | 102.41 ± 2.5 | 573.74 ± 2.76 | 698.21 ± 3.46 | 101.39 ± 2.16 | 520.36 ± 2.16 |
Chemical Bond | XRD Bond Length [64] (Å) | Theoretical Bond Length (B3LYP/6-311G(d,p)) (Å) | Chemical Bond Angle | XRD Bond Angle [64] (°) | Theoretical Bond Angle (B3LYP/6-311G(d,p)) (°) |
---|---|---|---|---|---|
C5-C6 | 1.41 | 1.4 | C1-C6-C5 | 119.5 | 120.02 |
C6-C1 | 1.39 | 1.39 | C6-C5-C4 | 121.5 | 121.59 |
C1-C2 | 1.43 | 1.425 | C5-C4-C3 | 117.9 | 117.67 |
C2-C3 | 1.4 | 1.4 | C4-C3-C2 | 122.8 | 123.11 |
C3-C4 | 1.39 | 1.385 | C3-C2-C1 | 117.6 | 117.71 |
C4-C5 | 1.39 | 1.395 | C2-C1-C6 | 120.6 | 119.89 |
C5-O19 | 1.36 | 1.357 | C2-C3-O7 | 120.9 | 119.9 |
C1-O20 | 1.35 | 1.335 | C3-O7-C8 | 119.2 | 119.5 |
C2-C10 | 1.44 | 1.45 | O7-C8-C9 | 125 | 125.92 |
C10-C9 | 1.45 | 1.47 | C8-C9-C10 | 118.6 | 117.78 |
C9-C8 | 1.36 | 1.35 | C9-C10-C2 | 116.2 | 115.64 |
O3-C3 | 1.36 | 1.37 | C10-C2-C3 | 120 | 121.19 |
C8-O7 | 1.34 | 1.35 | C9-C10-O18 | 122.3 | 122.75 |
C10-O18 | 1.26 | 1.245 | C10-C9-C11 | 120.4 | 121.9 |
C9-C11 | 1.48 | 1.48 | C9-C11-C12 | 119.4 | 121.49 |
C11-C12 | 1.4 | 1.4 | C11-C12-C13 | 120.6 | 120.94 |
C12-C13 | 1.39 | 1.39 | C12-C13-C14 | 120.1 | 120.34 |
C13-C14 | 1.4 | 1.4 | C13-C14-C15 | 120 | 119.54 |
C14-C15 | 1.4 | 1.4 | C14-C15-C16 | 119.6 | 119.71 |
C15-C16 | 1.4 | 1.39 | C15-C16-C11 | 120.8 | 121.62 |
C16-C11 | 1.4 | 1.4 | C13-C14-O17 | 116.9 | 122.85 |
C14-O17 | 1.36 | 1.36 | C2-C1-O20 | 120.5 | 120.74 |
Chemical Compound | Dipole Moment (D) | EHOMO (eV) | ELUMO (eV) | Egap (eV) | IE (eV) | EA (eV) | η (eV) | σ (eV)−1 | χ (eV) | ω (eV) |
---|---|---|---|---|---|---|---|---|---|---|
genistein | 1.29 | −5.95 | −1.77 | 4.18 | 5.95 | 1.77 | 2.09 | 0.24 | 3.86 | 3.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balanescu, F.; Busuioc, A.C.; Botezatu, A.V.D.; Gosav, S.; Avramescu, S.M.; Furdui, B.; Dinica, R.M. Comparative Study of Natural Antioxidants from Glycine max, Anethum graveolensand Pimpinella anisum Seed and Sprout Extracts Obtained by Ultrasound-Assisted Extraction. Separations 2022, 9, 152. https://doi.org/10.3390/separations9060152
Balanescu F, Busuioc AC, Botezatu AVD, Gosav S, Avramescu SM, Furdui B, Dinica RM. Comparative Study of Natural Antioxidants from Glycine max, Anethum graveolensand Pimpinella anisum Seed and Sprout Extracts Obtained by Ultrasound-Assisted Extraction. Separations. 2022; 9(6):152. https://doi.org/10.3390/separations9060152
Chicago/Turabian StyleBalanescu, Fanica, Anna Cazanevscaia Busuioc, Andreea Veronica Dediu Botezatu, Steluta Gosav, Sorin Marius Avramescu, Bianca Furdui, and Rodica Mihaela Dinica. 2022. "Comparative Study of Natural Antioxidants from Glycine max, Anethum graveolensand Pimpinella anisum Seed and Sprout Extracts Obtained by Ultrasound-Assisted Extraction" Separations 9, no. 6: 152. https://doi.org/10.3390/separations9060152
APA StyleBalanescu, F., Busuioc, A. C., Botezatu, A. V. D., Gosav, S., Avramescu, S. M., Furdui, B., & Dinica, R. M. (2022). Comparative Study of Natural Antioxidants from Glycine max, Anethum graveolensand Pimpinella anisum Seed and Sprout Extracts Obtained by Ultrasound-Assisted Extraction. Separations, 9(6), 152. https://doi.org/10.3390/separations9060152