Enantioseparation of syn- and anti-3,5-Disubstituted Hydantoins by HPLC and SFC on Immobilized Polysaccharides-Based Chiral Stationary Phases
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Enantioseparation on Amylose-SA
3.2. Enantioseparation on Cellulose-SB
3.3. Enantioseparation on Cellulose-SC
3.4. Recognition Complementarities of Three Tested Immobilized CSPs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cho, S.; Kim, S.-H.; Shin, D. Recent applications of hydantoin and thiohydantoin in medicinal chemistry. Eur. J. Med. Chem. 2019, 164, 517–545. [Google Scholar] [CrossRef] [PubMed]
- Gawas, P.P.; Buthanapalli, R.; Veeraiah, N.; Nutalapati, V. Multifunctional hydantoins: Recent advances in optoelectronics and medicinal drugs from Academia to the chemical industry. J. Mater. Chem. C 2021, 9, 16341–16377. [Google Scholar] [CrossRef]
- Yang, X.Y.; Su, L.; Hou, X.B.; Ding, S.Y.; Xu, W.F.; Wang, B.H.; Fang, H. High-performance liquid chromatographic enantioseparation of 3,5-disubstituted hydantoins analogs and temperature-induced reversals of elution orders on a polysaccharide-based chiral stationary phase. J. Chrom. A 2014, 1355, 291–295. [Google Scholar] [CrossRef]
- Konnert, L.; Lamaty, F.; Martinez, J.; Colacino, E. Recent Advances in the Synthesis of Hydantoins: The State of the Art of a Valuable Scaffold. Chem. Rev. 2017, 117, 13757–13809. [Google Scholar] [CrossRef] [PubMed]
- Kartozia, I.; Kanyonyo, M.; Happaerts, T.; Lambert, D.M.; Scriba, G.K.E.; Chankvetadze, B. Comparative HPLC enantioseparation of new chiral hydantoin derivatives on three different polysaccharide type chiral stationary phases. J. Pharm. Biomed. Anal. 2002, 27, 457–465. [Google Scholar] [CrossRef]
- Velázquez-Macías, R.F.; Aguilar-Patiño, S.; Cortez-Betancourt, R.; Rojas-Esquivel, I.; Fonseca-Reyes, G.; Contreras-González, N. Evaluation of efficacy of buserelin plus nilutamide in Mexican Male patients with advanced prostate cancer. Rev. Mex. Urol. 2016, 76, 346–351. [Google Scholar] [CrossRef] [Green Version]
- Ito, Y.; Sadar, M.D. Enzalutamide and blocking androgen receptor in advanced prostate cancer: Lessons learnt from the history of drug development of antiandrogens. Res. Rep. Urol. 2018, 10, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Ostrowski, J.; Kuhns, J.-E.; Lupisella, J.A.; Manfredi, M.C.; Beehler, B.C.; Krystek, S.R., Jr.; Bi, Y.; Sun, C.; Seethala, R.; Golla, R.; et al. Pharmacological and X-Ray structural characterization of a novel selective androgen receptor modulator: Potent hyperanabolic stimulation of skeletal muscle with hypostimulation of prostate in rats. Endocrinology 2007, 148, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Cherukuvada, S.; Babu, N.J.; Nangia, A. Nitrofurantoin–p-aminobenzoic acid cocrystal: Hydration stability and dissolution rate studies. J. Pharm. Sci. 2011, 100, 3233–3244. [Google Scholar] [CrossRef]
- Kim, D.; Wang, L.; Caldwell, C.G.; Chen, P.; Finke, P.E.; Oates, B.; MacCoss, M.; Mills, S.G.; Malkowitz, L.; Gould, S.L.; et al. Discovery of human CCR5 antagonists containing hydantoins for the treatment of HIV-1 infection. Bioorg. Med. Chem. Lett. 2001, 11, 3099–3102. [Google Scholar] [CrossRef]
- El-Barbary, A.A.; Khodair, A.I.; Pedersen, E.B.; Nielsen, C. S-Glucosylated hydantoins as new antiviral agents. J. Med. Chem. 1994, 37, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Verlinden, Y.; Cuconati, A.; Wimmer, E.; Rombaut, B. The antiviral compound 5-(3,4-dichlorophenyl) methylhydantoin inhibits the post-synthetic cleavages and the assembly of poliovirus in a cell-free system. Antivir. Res. 2000, 48, 61–69. [Google Scholar] [CrossRef]
- Rajic, Z.; Zorc, B.; Raic-Malic, S.; Ester, K.; Kralj, M.; Pavelic, K.; Balzarini, J.; Clercq, E.D.; Mintas, M. Hydantoin Derivatives of L- and D-amino acids: Synthesis and evaluation of their antiviral and antitumoral activity. Molecules 2006, 11, 837–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marton, J.; Enisz, J.; Hosztafi, S.; Timar, T. Preparation and fungicidal activity of 5-substituted hydantoins and their 2-thio analog. J. Agric. Food Chem. 1993, 41, 148–152. [Google Scholar] [CrossRef]
- Knabe, J.; Baldauf, J.; Ahlhem, A. Racemates and enantiomers of basic, substituted 5-phenylhydantoins, synthesis and anti-arrhythmic action. Die Pharm. 1997, 52, 912–919. [Google Scholar]
- Matsukura, M.; Daiku, Y.; Ucda, K.; Tanaka, S.; Igarashi, T.; Minami, N. Synthesis and antiarrhythmic activity of 2,2-dialkyl-1′-(N-substituted aminoalkyl)-spiro-[chroman-4,4′-imidazolidine]-2′,5′-diones. Chem. Pharm. Bull. 1992, 40, 1823–1827. [Google Scholar] [CrossRef] [Green Version]
- Anger, T.; Madge, D.J.; Mulla, M.; Riddall, D. Medicinal chemistry of neuronal voltage-gated sodium channel blockers. J. Med. Chem. 2001, 44, 115–137. [Google Scholar] [CrossRef]
- Somsák, L.; Kovács, L.; Tóth, M.; Ösz, E.; Szilágyi, L.; Györgydeák, Z.; Dinya, Z.; Docsa, T.; Tóth, B.; Gergely, P. Synthesis of and a comparative study on the inhibition of muscle and liver glycogen phosphorylases by epimeric pairs of D-gluco- and D-xylopyranosylidene-spiro-(thio)hydantoins and N-(D-Glucopyranosyl) amides. J. Med. Chem. 2001, 44, 2843–2848. [Google Scholar] [CrossRef] [PubMed]
- Oka, M.; Matsumoto, Y.; Sugiyama, S.; Tsuruta, N.; Matsushima, M. A potent aldose reductase inhibitor, (2S,4S)-6-Fluoro-2′,5′-dioxospiro[chroman-4,4′-imidazolidine]-2-carboxamide (Fidarestat): Its absolute configuration and interactions with the aldose reductase by X-ray crystallography. J. Med. Chem. 2000, 43, 2479–2483. [Google Scholar] [CrossRef]
- Nakabayashi, M.; Regan, M.M.; Lifsey, D.; Kantoff, P.W.; Taplin, M.-E.; Sartor, O.; Oh, W.K. Efficacy of nilutamide as secondary hormonal therapy in androgen-independent prostate cancer. BJU Int. 2005, 96, 783–786. [Google Scholar] [CrossRef]
- Kassouf, W.; Tanguay, S.; Aprikian, A.G. Nilutamide as second line hormone therapy for prostate cancer after androgen ablation fails. J. Urol. 2003, 169, 1742–1744. [Google Scholar] [CrossRef] [PubMed]
- Struck, R.F.; Kirk, M.C.; Rice, L.S.; Suling, W.J. Isolation, synthesis and antitumor evaluation of spirohydantoin aziridine, a mutagenic metabolite of spirohydantoin mustard. J. Med. Chem. 1986, 29, 1319–1321. [Google Scholar] [CrossRef] [PubMed]
- Foulds, G.; O’Brien, M.M.; Bianchine, J.R.; Gabbay, K.H. Kinetics of an orally absorbed aldose reductase inhibitor, sorbinil. Clin. Pharmacol. Ther. 1981, 30, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Kong, D.; Wu, B.; Wang, S.; Wang, Y. Synthesis and evaluation of anti-inflammatory and antitussive activity of hydantion derivatives. Lett. Drug Des. Discov. 2012, 9, 638–642. [Google Scholar] [CrossRef]
- Fiallo, M.M.L.; Kozlowski, H.; Garnier-Suillerot, A. Mitomycin antitumor compounds: Part 1. CD studies on their molecular structure. Eur. J. Pharm. Sci. 2001, 12, 487–494. [Google Scholar] [CrossRef]
- Youssef, D.T.A.; Shaala, L.A.; Alshali, K.Z. Bioactive hydantoin alkaloids from the red sea marine sponge Hemimycale arabica. Mar. Drugs 2015, 13, 6609–6619. [Google Scholar] [CrossRef]
- Mio, S.; Ichinose, R.; Goto, K.; Sugaai, S.; Sato, S. Synthetic studies on (+)-hydantocidin (1): A total synthesis of (+)-hydantocidin, a new herbicidal metabolite from microorganism. Tetrahedron 1991, 47, 2111–2120. [Google Scholar] [CrossRef]
- Mio, S.; Kumagawa, Y.; Sugaai, S. Three-step synthetic pathway to fused bicyclic hydantoins involving a selenocyclization step. Tetrahedron Lett. 1993, 34, 7391–7394. [Google Scholar] [CrossRef]
- Gregoriou, M.; Noble, M.; Watson, K.; Garman, E.; Krulle, T.; Delafuente, C.; Fleet, G.; Oikonomakos, N.; Johnson, L. The structure of a glycogen phosphorylase glucopyranose spirohydantoin complex at 1.8 Å resolution and 100 K: The role of the water structure and its contribution to binding. Protein Sci. 1998, 7, 915–927. [Google Scholar] [CrossRef] [Green Version]
- Shiozaki, M. Syntheses of hydantocidin and C-2-thioxohydantocidin. Carbohyd. Res. 2002, 337, 2077–2088. [Google Scholar] [CrossRef]
- Kalník, M.; Gabko, P.; Bella, M.; Koóš, M. The Bucherer–Bergs multicomponent synthesis of hydantoins−excellence in simplicity. Molecules 2021, 26, 4024. [Google Scholar] [CrossRef] [PubMed]
- Uemoto, H.; Tsuda, M.; Kobayashi, J. Mukanadins A−C, New bromopyrrole alkaloids from marine sponge Agelas nakamurai. J. Nat. Prod. 1999, 62, 1581–1583. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, C.; Crews, P. Mauritamide A and accompanying oroidin alkaloids from the sponge Agelas mauritiana. Tetrahedron Lett. 1994, 35, 1375–1378. [Google Scholar] [CrossRef]
- Audion, C.; Cocandeau, V.; Thomas, O.P.; Bruschini, A.; Holderith, S.; Genta-Jouve, G. Metabolome consistency: Additional Parazoanthines from the Mediterranean zoanthid Parazoanthus axinellae. Metabolites 2014, 4, 421–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cachet, N.; Genta-Jouve, G.; Regalado, E.L.; Mokrini, R.; Amade, P.; Culioli, G.; Thomas, O.P. Parazoanthines A−E, hydantoin alkaloids from the Mediterranean sea anemone Parazoanthus axinellae. J. Nat. Prod. 2009, 72, 1612–1615. [Google Scholar] [CrossRef]
- Chankvetadze, B. Recent trends in preparation, investigation and application of polysaccharide-based chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. TrAC 2020, 122, 115709. [Google Scholar] [CrossRef]
- Horváth, S.; Eke, Z.; Németh, G. A protocol to replace dedication to either normal phase or polar organic mode for chiral stationary phases containing amylose tris (3,5-dimethylphenylcarbamate). J. Chrom. A 2022, 1673, 463052. [Google Scholar] [CrossRef]
- Yamamoto, C.; Okamoto, Y. Optically Active Polymers for Chiral Separation. Bull. Chem. Soc. Jpn. 2004, 77, 227–257. [Google Scholar] [CrossRef]
- Foroughbakhshfasaei, M.; Dobó, M.; Boda, F.; Szabó, Z.-I.; Tóth, G. Comparative Chiral Separation of Thalidomide Class of Drugs Using Polysaccharide-Type Stationary Phases with Emphasis on Elution Order and Hysteresis in Polar Organic Mode. Molecules 2022, 27, 111. [Google Scholar] [CrossRef]
- Cirilli, R.; Ferretti, R.; Gallinella, B.; De Santis, E.; Zanitti, L.; La Torre, F. High-performance liquid chromatography enantioseparation of proton pump inhibitors using the immobilized amylose-based Chiralpak IA chiral stationary phase in normal-phase, polar organic and reversed-phase conditions. J. Chrom. A 2008, 1177, 105–113. [Google Scholar] [CrossRef]
- Peluso, P.; Mamane, V.; Dallocchio, R.; Dessi, A.; Cossu, S. Noncovalent interactions in high-performance liquid chromatography enantioseparations on polysaccharide-based chiral selectors. J. Chrom. A. 2020, 1623, 461202. [Google Scholar] [CrossRef] [PubMed]
- De Klerck, K.; Mangelings, D.; Heyden, Y.V. Supercritical fluid chromatography for the enantioseparation of pharmaceuticals. J. Pharm. Biomed. Anal. 2012, 69, 77–92. [Google Scholar] [CrossRef] [PubMed]
- Bajtai, A.; Ilisz, I.; Berkecz, R.; Fülöp, F.; Lindner, W. Polysaccharide-based chiral stationary phases as efficient tools for diastereo- and enantioseparation of natural and synthetic Cinchona alkaloid analogs. J. Pharm. Biomed. Anal. 2021, 193, 113724. [Google Scholar] [CrossRef] [PubMed]
- Tundo, P.; Selva, M. The Chemistry of Dimethyl Carbonate. Acc. Chem. Res. 2002, 35, 706–716. [Google Scholar] [CrossRef] [PubMed]
- Ono, Y. Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Appl. Catal. A Gen. 1997, 155, 133–166. [Google Scholar] [CrossRef]
- Kim, K.H.; Lee, E.Y. Environmentally-benign dimethyl carbonate-mediated production of chemicals and biofuels from renewable bio-oil. Energies 2017, 10, 1790. [Google Scholar] [CrossRef] [Green Version]
- Arico, F.; Tundo, P. Dimethyl carbonate: A modern green reagent and solvent. Russ. Chem. Rev. 2010, 79, 479–489. [Google Scholar] [CrossRef] [Green Version]
- Tundo, P. New developments in dimethyl carbonate chemistry. Pure Appl. Chem. 2001, 73, 1117–1124. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, A.O.G.; Liu, D. Dimethyl carbonate as a promising oxygenated fuel for combustion: A review. Energies 2018, 11, 1552. [Google Scholar] [CrossRef] [Green Version]
- Nomanbhay, S.; Ong, M.Y.; Chew, K.; Show, P.-L.; Lam, M.K.; Chen, W.-H. Organic carbonate production utilizing crude glycerol derived as by-product of biodiesel production: A Review. Energies 2020, 13, 1483. [Google Scholar] [CrossRef] [Green Version]
- Lajin, B.; Goessler, W. Introducing dimethyl carbonate as a new eluent in HPLC-ICPMS: Stronger elution with less carbon. J. Anal. At. Spectrom. 2021, 36, 1272–1279. [Google Scholar] [CrossRef]
- Armarego, W.L.F. Purification of Laboratory Chemicals, 8th ed.; Butterworth Heinemann: Oxford, UK, 2017; p. 31. [Google Scholar]
- Jurin, M.; Kontrec, D.; Dražić, T.; Roje, M. Enantioseparation of (±)-trans-β-lactam Ureas by Supercritical Fluid Chromatography. Croat. Chem. Acta 2020, 93, 203–213. [Google Scholar] [CrossRef]
- Bandyopadhyay, D.; Cruz, J.; Banik, B.K. Novel synthesis of 3-pyrrole substituted β-lactams via microwave-induced bismuth nitrate-catalyzed reaction. Tetrahedron 2012, 68, 10686–10695. [Google Scholar] [CrossRef]
- Radolović, K.; Habuš, I.; Kralj, B. New thiazolidinone and triazinethione conjugates derived from amino-β-lactams. Heterocycles 2009, 78, 1729–1759. [Google Scholar] [CrossRef]
- Mehra, V.; Kumar, V. Facile diastereoselective synthesis of functionally enriched hydantoins via base-promoted intramolecular amidolysis of C-3 functionalized azetidin-2-ones. Tetrahedron Lett. 2013, 54, 6041–6044. [Google Scholar] [CrossRef]
- Ghanem, A.; Wang, C. Enantioselective separation of racemates using CHIRALPAK IG amylose-based chiral stationary phase under normal standard, non-standard and reversed phase high performance liquid chromatography. J. Chrom. A 2018, 1532, 89–97. [Google Scholar] [CrossRef]
- Ikai, T.; Yamamoto, C.; Kamigaito, M.; Okamoto, Y. Immobilized polysaccharide derivatives: Chiral packing materials for efficient HPLC resolution. Chem. Rec. 2007, 7, 91–103. [Google Scholar] [CrossRef]
- Zhu, B.; Zhao, F.; Yu, J.; Wang, Z.; Song, Y.; Li, Q. Chiral separation and a molecular modeling study of eight azole antifungals on the cellulose tris (3,5-dichlorophenylcarbamate) chiral stationary phase. New J. Chem. 2018, 42, 13421–13429. [Google Scholar] [CrossRef]
- Pelusoa, P.; Mashiko, V.; Aubert, E.; Cossu, S. High-performance liquid chromatography enantioseparation of atropisomeric 4,4′-bipyridines on polysaccharide-type chiral stationary phases: Impact of substituents and electronic properties. J. Chrom. A 2012, 1251, 91–100. [Google Scholar] [CrossRef]
- Okamoto, Y. Chiral polymers for resolution of enantiomers. J. Polym. Sci. Polym. Chem. 2009, 47, 1731–1739. [Google Scholar] [CrossRef]
- Yang, G.S.; Zhan, C.Y.; Fu, G.H.; Vazquez, P.P.; Frenich, A.G.; Vidal, J.L.M.; Aboul-Enein, H.Y. Chiral separation of organic phosphonate compounds on polysaccharide-based chiral stationary phases. Chromatographia 2004, 59, 631–635. [Google Scholar] [CrossRef]
Compound | Condition * | k1 | k2 | α | Rs | Compound | Condition * | k1 | k2 | α | Rs |
---|---|---|---|---|---|---|---|---|---|---|---|
syn-5a | A | 6.57 | 10.58 | 1.61 | 3.23 | anti-5a | A | 5.33 | 13.30 | 2.48 | 6.36 |
B | 0.09 | 0.09 | 1.00 | - | B | 0.16 | 0.36 | 2.25 | 1.57 | ||
C | 1.45 | 1.85 | 1.28 | 0.80 | C | 1.23 | 2.32 | 1.89 | 2.32 | ||
D | 1.40 | 1.78 | 1.27 | 0.76 | D | 1.20 | 2.15 | 1.80 | 2.07 | ||
E | 1.34 | 1.90 | 1.42 | 1.21 | E | 1.34 | 2.43 | 1.81 | 2.23 | ||
syn-5b | A | 2.47 | 4.51 | 1.83 | 3.74 | anti-5b | A | 2.04 | 5.74 | 2.81 | 6.27 |
B | 0.10 | 0.22 | 2.20 | 0.41 | B | 0.22 | 0.50 | 2.27 | 1.81 | ||
C | 1.54 | 2.19 | 1.42 | 1.36 | C | 1.56 | 2.76 | 1.76 | 2.29 | ||
D | 1.39 | 1.96 | 1.41 | 1.21 | D | 1.32 | 2.42 | 1.83 | 2.28 | ||
E | 1.31 | 2.01 | 1.53 | 1.49 | E | 1.36 | 2.70 | 1.99 | 2.55 | ||
syn-5c | A | 2.85 | 5.30 | 1.86 | 3.98 | anti-5c | A | 2.85 | 8.03 | 2.82 | 6.43 |
B | 0.18 | 0.28 | 1.56 | 0.87 | B | 0.60 | 0.60 | 1.00 | - | ||
C | 1.34 | 3.19 | 2.38 | 2.90 | C | 1.70 | 4.45 | 2.62 | 4.60 | ||
D | 1.47 | 2.63 | 1.79 | 2.33 | D | 1.61 | 3.76 | 2.34 | 4.52 | ||
E | 1.59 | 2.63 | 1.65 | 1.99 | E | 1.59 | 3.93 | 2.47 | 3.58 | ||
syn-5d | A | 6.05 | 11.63 | 1.92 | 4.42 | anti-5d | A | 4.95 | 17.52 | 3.54 | 8.63 |
B | 0.19 | 0.19 | 1.00 | - | B | 0.14 | 0.30 | 2.14 | 1.11 | ||
C | 2.08 | 2.75 | 1.32 | 1.12 | C | 1.78 | 3.37 | 1.89 | 2.72 | ||
D | 1.84 | 2.52 | 1.37 | 1.30 | D | 1.64 | 3.07 | 1.87 | 2.68 | ||
E | 1.78 | 2.82 | 1.58 | 1.88 | E | 1.84 | 3.99 | 2.17 | 3.58 | ||
syn-5e | A | 7.97 | 16.34 | 2.05 | 4.12 | anti-5e | A | 4.49 | 16.01 | 3.57 | 8.31 |
B | 0.17 | 0.24 | 1.41 | 0.54 | B | 0.28 | 0.47 | 1.68 | 1.38 | ||
C | 2.87 | 3.77 | 1.31 | 1.27 | C | 2.68 | 4.88 | 1.82 | 2.77 | ||
D | 2.44 | 3.57 | 1.46 | 1.86 | D | 2.51 | 4.33 | 1.73 | 3.05 | ||
E | 2.39 | 4.16 | 1.74 | 2.63 | E | 2.64 | 5.76 | 2.18 | 3.99 | ||
syn-5f | A | 4.76 | 8.54 | 1.79 | 3.17 | anti-5f | A | 3.70 | 10.04 | 2.71 | 4.59 |
B | 0.14 | 0.45 | 3.21 | 1.97 | B | 0.32 | 0.32 | 1.00 | - | ||
C | 3.08 | 8.34 | 2.71 | 4.20 | C | 3.04 | 15.51 | 5.10 | 7.65 | ||
D | 2.91 | 7.39 | 2.54 | 4.03 | D | 2.82 | 12.39 | 4.39 | 6.56 | ||
E | 2.66 | 6.01 | 2.26 | 3.65 | E | 2.59 | 9.15 | 3.53 | 5.64 | ||
syn-5g | A | 6.85 | 14.14 | 2.06 | 4.30 | anti-5g | A | 3.92 | 10.39 | 2.65 | 4.94 |
B | 0.17 | 0.61 | 10.11 | 3.02 | B | 0.37 | 1.72 | 4.65 | 5.23 | ||
C | 4.63 | 11.91 | 2.57 | 4.46 | C | 4.25 | 17.62 | 4.14 | 6.20 | ||
D | 4.35 | 10.87 | 2.50 | 4.70 | D | 4.00 | 15.40 | 3.85 | 6.57 | ||
E | 3.93 | 9.39 | 2.39 | 4.25 | E | 3.78 | 13.00 | 3.44 | 5.91 | ||
syn-5h | A | 10.43 | 21.05 | 2.02 | 4.30 | anti-5h | A | 6.17 | 15.89 | 2.58 | 4.94 |
B | 0.15 | 0.45 | 3.00 | 2.19 | B | 0.25 | 0.96 | 3.84 | 4.55 | ||
C | 2.67 | 5.95 | 2.23 | 3.55 | C | 2.40 | 7.22 | 3.01 | 4.65 | ||
D | 2.62 | 5.90 | 2.25 | 3.68 | D | 2.31 | 6.86 | 2.97 | 4.93 | ||
E | 1.91 | 6.05 | 3.17 | 3.02 | E | 2.39 | 6.57 | 2.75 | 4.57 | ||
syn-5i | A | 14.34 | 16.13 | 1.12 | 0.75 | anti-5i | A | 16.81 | 22.33 | 1.33 | 1.77 |
B | 0.10 | 0.17 | 1.70 | 0.42 | B | 0.26 | 0.50 | 1.92 | 1.54 | ||
C | 2.43 | 3.30 | 1.33 | 1.23 | C | 2.77 | 4.25 | 1.53 | 1.76 | ||
D | 2.81 | 3.74 | 1.33 | 1.34 | D | 3.41 | 5.10 | 1.50 | 1.83 | ||
E | 3.52 | 5.11 | 1.45 | 1.88 | E | 4.74 | 8.26 | 1.74 | 2.90 |
Compound | Condition * | k1 | k2 | A | Rs | Compound | Condition * | k1 | k2 | α | Rs |
---|---|---|---|---|---|---|---|---|---|---|---|
syn-5a | A | 13.95 | 14.93 | 1.07 | 0.84 | anti-5a | A | 7.15 | 10.38 | 1.45 | 4.58 |
B | 0.12 | 0.12 | 1.00 | - | B | 0.17 | 0.30 | 1.76 | 1.68 | ||
C | 2.91 | 3.25 | 1.12 | 0.71 | C | 2.08 | 3.20 | 1.54 | 2.83 | ||
D | 2.77 | 3.05 | 1.10 | 0.46 | D | 1.91 | 2.62 | 1.37 | 1.75 | ||
E | 3.71 | 3.71 | 1.00 | - | E | 2.42 | 3.37 | 1.39 | 2.13 | ||
syn-5b | A | 8.04 | 10.33 | 1.28 | 3.09 | anti-5b | A | 4.64 | 6.36 | 1.37 | 3.63 |
B | 0.12 | 0.12 | 1.00 | - | B | 0.20 | 0.27 | 1.35 | 0.89 | ||
C | 3.07 | 3.07 | 1.00 | - | C | 2.18 | 3.20 | 1.47 | 2.45 | ||
D | 2.82 | 2.82 | 1.00 | - | D | 1.94 | 2.53 | 1.30 | 1.45 | ||
E | 3.40 | 3.80 | 1.12 | 0.78 | E | 2.46 | 3.18 | 1.29 | 1.60 | ||
syn-5c | A | 7.69 | 8.63 | 1.12 | 1.42 | anti-5c | A | 3.47 | 4.19 | 1.21 | 2.14 |
B | 0.14 | 0.14 | 1.00 | - | B | 0.13 | 0.32 | 2.46 | 2.15 | ||
C | 3.46 | 3.46 | 1.00 | - | C | 2.26 | 2.99 | 1.32 | 1.73 | ||
D | 3.06 | 3.06 | 1.00 | - | D | 1.93 | 2.29 | 1.19 | 0.98 | ||
E | 3.74 | 3.74 | 1.00 | - | E | 2.22 | 2.66 | 1.20 | 1.09 | ||
syn-5d | A | 19.82 | 23.62 | 1.19 | 2.28 | anti-5d | A | 11.63 | 18.08 | 1.55 | 5.49 |
B | 0.09 | 0.09 | 1.00 | - | B | 0.18 | 0.26 | 1.44 | 1.01 | ||
C | 4.10 | 4.60 | 1.12 | 0.99 | C | 3.16 | 4.77 | 1.51 | 3.27 | ||
D | 3.90 | 4.30 | 1.10 | 0.73 | D | 2.86 | 3.93 | 1.37 | 2.33 | ||
E | 5.24 | 5.24 | 1.00 | - | E | 3.63 | 5.22 | 1.44 | 2.87 | ||
syn-5e | A | 17.03 | 22.08 | 1.30 | 3.34 | anti-5e | A | 11.37 | 17.44 | 1.53 | 5.05 |
B | 0.11 | 0.11 | 1.00 | - | B | 0.19 | 0.32 | 1.68 | 1.57 | ||
C | 5.83 | 7.02 | 1.20 | 1.90 | C | 5.09 | 7.94 | 1.56 | 4.45 | ||
D | 5.27 | 6.27 | 1.19 | 1.65 | D | 4.32 | 6.09 | 1.41 | 2.98 | ||
E | 7.06 | 7.06 | 1.00 | - | E | 5.40 | 7.67 | 1.42 | 3.39 | ||
syn-5f | A | 19.70 | 34.70 | 1.76 | 6.63 | anti-5f | A | 10.32 | 27.59 | 2.67 | 10.44 |
B | 0.11 | 0.11 | 1.00 | - | B | 0.14 | 0.23 | 1.64 | 0.85 | ||
C | 5.85 | 8.78 | 1.50 | 3.95 | C | 4.66 | 11.98 | 2.57 | 5.74 | ||
D | 5.43 | 7.72 | 1.42 | 3.37 | D | 4.43 | 7.00 | 1.58 | 4.23 | ||
E | 7.74 | 9.96 | 1.29 | 2.48 | E | 5.86 | 9.57 | 1.63 | 4.45 | ||
syn-5g | A | 25.61 | 32.02 | 1.25 | 2.97 | anti-5g | A | 11.70 | 23.86 | 2.04 | 8.12 |
B | 0.15 | 0.15 | 1.00 | - | B | 0.22 | 0.30 | 1.36 | 1.08 | ||
C | 8.39 | 10.84 | 1.29 | 2.81 | C | 6.03 | 10.75 | 1.78 | 6.02 | ||
D | 7.58 | 9.39 | 1.24 | 2.22 | D | 5.42 | 8.12 | 1.50 | 3.90 | ||
E | 10.73 | 11.66 | 1.11 | 1.09 | E | 6.98 | 10.70 | 1.53 | 4.34 | ||
syn-5h | A | 21.82 | 30.92 | 1.42 | 4.16 | anti-5h | A | 13.66 | 27.91 | 2.04 | 8.32 |
B | 0.15 | 0.15 | 1.00 | - | B | 0.23 | 0.33 | 1.43 | 0.88 | ||
C | 5.96 | 8.85 | 1.48 | 4.01 | C | 4.17 | 7.29 | 1.75 | 5.15 | ||
D | 3.86 | 5.71 | 1.48 | 3.29 | D | 3.86 | 5.71 | 1.48 | 3.29 | ||
E | 7.95 | 10.00 | 1.26 | 2.34 | E | 4.93 | 7.99 | 1.62 | 4.24 | ||
syn-5i | A | 22.09 | 31.27 | 1.42 | 4.16 | anti-5i | A | 8.39 | 36.14 | 4.31 | 13.06 |
B | 0.13 | 0.13 | 1.00 | - | B | 0.20 | 0.38 | 1.90 | 2.21 | ||
C | 6.25 | 8.43 | 1.35 | 3.05 | C | 4.82 | 8.51 | 1.77 | 5.48 | ||
D | 5.87 | 8.20 | 1.40 | 3.26 | D | 3.91 | 7.13 | 1.82 | 5.35 | ||
E | 7.89 | 11.91 | 1.51 | 4.21 | E | 4.52 | 10.55 | 2.33 | 7.86 |
Compound | Condition * | k1 | k2 | α | Rs | Compound | Condition * | k1 | k2 | α | Rs |
---|---|---|---|---|---|---|---|---|---|---|---|
syn-5a | A | 5.22 | 5.76 | 1.10 | 0.47 | anti-5a | A | 3.07 | 6.97 | 2.27 | 4.44 |
B | 0.06 | 0.06 | 1.00 | - | B | 0.11 | 0.11 | 1.00 | - | ||
C | 0.96 | 0.96 | 1.00 | - | C | 0.79 | 0.79 | 1.00 | - | ||
D | 0.76 | 0.76 | 1.00 | - | D | 0.68 | 0.68 | 1.00 | - | ||
E | 1.13 | 1.37 | 1.21 | 0.27 | E | 0.87 | 2.05 | 2.36 | 2.26 | ||
syn-5b | A | 3.39 | 3.96 | 1.17 | 0.80 | anti-5b | A | 2.03 | 4.70 | 2.32 | 4.38 |
B | 0.07 | 0.07 | 1.00 | - | B | 0.12 | 0.12 | 1.00 | - | ||
C | 1.03 | 1.03 | 1.00 | - | C | 0.83 | 0.83 | 1.0 | - | ||
D | 0.80 | 0.80 | 1.00 | - | D | 0.70 | 0.70 | 1.00 | - | ||
E | 1.20 | 1.61 | 1.34 | 0.80 | E | 0.97 | 2.37 | 2.44 | 2.47 | ||
syn-5c | A | 2.54 | 3.79 | 1.49 | 2.10 | anti-5c | A | 1.53 | 2.24 | 1.46 | - |
B | 0.07 | 0.07 | 1.00 | - | B | 0.14 | 0.14 | 1.00 | - | ||
C | 1.02 | 1.49 | 1.46 | 1.14 | C | 0.80 | 1.03 | 1.29 | 0.52 | ||
D | 0.77 | 1.07 | 1.39 | 0.66 | D | 0.62 | 0.79 | 1.27 | 0.52 | ||
E | 1.24 | 1.53 | 1.23 | 0.48 | E | 0.85 | 1.22 | 1.44 | 0.77 | ||
syn-5d | A | 8.51 | 9.61 | 1.13 | 0.68 | anti-5d | A | 5.09 | 13.57 | 2.67 | 5.27 |
B | 0.05 | 0.05 | 1.00 | - | B | 0.10 | 0.10 | 1.00 | - | ||
C | 1.38 | 1.38 | 1.00 | - | C | 1.20 | 1.20 | 1.00 | - | ||
D | 1.06 | 1.06 | 1.00 | - | D | 0.93 | 1.08 | 1.16 | - | ||
E | 1.62 | 2.02 | 1.25 | 0.70 | E | 1.35 | 3.51 | 2.60 | 3.41 | ||
syn-5e | A | 6.19 | 6.19 | 1.00 | - | anti-5e | A | 3.80 | 6.22 | 1.64 | 2.61 |
B | 0.06 | 0.06 | 1.00 | - | B | 0.11 | 0.11 | 1.00 | - | ||
C | 1.79 | 1.79 | 1.00 | - | C | 1.50 | 1.50 | 1.00 | - | ||
D | 1.28 | 1.28 | 1.00 | - | D | 1.11 | 1.11 | 1.00 | - | ||
E | 2.03 | 2.03 | 1.00 | - | E | 1.63 | 2.73 | 1.67 | 1.92 | ||
syn-5f | A | 8.91 | 8.91 | 1.00 | - | anti-5f | A | 6.52 | 13.81 | 2.12 | 3.29 |
B | 0.05 | 0.05 | 1.00 | - | B | 0.09 | 0.09 | 1.00 | - | ||
C | 2.14 | 2.14 | 1.00 | - | C | 1.74 | 1.74 | 1.00 | - | ||
D | 1.77 | 2.37 | 1.34 | 1.14 | D | 1.55 | 1.55 | 1.00 | - | ||
E | 3.13 | 9.66 | 3.08 | 5.38 | E | 3.00 | 6.65 | 2.22 | 3.55 | ||
syn-5g | A | 13.49 | 33.60 | 2.49 | 5.00 | anti-5g | A | 11.02 | 23.05 | 2.09 | 3.99 |
B | 0.07 | 0.07 | 1.00 | - | B | 0.13 | 0.13 | 1.00 | - | ||
C | 2.91 | 2.91 | 1.00 | - | C | 2.01 | 2.54 | 1.26 | 0.98 | ||
D | 2.41 | 3.15 | 1.31 | 1.22 | D | 2.15 | 2.15 | 1.00 | - | ||
E | 4.77 | 12.01 | 2.52 | 4.86 | E | 5.01 | 9.30 | 1.86 | 3.32 | ||
syn-5h | A | 12.55 | 12.55 | 1.00 | - | anti-5h | A | 13.80 | 13.80 | 1.00 | - |
B | 0.09 | 0.09 | 1.00 | - | B | 0.13 | 0.16 | 1.23 | - | ||
C | 2.30 | 3.40 | 1.48 | 1.87 | C | 2.22 | 2.22 | 1.00 | - | ||
D | 1.98 | 4.66 | 2.35 | 3.96 | D | 2.03 | 2.86 | 1.41 | 1.24 | ||
E | 4.77 | 12.01 | 2.52 | 4.86 | E | 5.18 | 17.36 | 3.35 | 6.58 | ||
syn-5i | A | 4.66 | 7.23 | 1.55 | 2.17 | anti-5i | A | 3.88 | 3.88 | 1.00 | - |
B | 0.04 | 0.04 | 1.00 | - | B | 0.09 | 0.09 | 1.00 | - | ||
C | 1.34 | 1.92 | 1.43 | 1.27 | C | 1.26 | 1.26 | 1.00 | - | ||
D | 0.94 | 1.48 | 1.57 | 1.27 | D | 0.89 | 0.89 | 1.00 | - | ||
E | 1.53 | 2.34 | 1.53 | 1.53 | E | 1.44 | 1.44 | 1.00 | - |
Column/CPS | Mobile Phase Condition (v/v) | r.b.s. * | ||
---|---|---|---|---|
syn | anti | Syn + anti | ||
Amylose-SA | Hex/2-PrOH = 90/10 | 0.89 | 1.00 | 0.94 |
DMC | 0.33 | 0.56 | 0.44 | |
CO2/MeOH = 80/20 | 0.44 | 1.00 | 0.72 | |
CO2/EtOH = 80/20 | 0.56 | 1.00 | 0.78 | |
CO2/2-PrOH = 80/20 | 0.78 | 1.00 | 0.89 | |
Cellulose-SB | Hex/2-PrOH = 90/10 | 0.78 | 1.00 | 0.89 |
DMC | 0 | 0.44 | 0.22 | |
CO2/MeOH = 80/20 | 0.56 | 1.00 | 0.78 | |
CO2/EtOH = 80/20 | 0.56 | 0.78 | 0.67 | |
CO2/2-PrOH = 80/20 | 0.33 | 0.89 | 0.61 | |
Cellulose SC | Hex/2-PrOH = 90/10 | 0.33 | 0.67 | 0.50 |
DMC | 0 | 0 | 0 | |
CO2/MeOH = 80/20 | 0.11 | 0 | 0.06 | |
CO2/EtOH = 80/20 | 0.11 | 0 | 0.06 | |
CO2/2-PrOH = 80/20 | 0.44 | 0.78 | 0.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurin, M.; Kontrec, D.; Dražić, T.; Roje, M. Enantioseparation of syn- and anti-3,5-Disubstituted Hydantoins by HPLC and SFC on Immobilized Polysaccharides-Based Chiral Stationary Phases. Separations 2022, 9, 157. https://doi.org/10.3390/separations9070157
Jurin M, Kontrec D, Dražić T, Roje M. Enantioseparation of syn- and anti-3,5-Disubstituted Hydantoins by HPLC and SFC on Immobilized Polysaccharides-Based Chiral Stationary Phases. Separations. 2022; 9(7):157. https://doi.org/10.3390/separations9070157
Chicago/Turabian StyleJurin, Mladenka, Darko Kontrec, Tonko Dražić, and Marin Roje. 2022. "Enantioseparation of syn- and anti-3,5-Disubstituted Hydantoins by HPLC and SFC on Immobilized Polysaccharides-Based Chiral Stationary Phases" Separations 9, no. 7: 157. https://doi.org/10.3390/separations9070157
APA StyleJurin, M., Kontrec, D., Dražić, T., & Roje, M. (2022). Enantioseparation of syn- and anti-3,5-Disubstituted Hydantoins by HPLC and SFC on Immobilized Polysaccharides-Based Chiral Stationary Phases. Separations, 9(7), 157. https://doi.org/10.3390/separations9070157